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Abstract: The synthesis of adjacent overlapped Stokes spectra in two stages of a transient stimulated
Raman chirped-pulse amplifier, tuned respectively to the vibrational modes at 901 and 767 cm−1

of a potassium gadolinium tungstate [KGd(WO4)2] crystal, is demonstrated. The contribution
of the spatio-temporal overlap of seed and pump pulses, as well as the self-phase modulation,
was investigated. The noncollinear configuration allows the composite bandwidth at the central
wavelength of 1120 nm to be increased by a factor of 23 compared to the pump pulse bandwidth of
1.6 nm. After reaching a conversion efficiency of 35% in the second stage, the compressibility of a
chirped Stokes pulse with a tailored spectrum was also investigated.

Keywords: ultrafast lasers; supercontinuum generation; stimulated Raman scattering; KGW; chirped
pulse amplification; spectrum synthesis; pulse compression

1. Introduction

The inherent phase matching gives stimulated Raman scattering (SRS) an important
advantage in wavelength conversion and pulse compression. However, SRS is highly
transient for pulses shorter than a few picoseconds, since the vibrational dephasing times
in most of the known gaseous, liquid, or crystalline media are much longer. This leads to a
significant increase in the SRS threshold [1], a drop in conversion efficiency and compe-
tition from self-focusing, self-phase modulation (SPM), and a supercontinuum (SC) [2,3].
Several attempts have been reported to overcome these obstacles. SRS of chirped pump
pulses [4] eliminates undesirable nonlinear effects, but the concomitant spectral narrowing
leads to a 2–3-fold increase in the pulse width of compressed Stokes [4,5], although this
narrowing has been resolved [6]. SRS conversion in gases [7] and solids [8] has been
demonstrated with an efficiency in excess of 20% with Stokes recompression to less than
100 fs. Transient stimulated Raman amplification (SRA) of femtosecond pulses increases
conversion efficiency and provides additional spectrum broadening [9]. Accordingly, the
SRA conversion efficiency of 50% [10] or 5-fold spectral broadening compared to the pump
with SC pulses [11] in potassium gadolinium tungstate [KGd(WO4)2] (KGW) [12] crystals
have been reported.

However, broadband excitation pulses were still implied to achieve a pulse width
below 100 fs, and no gain in peak power at the Stokes wavelength occurred until recent
experiments on transient stimulated Raman chirped-pulse amplification (TSRCPA) in KGW
pumped by 1.2 ps transform-limited pulses [13]. At a Stokes shift of 901 cm−1, a conversion
efficiency of 55%, an amplified Stokes bandwidth ~10 times wider than pumping, and
~8-fold compression were achieved. Moreover, in a single KGW crystal, an overlap of
different vibrational Raman lines resulted in a maximum spectral bandwidth sufficient for
transform-limited pulses of 80 fs. Indeed, the orthogonal polarization of the short-wave
and long-wave parts of the composite spectrum did not allow compression. Thus, it is
important to investigate the limits of maintaining the TSRCPA spectrum bandwidth with
high conversion efficiency and compressibility of amplified Stokes pulses.
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Continuing to develop the above concept, we investigate here for the first time the
synthesis of a composite spectrum obtained from two successive TSRCPA stages tuned to
vibrational modes at 767 and 901 cm−1 of the KGW crystal, respectively. For this purpose,
we reveal the contribution of the spatio-temporal overlap of SC seed and pump pulses, the
SPM of the pump, and the Stokes and spectral overlap of adjacent vibrational Raman lines.
Experimentally, a record 23-fold increase in the composite spectral bandwidth of amplified
Stokes pulses was achieved in comparison with pump pulses.

2. Experimental Setup

The anisotropic KGW crystal exhibits several intense spontaneous Raman vibrations
that can be excited along different crystal axes. The most intense adjacent Stokes lines at
767 cm−1 (Ng-axis) and 901 cm−1 (Nm-axis) can be excited in successive TSRCPA stages. A
short dephasing time of several picoseconds [12] and a large Raman gain [14] distinguish
this material favorably upon the SRS conversion of ~1 ps pulses with significant spectral
broadening [13]. The Yb:YAG chirped-pulse amplifier [15] used in the experiments deliv-
ered ~1.2 ps (FWHM) transform-limited pulses with an energy of 20 mJ at a repetition
rate of 100 Hz (Figure 1). A small portion (~12 µJ) of the laser pulse energy was directed
to an undoped YAG rod 15 mm long to obtain stable SC pulses in the wavelength range
from 1050 to 2400 nm [16]. These SC pulses were used to seed the first TSRCPA stage.
Laser pulses with energies up to 2.5 mJ after passing through optical delay lines were
used to pump two successive TSRCPA stages based on Np-cut KGW crystals 30 mm and
15 mm long, tuned to vibrational modes at 901 and 767 cm−1, respectively. To reveal the
features of TSRCPA in collinear and noncollinear configurations, seed and pump pulses
were combined in KGW crystals at a small angle or propagated collinearly at constant beam
diameters. As before [13], a glass diffuser was placed in front of a spectrum analyzer (An-
ritsu MS9740B) to homogenize the Stokes radiation, and the beam profiles were measured
using a CMOS profilometer (DataRay WinCamD-LCM). The possibility of compressing
amplified pulses was tested using SF11 prisms with an apex angle of 59◦ spaced 2.1 m
apart to compensate for positive dispersion in YAG and KGW crystals. The amplified
and compressed Stokes pulses were characterized using home-built second harmonic gen-
eration frequency-resolved optical gating (SHG-FROG) with 100 µm thick beta-barium
borate (BBO).

Crystals 2022, 12, 888 2 of 8 
 

 

it is important to investigate the limits of maintaining the TSRCPA spectrum bandwidth 
with high conversion efficiency and compressibility of amplified Stokes pulses. 

Continuing to develop the above concept, we investigate here for the first time the 
synthesis of a composite spectrum obtained from two successive TSRCPA stages tuned to 
vibrational modes at 767 and 901 cm−1 of the KGW crystal, respectively. For this purpose, 
we reveal the contribution of the spatio-temporal overlap of SC seed and pump pulses, 
the SPM of the pump, and the Stokes and spectral overlap of adjacent vibrational Raman 
lines. Experimentally, a record 23-fold increase in the composite spectral bandwidth of 
amplified Stokes pulses was achieved in comparison with pump pulses. 

2. Experimental Setup 
The anisotropic KGW crystal exhibits several intense spontaneous Raman vibrations 

that can be excited along different crystal axes. The most intense adjacent Stokes lines at 
767 cm−1 (Ng-axis) and 901 cm−1 (Nm-axis) can be excited in successive TSRCPA stages. A 
short dephasing time of several picoseconds [12] and a large Raman gain [14] distinguish 
this material favorably upon the SRS conversion of ~1 ps pulses with significant spectral 
broadening [13]. The Yb:YAG chirped-pulse amplifier [15] used in the experiments deliv-
ered ~1.2 ps (FWHM) transform-limited pulses with an energy of 20 mJ at a repetition rate 
of 100 Hz (Figure 1). A small portion (~12 µJ) of the laser pulse energy was directed to an 
undoped YAG rod 15 mm long to obtain stable SC pulses in the wavelength range from 
1050 to 2400 nm [16]. These SC pulses were used to seed the first TSRCPA stage. Laser 
pulses with energies up to 2.5 mJ after passing through optical delay lines were used to 
pump two successive TSRCPA stages based on Np-cut KGW crystals 30 mm and 15 mm 
long, tuned to vibrational modes at 901 and 767 cm−1, respectively. To reveal the features 
of TSRCPA in collinear and noncollinear configurations, seed and pump pulses were com-
bined in KGW crystals at a small angle or propagated collinearly at constant beam diam-
eters. As before [13], a glass diffuser was placed in front of a spectrum analyzer (Anritsu 
MS9740B) to homogenize the Stokes radiation, and the beam profiles were measured using 
a CMOS profilometer (DataRay WinCamD-LCM). The possibility of compressing amplified 
pulses was tested using SF11 prisms with an apex angle of 59° spaced 2.1 m apart to com-
pensate for positive dispersion in YAG and KGW crystals. The amplified and compressed 
Stokes pulses were characterized using home-built second harmonic generation frequency-
resolved optical gating (SHG-FROG) with 100 µm thick beta-barium borate (BBO). 

 
Figure 1. Experimental setup for investigation of transient stimulated Raman chirped-pulse ampli-
fication (TSRCPA): λ/2—half-wave retardation plate; TFP—thin-film polarizers. 

3. Results and Discussion 
For a collinear configuration, efficient SC amplification in the first TSRCPA stage was 

observed already at a pump energy of 0.32 mJ, corresponding to a peak intensity of 12 
GW/cm2 (Figure 2a). The mismatch between the pump electric field vector and the axis of 
the KGW crystal in a noncollinear configuration led to a ~25% increase in the pump energy 
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Figure 1. Experimental setup for investigation of transient stimulated Raman chirped-pulse amplifi-
cation (TSRCPA): λ/2—half-wave retardation plate; TFP—thin-film polarizers.

3. Results and Discussion

For a collinear configuration, efficient SC amplification in the first TSRCPA stage
was observed already at a pump energy of 0.32 mJ, corresponding to a peak intensity of
12 GW/cm2 (Figure 2a). The mismatch between the pump electric field vector and the axis
of the KGW crystal in a noncollinear configuration led to a ~25% increase in the pump
energy to 0.4 mJ (15 GW/cm2) required for the same Stokes energy. When the SC seed was
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blocked, the SRS threshold was observed with a further increase in the pump energy by
53–58%, which corresponds to a peak intensity of 19 GW/cm2 for collinear configuration
and of 23 GW/cm2 for noncollinear configuration. At even higher pump intensities, second-
order Stokes and anti-Stokes radiation appears, which leads to saturation of the conversion
efficiency and is accompanied by distortions of the amplified beam. Because of the better
overlap of the pump and the seed beams in the collinear configuration, the second-order
Stokes radiation appears at a much lower pump energy than in the noncollinear case. At
an optimal pump pulse energy of 0.75 mJ (28 GW/cm2) and 1.2 mJ (45 GW/cm2), the
maximum conversion efficiencies to the first Stokes of 5.8% and 6.4% were observed in the
first TSRCPA stage for collinear and noncollinear configurations, respectively (Figure 2a).
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Figure 2. (a) Conversion efficiency in the first TSRCPA stage versus the pump pulse energy for
collinear (dashed) and noncollinear (solid) configurations. Amplified beam profiles for (b) a collinear
case at a pump pulse energy of 0.9 mJ and (c) a noncollinear case before and (d) after spatial filtering
at a pump pulse energy of 1.3 mJ.

Even below the second-order Stokes generation, the amplified beam was distorted in
both cases (Figure 2b,c). In a collinear configuration, the amplified Stokes beam could not
be spatially separated from the coincident SRS radiation with the same spectral components
as the amplified signal. In this case, when we use transform-limited pump pulses, the
generated parasitic SRS pulse has a frequency-independent spectral phase [4], in contrast
to the linearly chirped amplified signal [13]. Thus, parasitic radiation not only distorts the
amplified Stokes beam but can also hinder further pulse compression. Meanwhile, in the
noncollinear case, the SRS and pump beams propagate along the same direction and are
spatially separated from the amplified seed. Although the amplified Stokes beam consisted
of a center and a peripheral area (Figure 2c) with conical anti-Stokes components [17] in
accordance with the angle between the seed and pump, the iris aperture made it possible
to separate the central Gaussian spot with a 30% signal pulse energy loss (Figure 2d).
The spectra of amplified Stokes pulses after the first TSRCPA stage significantly broaden
with increasing energy (Figure 3b,c) as well as the spectral bandwidth of the pump pulse
(Figure 3a) due to SPM in both configurations. Under the same pumping conditions, the
bandwidth of the amplified pulse in the collinear case is larger than in the noncollinear
one. In particular, at a pump energy of 0.9 mJ, the bandwidth of the amplified pulse in
the collinear configuration expands to 13 nm (FWHM), which is sufficient for a transform-
limited pulse of 142 fs. Meanwhile, at the same pump pulse energy in the noncollinear
case, the amplified pulse bandwidth was only 9.5 nm (FWHM), which corresponds to a
transform-limited pulse of 194 fs. It should be noted that a further increase in the pump
energy to an optimal value of 1.2 mJ provides a spectral bandwidth of up to 12 nm (FWHM).
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Figure 3. Spectra (a) of the incident (solid) and outgoing pump pulse after a 30 mm KGW crystal at
different energy levels (dashed and dotted). Spectra after the first TSRCPA stage in (b) collinear and
(c) noncollinear configurations at different pump energy levels.

For both configurations, the greatest spectral broadening is achieved at the optimal
delay between the seed and pump pulses, when the best gain is observed, and in both
cases, with increasing pump energy, the amplified Stokes pulse predominantly broadens
towards shorter wavelengths. This is explained by the fact that, in transient SRS, the Stokes
pulse is formed at the trailing edge of the pump pulse [18]. During the SPM pump pulse,
red- and blue-shifted frequency components appear at the leading and trailing edges, so
the amplified Stokes pulse basically replicates the frequency and phase structure of the
trailing edge of the pump pulse. Consequently, a more significant spectral broadening to
the short-wavelength range is observed. Such asymmetric broadening is handy for further
spectral synthesis at the second TSRCPA stage, in which the spectrum from the first stage
should overlap with the adjacent Stokes component corresponding to 767 cm−1.

The study also revealed that the bandwidth and output energy of amplified pulses in
a noncollinear configuration strongly depend on the location of the spatial overlap of the
seed and pump pulses along the KGW crystal (Figure 4).
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The widest spectrum was observed when the interacting pulses were overlapped in
the middle of the 30 mm KGW crystal. In other cases, when the pump and seed pulses
overlap in the input and output sections of the crystal, the bandwidth of the amplified
pulses narrows to 9.5 and 11 nm (FWHM), respectively. This is explained by the fact that,
when the pulses are overlapped in the input part of the KGW crystal, the effect of the
SPM on the pump pulses is still insufficient to cause its significant spectral broadening.
Therefore, in turn, the spectral bandwidth of the Stokes pulses is smaller. Meanwhile, as
the pump pulse propagates along the crystal, the acquired SPM is large enough to affect the
bandwidth of the Stokes pulse. When the pulses interact in the middle of the crystal, where
the Stokes pulse reaches its maximum energy, the SPM of the amplified pulse imparts
additional spectral broadening. With an increase in the length of the crystal passed by the
pump pulse before overlapping with a seed from 20 to 30 mm, a sharp decrease in the
energy of the amplified Stokes pulse is observed. This leads to a weakening of the SPM of
the Stokes pulse with a decrease in its spectral bandwidth. Meanwhile, the noncollinearity
angle did not significantly affect the gain bandwidth. The larger mismatch between the
direction of the pump electric field vector and the axis of the KGW crystal led only to
a slight decrease in the conversion efficiency when this angle increased. As a result, a
minimum noncollinearity angle of ~2◦ was determined to be optimal. Thus, in terms of
the set of experimentally confirmed advantages, namely, a higher second-order Stokes
threshold, a higher optimal pump and amplified Stokes energy, a better beam quality
after spatial cleaning, and simplicity in separating the accompanying SRS, a noncollinear
configuration is proposed as the best method for maintaining a wide TSRCPA bandwidth.

The second TSRCPA stage was tuned to the adjacent vibrational mode of the KGW
crystal at 767 cm−1, which made it possible to synthesize an extremely wide tailored
spectral bandwidth of ~38 nm (Figure 5a) corresponding to the transform-limited pulse
of 50 fs (Figure 6b—dotted line) at a central wavelength of 1120 nm. In this case, the
short-wavelength and long-wavelength wings of the amplified Stokes spectrum are in the
same polarization, in contrast to the simultaneous excitation of several vibrational modes
in a single KGW crystal [13].

Crystals 2022, 12, 888 5 of 8 
 

 

The widest spectrum was observed when the interacting pulses were overlapped in 
the middle of the 30 mm KGW crystal. In other cases, when the pump and seed pulses 
overlap in the input and output sections of the crystal, the bandwidth of the amplified 
pulses narrows to 9.5 and 11 nm (FWHM), respectively. This is explained by the fact that, 
when the pulses are overlapped in the input part of the KGW crystal, the effect of the SPM 
on the pump pulses is still insufficient to cause its significant spectral broadening. There-
fore, in turn, the spectral bandwidth of the Stokes pulses is smaller. Meanwhile, as the 
pump pulse propagates along the crystal, the acquired SPM is large enough to affect the 
bandwidth of the Stokes pulse. When the pulses interact in the middle of the crystal, 
where the Stokes pulse reaches its maximum energy, the SPM of the amplified pulse im-
parts additional spectral broadening. With an increase in the length of the crystal passed 
by the pump pulse before overlapping with a seed from 20 to 30 mm, a sharp decrease in 
the energy of the amplified Stokes pulse is observed. This leads to a weakening of the SPM 
of the Stokes pulse with a decrease in its spectral bandwidth. Meanwhile, the noncolline-
arity angle did not significantly affect the gain bandwidth. The larger mismatch between 
the direction of the pump electric field vector and the axis of the KGW crystal led only to 
a slight decrease in the conversion efficiency when this angle increased. As a result, a 
minimum noncollinearity angle of ~2° was determined to be optimal. Thus, in terms of 
the set of experimentally confirmed advantages, namely, a higher second-order Stokes 
threshold, a higher optimal pump and amplified Stokes energy, a better beam quality after 
spatial cleaning, and simplicity in separating the accompanying SRS, a noncollinear con-
figuration is proposed as the best method for maintaining a wide TSRCPA bandwidth. 

The second TSRCPA stage was tuned to the adjacent vibrational mode of the KGW 
crystal at 767 cm–1, which made it possible to synthesize an extremely wide tailored spec-
tral bandwidth of ~38 nm (Figure 5a) corresponding to the transform-limited pulse of 50 
fs (Figure 6b—dotted line) at a central wavelength of 1120 nm. In this case, the short-
wavelength and long-wavelength wings of the amplified Stokes spectrum are in the same 
polarization, in contrast to the simultaneous excitation of several vibrational modes in a 
single KGW crystal [13]. 

 
Figure 5. (a) Synthesized spectra after two TSRCPA stages tuned to vibrational modes at 901 and 767 
cm−1 of a KGW crystal. (b) Conversion efficiency in the second TSRCPA stage versus pump pulse en-
ergy and (inset) amplified beam profile at a pump energy of 1.4 mJ. τTL—transform limited pulse 
width. 

Figure 5. (a) Synthesized spectra after two TSRCPA stages tuned to vibrational modes at 901 and
767 cm−1 of a KGW crystal. (b) Conversion efficiency in the second TSRCPA stage versus pump
pulse energy and (inset) amplified beam profile at a pump energy of 1.4 mJ. τTL—transform limited
pulse width.
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Figure 6. (a) Synthesized spectrum after two TSRCPA stages (solid black), FROG-retrieved spectral
intensity profile (solid red), and its spectral phase (dashed) before compression. (b) Temporal profile
(solid) of amplified pulse after compression retrieved from the SHG-FROG measurement, compared to
transform-limited pulse calculated from the measured spectrum (dotted) and the retrieved temporal
phase (dashed). τTL—transform limited pulse width.

A conversion efficiency 35% was achieved (Figure 5b) at a pump pulse energy of 1.4 mJ,
corresponding to 30 GW/cm2. Obviously, due to the large mismatch between the center
wavelengths, adjacent wings of the synthesized spectrum are amplified independently.
As a result, the conversion efficiency was lower compared to the amplification of a single
Stokes component in two successive TSRCPA stages [13]. Indeed, additional amplification
stages or a multi-pass cell (MPC) can be used to further improve conversion efficiency [19].

The measured spectrum, the FROG-retrieved spectrum, and its phase for the amplified
pulse after spectral synthesis in a two-stage amplifier are shown in Figure 6a. It can be seen
that the synthesized pulse has a positive chirp imprinted from supercontinuum pulses,
which is accompanied by significant spectral phase modulations (Figure 6a—dashed line).
Unfortunately, we cannot pinpoint exactly what caused the phase modulations. We assume
that the phase distortions of the pump pulse caused by the SPM are transmitted to the
Stokes pulses during amplification. The B-integral of the pump radiation accumulated
in the first TSRCPA stage exceeded 9, which certainly affects the amplified Stokes phase
structure. Meanwhile, in the second stage, the B-integral did not exceed 3; therefore, the
spectral phase structures of adjacent Stokes modes induced by the SPM were different. In
addition, Stokes SPM during amplification can also have some effect on the spectral phase
distortions of the amplified signal. After two TSRCPA stages, a synthesized pulse width
of ~1 ps was observed. Despite the fact that the synthesized pulse has an inhomogeneous
spectral phase, it is of interest to be able to compress it to at least ~100 fs. The delay in the
second stage was optimized to compress the pulse with the best contrast. Otherwise, two
zones can be observed in the temporal profile of the compressed Stokes pulse.

To achieve the shortest pulse width, the distance between the two prisms was varied
experimentally. The resulting temporal quality is mediocre, with large pedestals and side
pulses. Nevertheless, the shortest pulse width of 135 fs (FWHM) was achieved (Figure 6b—
solid line), which is ~9 times shorter than the pump. Indeed, with passive compression,
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phase modulation is still clearly visible (Figure 6b—dashed line). Therefore, to approach
the sub-100 fs pulse width, it is necessary to use active phase control, i.e., an acousto-optic
programmable dispersive filter (AOPDF).

4. Conclusions

TSRCPA demonstrates the efficient amplification of ultrashort laser pulses with an
extremely wide spectral bandwidth. For the selected single vibrational mode at 901 cm−1

in a KGW crystal, the TSRCPA was investigated in different amplifier configurations under
transient excitation by transform-limited 1.2 ps pump pulses. The noncollinear configura-
tion made it possible to increase the second-order Stokes threshold and ensure a higher
optimal pump and amplified Stokes pulse energy, as well as a better quality of the amplified
Stokes beam. In this case, the amplification of two adjacent vibrational Stokes components
at successive TSRCPA stages provides a 23-fold increase in the composite bandwidth of
amplified Stokes pulses compared to pump pulses with a maximum conversion efficiency
of 35%. As a result, a spectral bandwidth of 38 nm was achieved at a central wavelength of
1120 nm. Despite the modulated spectral phase of the synthesized pulse, the compression
of the amplified Stokes pulses to 135 fs was obtained experimentally. In addition, a possible
extension of the concept under study can be a combination of various SRS-active materials
with complementary Stokes shifts in successive TSRCPA stages in order to achieve an
even wider spectral bandwidth. Alternatively, near-single cycle pulses can also be synthe-
sized by combining spatially separated multiple-order SRS sidebands generated in a single
crystal [20].
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