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Abstract: Pultrusion is a continuous process of forming constant cross-sections of unidirectional
composites with a significant long length. This unique process is implemented widely in the compos-
ites industry due to its continuous, automated, and highly productive nature. The current research
focused on mechanical response characterization at three modes of loading: tensile, compression,
and shear loading of coupons made from a graphite/epoxy 1 mm sheet. In addition, the effects of
holes and notches were examined in terms of mechanical properties. The mechanical behavior was
assessed through stress–strain curves with careful attention on the curve profile, macroscopic fracture
modes observations, and optical microscopic tracking with continuous video records. The mechanical
tests follow standards with some critiques on the shear test. Finite element analysis (FEA) was used
to accurately determine the shear modulus, and for other mechanical investigations. By nature, under
tension, the unidirectional fiber composite at 0◦ orientation exhibits high strength (2800 MPa), with
very low strength at 90◦ orientation (40 MPa). Both orientations display linear mechanical behavior.
Under compression, 0◦ orientation exhibits low strength (1175 MPa), as compared to tension due to
the kinking phenomena, which is the origin in the deviation from linear behavior. Under shear, both
orientations exhibit approximately the same shear strength (45 MPa for 0◦ and 47 MPa for 90◦), which
is mainly related to the mechanical properties of the epoxy resin. In general, in the presence of holes,
the remote fracture stress in the various modes of loading did not change significantly, as compared
to uniform coupons; however, some localized delamination crack growth occurred at the vicinity of
the holes, manifested by load drops up to the final fracture. This behavior is also attributed to the
tension of notched coupons. FEA shows that the shear values were unaffected by manufacturing
imperfections, coupon thickness, and by asymmetrical gripping up to 3 mm, with minor effect in the
case of a small deviation from the load line. Selected experimental tests support the FEA tendencies.

Keywords: pultrusion; unidirectional laminate composites; tension; compression; shear; kinking;
delamination crack growth

1. Introduction

“Pultrusion” in composite materials is derived from the words “pull” and “extrusion”.
Preliminary steps consist of pulling continuous fibers through a bath of resin, then pass-
ing them through pre-formers, following curing in a heated die. Nowadays, 3D printing
processes are considered in the development and implementation of thermoplastic pul-
trusion processes that can obtain a carbon fiber/polypropylene (CF/PP) filament [1]. The
pultrusion process is characterized by manufacturing composite materials into continuous
constant cross-section profiles, such as flat panels, through I-beams, Z-sections, solid bars
and hollow tubes. This process is very effective because it is a continuous technique in
producing low-cost, high quality structural products, which are very attractive in terms
of their lightweight and corrosion resistance, and they are used in aerospace [2], sporting,
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architecture, and transportation/automobile industries. New applications for pultruded
composites are appearing almost daily. They range from non-conducting ladder rail to
stiffened panels for aerospace applications. More recently, pultruded components have
been used in the automobile industry as drive shafts. The products have a consistent
quality, with almost no complementary finishing steps before usage as they are close to
the required dimensional tolerances. The common fiber reinforcements are S-glass, carbon
(C), and Kevlar within the matrix resins such as epoxy, phenolic, and even thermoplastics.
In terms of mechanical response, the pultruded profiles exhibit higher flexibility, tensile
strength, and structural performance, as compared to those fabricated with another reactive
polymer process. However, because the system consists of two phases, a large mismatch in
mechanical properties is observed. The C fiber behaves in a brittle manner, while the epoxy
exhibits extensive plastic deformation before fracture that leads to a highly anisotropic
response. As an example, the deformation along the fibers under tension and compression
is controlled by the fibers accompanied by a linear stress–strain response, with abrupt
failure due to the fracture of the fibers under tensile loading, or kinking under compression
loading. In the case of transverse compression in-plane shear, the nonlinear stress–stress
relationship is developed due to the deformation of the polymeric matrix and/or the
interface fiber/resin.

Nowadays the increasing demand for integrating pultrusion products into structural
applications, especially in aircraft structures, requires special attention on quality control
and a comprehensive understanding and knowledge of the mechanical fracture process
with and without defects such as open holes and damage.

The prediction of unidirectional (UD) fiber composite strength and the sequence
events, which lead to final failure in the tensile mode, received extensive attention in
the composite field. Three constituents control the strength of UD fiber composites, the
fiber, the resin matrix, and their interface. Statistical and analytical methods are being
used to predict the UD fiber composite strength. For the former, perfect bonding between
fibers and matrix was assumed. Lately, the authors in [3] introduced a new prediction
method using UD carbon fiber composites with a different interfacial shear strength (IFSS),
demonstrating a reasonable agreement with the experiments. In addition, they suggest
a new predictive method evaluating the optimal IFSS for the maximum tensile strength
of UD fiber composites, indicating that the tensile strength increases with increased IFSS,
reaching a maximum at an optimal strength and decreasing for further higher IFSS.

The fracture process of a UD fiber composite under axial tension is known to be a
local phenomenon in which a cluster of few fibers participate, triggered by one fiber break.
The authors in [4] also considered the important role of matrix failure between the fibers
using an axisymmetric multi-cylinder model. They concluded that the fracture scenario
is dependent on whether the initial fiber break is due to manufacturing or under loading.
For example, in the case of the former, the matrix crack initiates as a brittle crack from the
broken fiber end and grows normal to the fiber axis. The stress concentration produced by
the broken fiber in the intact neighboring fibers is further enhanced by the matrix crack
and is highest when the crack front reaches the fibers.

Unlike tensile loading, compressive failure is characterized by its variety and complex-
ity of modes. It is well known that the compressive strength is almost independent of fiber
tensile strength and frequently lower than expected. This behavior is related to the fact
that small misalignments in fiber orientation angles with respect to the loading direction,
may cause shear buckling which depends significantly on the matrix non-linearity [5].
Misalignments are generally attributed to the inherent part of the manufacturing process.
The authors in [6] established a kink band model, which triggered the shear buckling in
case of compressive loading, resulting in a compressive strength formula based on initial
misalignment analysis [7]. In the kink band model, the plastic shear properties were also
considered, mainly affected by the matrix polymers. The authors in [8] proposed a modified
kink band model for compressive failure, and theoretically determined the compressive
strength along with the kink band failure angle. In addition, the model can predict how the
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kink band is propagated and inclined, and why the shear buckling breaks out at that very
kinking angle.

The shear behavior of composites becomes a significant issue because various types
of structures are being exposed to such stresses [9]. Characterization of shear properties
is more difficult than the two uniaxial modes because, usually, other stress components
besides the shear stress arise in “shear testing”. When the shear yield stress is sought in a
complex stress state, significant non-linear deformations of the matrix before fracture and
progressive development of damage are observed [10,11]. Thus, beyond extensive experi-
mental evaluation, by seeking an appropriate set-up shear testing, numerical simulation
study becomes an important and essential tool in reproducing the complex deformation
and damage mechanisms that arise under in-plane shear [12,13].

Discontinuities, such as open holes and cutouts, affect the strength, and these are
accompanied by an important effect on the growth of damage zones [14]. Moreover, the
mechanical response of notched structures becomes more complex, caused by their specific
features such as heterogeneity, anisotropy, or strain gradients. As suggested by [15], in
the case of tensile loading, modeling strategies must not only be able to take account
of the damage modes of laminated structures (fiber breakage, matrix cracking, splitting,
delamination) and their interactions, but also capture the stress gradients at the hole edge.
The existence of holes in compression loading reduces the strength even more than tension.
This trend was related to damage initiation by a combination of fiber micro-buckling
and delamination, as observed by [16] on compressive failure in graphite-epoxy laminates
containing a single hole. In addition, shearing of continuous strand mat layers was detected
by [17], in compressive pultruded composite plates with holes.

This research is aimed at characterizing the mechanical response of pultruded T-700
carbon fibers with thermoset epoxy resin under tension, compression, and shear loading.
Attention was given to the failure sequence events and the fracture modes on macro- and
micro-scales as a function of fiber orientations. In addition, to increase the reliability of
the mechanical response integrity of pultruded products in particular, and fiber-reinforced
composite structures in general, damage and failure mechanisms must be recognized. This
has been characterized by the presence of open holes with various diameters in the three
modes of loading, as well as notch effects in the tensile mode. These defects represent
the natural state of the composite after the manufacturing process and are responsible
for nonlinear phenomena before the catastrophic failure. Moreover, in the case where the
damage occurred during service, such as after an impact [18], it is necessary to evaluate
the mechanical response of the damaged state according to the aeronautical requirements.
Therefore, the current study simulates via comprehensive tests, the mechanical behavior of
defected samples to strengthen the reliability of using structures from composite materials.
The various mechanical tests follow the ASTM standards with some critique on the shear
test with the input of FEA. The latter was applied for other mechanical issues such as the
influences of misalignment and shifting from axiality and the notch profile on the shear
properties. This topic is important to assess the sensitivity of such mechanical parameters
in affecting the mechanical property values.

2. Materials and Experimental Procedures

Pultruded laminate, in the form of a plate with a thickness of 1 mm, made of T-700
carbon fibers (70% in volume) with thermoset epoxy resin, was manufactured by Gordon
Composites Engineered Structural Materials Montrose, CO, USA. In general, the pultrusion
process (similar to the extrusion of metals) consists of five steps: filament feeding, resin
impregnation, pre-die forming, shaping and cutting, and, finally, pulling and cutting. The
tension and shear coupons were prepared using 1 ply, while for the compression coupons,
3 plies were glued after the precise process used to manufacture tension, compression and
shear coupons. For tension and compression, longitudinal (0◦) and perpendicular (90◦)
coupons were prepared related to the fiber orientation with polyester tabs, as recommended
by the standard. In the shear mode, coupons with fibers perpendicular to the applied load
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were noted as 0◦ and coupons with fibers parallel to the applied load noted as 90◦. The
mechanical behavior was determined in the three modes of loading, according to ASTM
standards: using [19] for tension, [20] for compression and [21] for shear, following the
general recommendations of [22], applicable to pultruded composites. Figure 1a–c shows
the coupon configuration and its dimensions, including the strain gauge (SG) locations for
the tension, compression, and shear modes, respectively. The coupon dimensions were
measured both by digital devices, as well as by a stereoscope microscope with attention to
the notch radius and other critical dimensions. In the case of compression, coupons of a
thickness of 3 mm were tested, and in the case of shear, coupons of a thickness of 1 mm
and 2 mm were tested.
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Figure 1. Coupon dimensions and SG location, for each mode of loading; (a) tension; (b) compression;
(c) shear.

Tensile tests were performed using friction grips and a computerized electro-mechanical
Instron (Norwood, MA, USA) machine with a capacity of 100 KN, shown in Figure 2a.
Displacement control with a constant crosshead velocity of 0.5 mm/min was applied
and the strain was measured utilizing uniaxial SGs (SG -C2A-XX-125LW-350 by Micro-
Measurements with a 3 mm gauge length-GL) located at the center of the coupon. In
addition, the mechanical response, with attention to the centered hole diameter effect and
side notch sensitivity degree, was characterized by testing the same set-up with coupons
consisting of a central hole with diameters ranging from 2.5 mm to 9.5 mm and a centered
double edge notch with a notch depth (ND) of 1.25, 1.45 and 2.25 mm. For the latter,
selected coupons were instrumented by four SGs located: two along the fibers adjacent
to the hole and two far away, with one along and the second perpendicular to the fibers.
Compression tests were performed by the same machine with similar test conditions using
compression fixtures acquired from Wyoming Test Fixtures (Salt Lake City, UT, USA) as
shown in Figure 2b. The strain was measured by the same type of SGs as mentioned
above. The SG was located at the center of the coupon. The thickness of 2 mm (shear) and
3 mm (compression) was obtained by using 3 M DP460 glue (Saint Paul, MN, USA) with
an 80 ◦C/4 h post-curing temperature. The effect of open holes, with diameters ranging
from 2.5 to 5.5 mm, on the mechanical response, was also addressed. Shear properties
were established using a Shimadzu 20 kN machine (Tokyo, Japan), with a shear fixture
acquired from Thumler GmbH (Nurnberg, Germany) and ±45◦ SGs (C2A-XX-062LV-120
with a 1.5 mm GL) (Figure 2c). The strain, load, and displacement values were measured
simultaneously by a Vishay data logger computerized system 7000 (Malvern, PA, USA).
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Finally, optical microscopy and scanning electron microscopy (SEM) were used to
characterize the crack location and path, the macro- and the micro-fracture modes as a
function of the loading modes.

3. Results
3.1. Mechanical and Fracture Behavior in Tension–Compression and Shear

The following three paragraphs describe the experimental activity in tension, com-
pression, and shear loading using uniform coupons. The results are given in terms of
stress–strain curves. In addition, tabulated results are shown and the macroscopic response
to some selected microscopic fracture modes, with attention to the critical features, are
also presented.

3.1.1. Tension

Figure 3a,b illustrates the mechanical response in tension for 0◦ and 90◦ coupons,
respectively. As shown (Figure 3a), at 0◦ orientation, the composite exhibits a linear
behavior, with a Young modulus of 132.5 ± 1.7 GPa, and a tensile strength of 2799 ± 2 MPa
with approximately 2% of strain. These results are in a good correlation compared to a
tensile strength of 2550 MPa with a modulus of 135 GPa listed by [23] for nearly the same
composite (T700 and epoxy resin) with 60% fiber volume. In the 90◦ configurations, the
tensile strength is approximately 40 MPa, as compared to 70 MPa given in the data sheet.
This difference is due to the highest volume fraction in the current composite. Table 1
summarizes the mechanical properties including the Poisson ratio in both orientations. As
shown, the deviation of all the measured parameters is very small, which specifies the high
reproducibility of this composite. Not shown here, the microstructure characterization
indicates a high-quality manufacturing process, manifested by very low defects with almost
uniform volume fraction. Figure 4a depicts the macroscopic tensile fracture modes for
0◦ and 90◦ coupons. As displayed, the failure of the 0◦ coupons developed from fracture
of fiber bundles (Figure 4b), whereas, for the 90◦ coupons, the fracture path was flat and
occurred at the interface fiber/matrix (Figure 4c).
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Table 1. Tensile properties in both orientations for four coupons.

Orientation Modulus (GPa) Fracture Stress (MPa) Fracture Strain (%) Poisson Ratio No. of Coupons

0◦ 132.5 ± 1.7 2799 ± 2 1.96 ± 0.11 0.307 ± 0.007 4

90◦ 9.1 ± 0.3 36 ± 2 0.40 ± 0.01 0.022 ± 0.002 4
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3.1.2. Compression

Figure 5a,b illustrates the mechanical behavior under compression for 0◦ and 90◦

coupons, respectively. For the 0◦ orientation (Figure 5a), the composite exhibits a linear
stress–strain relationship up to about 850 MPa (see the inner figure) with ultimate compres-
sion stress around 1300 MPa with 1.2% of strain. The deviation from linearity results from
the kinking phenomena, as shown in Figure 6e (indicated by a dashed circle). It appears
that the kink bands started in the upper grip zone and were accompanied by axial cracks
parallel to the fibers (Figure 6c,d). It is assumed that these bands were initiated due to the
stress concentration caused by the grips or by misalignment of the fixture. In the case of
the 90◦ coupons, elastic/plastic behavior is detected with a stress level of approximately
140 MPa with 2% of strain. The reproducibility in compression is smaller than in tension,
as shown in Table 2. This trend is due to small misalignments (an inherent part of the
manufacturing process) in the fiber orientation angle, with respect to the loading direction,
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which may cause shear buckling, which depends significantly on the matrix’s non-linearity.
For the 90◦ coupons, the compression mode stimulated shear stresses, which resulted in
higher stress, compared to lower one in tensile mode. This change is manifested by the
inclined fracture mode, which occurs through the thickness (Figure 6a,b). The shear mode
in compression is reflected with some similarity of microscopic features (serrated type
fracture), as in “pure shear” (see later on), as shown in Figure 7a,b.
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Table 2. Mechanical properties in compression mode of uniform coupons for the two orientations.

Orientation Modulus (GPa) Fracture Stress (MPa) Fracture Strain (%) Number of Coupons

0◦ 118 ± 2.1 1175 ± 157 1.1 ± 0.2 4

90◦ 10.3 ± 1.7 142 ± 10.6 1.85 ± 0.4 5
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3.1.3. Shear: Double V Notched (DVN) Coupons

Figure 8 illustrates the shear stress–strain curves for the different orientations 0◦ and
90◦. In both orientations, the mechanical behavior is characterized by elastic–plastic behav-
ior; for 90◦, the stress–strain relationship is smooth up to fracture (Figure 8b), whereas for
0◦, it ends by two consecutive load drops (Figure 8a,c), similar to the “pop in” phenomena
in metallic materials.

The load relaxation is due to delamination crack growth perpendicular to the applied
load initiated at the intersection of the notch root and the straight flank (see Figure 9a). The
alternate crack extension occurs on one side of the coupon followed by a crack growth on the
opposite side. This phenomenon occurs randomly without any preference side (although,
in most cases, we have noticed that the first one occurs at the static grip). As displayed in
some cases (Figure 8c), the second event arises at a stress lower than the first, while for
other cases, it happened at a higher or equal stress. Figure 8d emphasizes the difference in
the mechanical response including the low modulus for the 90◦ coupons (see later for some
arguments on this difference). Table 3 summarizes the various mechanical properties for
the different orientations; τr and γr represent the shear stress and strain, respectively, at
first noticed load relaxation. It is important to note that the shear modulus, determined
using the 90◦, is lower by 15%, and the shear strain is larger by 40%, as compared to the
0◦ coupons. The low value of the modulus was also accompanied by a deviation in linear
behavior at a lower shear stress (14.4 MPa, as compared to 17.6 MPa for 0◦). Note that
fracture shear stress for the 0◦ coupons was taken at the first load drop, whereas for the
90◦ coupons, it is the ultimate one. The crack initiation sites for the 0◦ and 90◦ coupons
are shown in Figure 9a,b respectively, (marked by arrows). As is shown for both cases, the
delamination cracks were initiated at the intersection of the notch root and the straight
flank, which indicates that this point is critical, as will be shown by FEA. As mentioned, the
shear modulus for the 90◦ coupons is lower than for the 0◦ coupons, and by examining the
fracture surface of both orientations, one can provide reasons for this mechanical distinction.
Figure 10 illustrates the fracture shear modes in two magnifications for both orientations.
The fracture of the 0◦ coupons (Figure 10a) is accompanied by a higher energy fracture
surface, as compared to the 90◦ coupons (Figure 10c). This argument is being manifested
by the fracture of the epoxy resin, whereas for the 0◦ coupons, a serrated-type fracture is
observed between the fibers indicating an applied shear mode (Figure 10b), in comparison
to a more tensile-like mode in the 90◦ coupons, which resulted in separation/de-bonding
of the matrix creating such columns. This difference in the fracture surface is expressed by
the shear modulus values and may give a hint on the state of the stress at the root of the
notch. This issue will be discussed later on with the support of FEA.
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Figure 8. Shear stress–strain curves for different orientations; (a) 0◦ entire curves up to fracture
(3 coupons); (b) 90◦ entire curves up to fracture (two coupons); (c) 0◦ expanded zone where load
relaxations were noticed; (d) comparison curves of 0◦ and 90◦ coupons (chose representative).
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Table 3. Mechanical properties for the shear coupons for the two orientations.

Orientation G12 (GPa) τr (MPa) γr (%) Number of Coupons

0◦ 6.6 ± 0.2 44.8 ± 3.2 0.092 ± 0.015 6

90◦ 4.9 ± 0.1 46.7 ± 1.6 1.36 ± 0.01 2 •
• Only two specimen were tested due to limitations in the raw materials.
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Figure 10. Microscopic fracture modes developed during shear at different orientations; (a,b) 0◦;
(c,d) 90◦.

3.2. Mechanical and Fracture Behavior in the Presence of Holes and Notches

The following three paragraphs describe the experimental activity in tension, compres-
sion and shear loading using holed coupons, respectively. The results are given in terms
of stress–strain curves. In addition, tabulated results are presented and the macroscopic,
with some selected microscopic, fracture modes, with attention to the critical features,
are presented.

3.2.1. Coupons with Holes in Tension

Figure 11a–c shows the nominal stress–strain and stress-displacement related to the
presence of holes, while increasing hole diameters from 2.5 mm up to 9 mm. The nominal
stress has been calculated according to the net section ((W-D)/t, where W is width, D-
diameter and t-thickness). Only selected holed coupons were instrumented by strain gauges.
Figure 11a illustrates the stress–strain for a 2.5 mm holed coupon with an expanded region
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up to 1000 MPa. Almost no change in the Young modulus was noticed for the localized
strain gauges and remote gauge, as compared to the reference, which was taken from
a uniform coupon. The other curves (Figure 11b,c) are given in terms of displacement,
although this display has no physical meaning. The curves lie on a narrow strip with
almost the same fracture stress (see Table 4). The first stress drop/relaxation, marked as
σnom-r, is noticed in the early stage of loading, at around 500 MPa (see Figure 11c). This
phenomenon is related to delamination growth along with the applied load near the hole
(see later on). In coupons with a hole diameter of 7 mm, pull out of the fiber bundle occurs
at the edges of the tabs before reaching the maximum fracture stress.
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Figure 11. Mechanical response of holed coupons in terms of nominal stress; (a) stress–strain of
2.5 mm holed coupon; (b) stress –displacement full curves up to fracture; (c) expanded region where
σr is observed for the various holes’ diameter (the arrow indicates increasing in D).

Table 4. Tensile stresses for holed coupons at different holes diameter.

Diameter (mm) σnom-r (MPa) σnom (MPa) Number of Coupons

2.5 640 ± 58 2770 ± 125 4

3.5 560 ± 44 2802 ± 96 4

4.5 530 ± 36 2903 ± 115 3

5.5 520 ± 26 2798 ± 114 3

7 533 ± 45 2468 ± 133 * 3

8 445 ± 40 1713 ± 54 * 3

9 545 ± 40 1952 ± 372 * 3
* These coupons did not reach the actual fracture load due to the pullout phenomenon.

Nevertheless, expanding the stress range up to the σnom-r, (Figure 11c) indicates three
trends; (1) The stiffness of the coupon increases as the hole diameter increases, (2) Moderate
decreases of σnom-r with hole diameter (see also Figure 12), while excluding the results
for holes of 7 mm and 9 mm diameter, is due to the pullout phenomenon. (3) As the hole
diameter increases, the change in the load drop increases, which indicates an increase in
the delamination crack growth steps (Figure 13). The curves in the last figure were shifted
by about 0.2 mm to emphasize the number and the amount of stress relaxation.
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Figure 14 illustrates the macro-fracture modes of holed coupons. As shown (indicated
by arrows), in the case of the 7–8 mm coupons (as well as at the 9 mm coupon not shown),
the pullout phenomenon occurs at the tabs at stresses lower than the strength value. This is
because the shear stresses at the interface gluing tabs cannot withstand the higher stresses
developed at the two ligaments after the development of σnom-r. This condition does
not arise at the 5.5 mm coupons where, instead, the two ligaments are being fractured.
Figure 15a,b shows the microscopic fracture modes resulting from delamination crack
growth emanating from the vicinity of the hole towards the tabs (the arrows designated
the growth direction). The fracture of the epoxy resin exhibits a “v” type fracture (see
arrows) which indicates the direction of growth very similar to chevron-type cracking in
semi-brittle materials. The alternate delamination growth and arrest mechanism may be
related to such a type of quasi-brittle fracture, similar to the pop in phenomenon during a
fracture toughness test of metallic materials with the same mechanical behavior.
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Figure 14. The tensile fracture modes in the holed 0◦ coupons with different diameters; (a) general
view; (b) 5.5 mm; (c) 8 mm (the dashed circles indicate the zone where the fracture occurred).
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Figure 15. Microscopic fracture mode developed during tensile of holed coupons; (a) general view;
(b) the chevron-type cracking of the epoxy resin between the carbon fibers.

3.2.2. Notched Coupons in Tension

Figure 16a–c illustrates the mechanical response of notched coupons with various
notch depths with the same notch radius (0.25 mm). Figure 16a displays the stress–strain
curves for the notched coupon with 1 mm, in comparison with an unflawed one (the strain
gauge was located at the center between the two notches). Almost no effect is noticed on
the Young modulus and the fracture stress. However, when inspecting the displacements
(Figure 16b,c), the stress–displacement relationships are characterized by three regions (see
also the inner figure): (1) Up to around 250 MPa, the coupons exhibit the same stiffness
with a smooth curve. (2) The change in the slope is accompanied by small stress drops of
up to approximately 1000 MPa, with higher stiffness for the larger notch. At the end of this
stage, significant stress relaxation is observed, followed by an additional stress relaxation
with further loading, as shown in Figure 16b (the curves were shifted by approximately
0.2 mm to emphasize the relaxation phenomenon). (3) As the second stress relaxation
occurs, the slope changes slightly until the final fracture, indicating damage accumulation.
This mechanical behavior can be explained by the macroscopic fracture modes, as given
in Figure 17. The first change may be related to microscopic damage at the interface
fiber/matrix, which increases up to a macroscopic delamination growth in the vicinity of
the tip notch radius, which alters the opposite notch as the load increases. As for the holed
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coupons, the result of both delamination cracks in two ligaments carries on the progressive
load until fracture (Figure 17a,b). However, in notched coupons, only two/three events
appeared, which led to catastrophic failure, as compared to holed coupons where multiple
events occurred before the final fracture. This difference is also expressed by the higher
value of stress relaxation for the notched coupon, as compared to the holed coupon. The
change in the mechanical behavior and fracture sequence between both defected coupons
will be discussed later on. As for the holed coupons, the fracture stress is almost unaffected
by the notch depths. For most coupons, the delamination crack develops at the tip radius
(see Figure 17c). Table 5 summarizes the mechanical properties of the various coupons. As
listed, the first stress relaxation increases as the notch depth increases, while the fracture
stress is almost unchanged.
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Figure 16. Nominal stress vs. strain and displacement for various notched coupons; (a) stress vs.
strain for ND = 1 mm; (b) stress vs. displacement curves up to fracture; (c) extended zone where load
relaxations were detected.
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Figure 17. Tensile fracture modes in the 0◦ orientation of notched coupons with ND-2.4 mm;
(a) general view; (b) two ligaments left after fracture; (c) the fracture profile at the notch radius.

Table 5. Tensile stresses notched coupons.

Notch Depth (mm) σnom-r (MPa) σnom (MPa) Number of Coupons

1.00 940 2840 1

1.6–1.45 1270 ± 250 2742 ± 41 3

2.4–2.15 1440 ± 127 2765 ± 130 3

3.2.3. Coupons with Holes in Compression

Figure 18a,b presents stress vs. displacement in the compression mode with increasing
hole diameter from 2.5 mm to 5.5 mm. The mechanical response is characterized by elastic
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behavior (Figure 18a) similar to that observed in the un-holed coupons. Minor stress drops
were noticed, which intensified as the hole diameter increased (Figure 18b). This behavior
is similar to that observed in the tensile mode as a result of delamination growth parallel
to the applied load. This mode of fracture is well presented in Figure 19a–d where, in
the case of the 5.5 mm coupon, the final fracture was ended by two parts resulting from
delamination extension up to the end of the tabs (Figure 19d). The first stress fracture
relaxation, the ultimate nominal stress, and the fracture pattern is almost unaffected by the
hole diameter as listed in Table 6.
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Figure 18. Stress vs. displacement in the compression mode, in the presence of various holes;
(a) complete curves; (b) expanded regions where local load relaxation is observed.

Crystals 2022, 12, x FOR PEER REVIEW 16 of 25 
 

 

Figure 18. Stress vs. displacement in the compression mode, in the presence of various holes; (a) 
complete curves; (b) expanded regions where local load relaxation is observed. 

    
(a) (b) (c) (d) 

Figure 19. Compression fracture mode in the 0° orientation of holed coupons with various hole 
diameter; (a) 2.5 mm; (b) 3.5 mm; (c) 4.5 mm; (d) 5.5 mm. 

3.2.4. Coupons with Holes in Shear 
The mechanical response of holed coupons in shear loading revealed that almost no 

changes were noticed compared to un-holed coupons and it was independent of the hole 
diameter. This trend was manifested by the same profile of the shear stress–strain curves, 
namely two consecutive stress relaxations were seen just after the entrance to the plastic 
region. In the case of the holed coupons, the shear strain was measured from both sides of 
the hole, while for the un-holed coupons, it was located at the center between the two 
notches. So, the comparison of the curves is only qualitative but the measured strains 
were useful for the FEA (see later on). The failure was not initiated at the holes, but the 
radii of the V-notches, similar to the un-holed coupons. The stress relaxations were re-
lated to the delamination crack growth from the notch in an alternate fashion (Figure 
20a). Further loading caused extra stress relaxations being related to cracks initiated from 
both sides of the hole, perpendicular to the loading direction (Figure 20b). As mentioned, 
the shear stress value, which represents the first noticed load relaxation, was not affected 
by the presence of a hole diameter, so the shear stress in Table 7 is an average value of the 
whole holed coupons. Two sets of holed coupons were tested, one with two layers 
bonded and the second one bonded only at four points close to the edges of the coupons. 
The bonded set exhibited a significant standard deviation with the average close to the 
un-holed coupons, while the “un-bonded” set displayed a smaller standard deviation; 
however, the average value was lower than for the un-holed one. Both results indicate 
the problematic aspect of the bonded procedure in both methods, which was docu-
mented by the metallographic study as well as by the stereographic microscope. These 
results encourage us to test coupons with one layer with and without holes, results which 
will be discussed later on. 

Table 7. Shear stress of notched coupons in the presence of various holes. 

Property τs (MPa) Number of Coupons 
Bonded two layers 41.5 ± 7.6 18 

“Un-bonded”two layers 36.4 ± 3.6 20 

 

Figure 19. Compression fracture mode in the 0◦ orientation of holed coupons with various hole
diameter; (a) 2.5 mm; (b) 3.5 mm; (c) 4.5 mm; (d) 5.5 mm.

Table 6. Mechanical properties of holed coupons in the compression mode of loading.

Hole Diameter (mm) First Stress Relaxation (MPa) Fracture Stress (MPa) Number of Coupons

2.5 700 1175 ± 12 4
3.5 600 1135 ± 140 3
4.5 585 1233 ± 79 3
5.5 600 1157 ± 55 3

3.2.4. Coupons with Holes in Shear

The mechanical response of holed coupons in shear loading revealed that almost no
changes were noticed compared to un-holed coupons and it was independent of the hole
diameter. This trend was manifested by the same profile of the shear stress–strain curves,
namely two consecutive stress relaxations were seen just after the entrance to the plastic
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region. In the case of the holed coupons, the shear strain was measured from both sides
of the hole, while for the un-holed coupons, it was located at the center between the two
notches. So, the comparison of the curves is only qualitative but the measured strains were
useful for the FEA (see later on). The failure was not initiated at the holes, but the radii
of the V-notches, similar to the un-holed coupons. The stress relaxations were related to
the delamination crack growth from the notch in an alternate fashion (Figure 20a). Further
loading caused extra stress relaxations being related to cracks initiated from both sides of
the hole, perpendicular to the loading direction (Figure 20b). As mentioned, the shear stress
value, which represents the first noticed load relaxation, was not affected by the presence of
a hole diameter, so the shear stress in Table 7 is an average value of the whole holed coupons.
Two sets of holed coupons were tested, one with two layers bonded and the second one
bonded only at four points close to the edges of the coupons. The bonded set exhibited a
significant standard deviation with the average close to the un-holed coupons, while the
“un-bonded” set displayed a smaller standard deviation; however, the average value was
lower than for the un-holed one. Both results indicate the problematic aspect of the bonded
procedure in both methods, which was documented by the metallographic study as well as
by the stereographic microscope. These results encourage us to test coupons with one layer
with and without holes, results which will be discussed later on.
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Table 7. Shear stress of notched coupons in the presence of various holes.

Property τs (MPa) Number of Coupons

Bonded two layers 41.5 ± 7.6 18

“Un-bonded”two layers 36.4 ± 3.6 20

4. Discussion

Wonjin et al. [3] used statistical methods based on the inhomogeneity of fibrous
materials, combined with an analytical method, to predict the tensile strength of UD fiber
composites with given multiple fractures. The material used in their study was almost
the same as in the present study (carbon fiber Toray T700 with 7µm fiber diameter, epoxy
resin with 46% volume fraction, and the shear stress was approximately 60 MPa). Here, the
volume fraction was 70%, while the shear stress was about 45 MPa. Using the predictive
tensile strength for the optimal shear stress, as in [3], the strength in our study, taking into
account the high-volume fraction, is very close to that predicted (2600 MPa, as compared to
the 2780 MPa experimentally determined).

When considering the compression mechanical behavior, Nayeem et al. [24] developed
a micromechanical model with attention on the matrix failure, since matrix failure occurs
before fiber failure. This has been carried out by separating the stress–strain states in the
matrix and fiber components from a representative volume element [25], which predicts
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failure at the fiber and matrix level by obtaining the volume-averaged stress state in the
fiber and the matrix. Instead of taking the average stress state, Nayeem et al. [24], used the
amplification technique to calculate the principal stresses and strains at several locations to
identify a critical location, allowing the fiber and matrix failure to be examined in detail.
This work predicted the shear failure mode in compression at 90◦, whilst as the fiber
orientation decreases towards 0◦, shear buckling developed at kinking angles, as was also
suggested by Tsuyoshi and Kazuro [8]. In the current study, the two extreme modes were
observed and the kink angle was around 17◦, whilst [8,26] observed 27◦ for a different
matrix, and volume fractions as also observed. One can follow the mentioned research and
predict the compressive strength based on the kink angle.

Referring to the effects of the presence of various diameter holes and different notch
depths, with a fixed notch radius of 100 µm, Figure 21 illustrates the degradation in the
mechanical response in terms of first stress relaxation, σr, due to splitting phenomena, and
the nominal fracture stress based on the net section. The σr represents localized properties
influenced by the epoxy resin and interface fiber/matrix properties, and the nominal
fracture stress represents remote properties affected by the composite layup and fibers. As
shown in Figure 21a, σr value decreases moderately as the hole diameter increases, while for
the notch, it increases significantly as the notch depth increases. The nominal fracture stress
is almost unchanged with diameter, while for the notch, it decreases slightly (Figure 21b). In
addition to the mechanical degradation shown in Figure 21a, as the hole diameter increases,
the amount of the stress relaxation increases, in addition to the number of stress drops
decreasing (Figure 21c). Actually, these findings confirm that as the hole diameter increases,
the degradation in the strength increases. In the case of a notch, the number of stress
drops is almost the same, with a slight increase in the amount of stress relaxation with the
notch depth. In a unidirectional laminate, it is known that failure initiating at the tip of a
discontinuity (hole or notch) propagates along the fibers, as shown clearly in the current
research. Such a cracking mechanism is known as a split. The problem of a transverse notch
in a unidirectional laminate was first analyzed by Cook and Gordon [27] who noted that
the propagation along with the fiber at the tip of the notch occurred due to the shear stress
concentration. They also argued that the initiation of split was caused by the transverse
stress σy, which reduces to zero immediately after initiation as there can be no stress normal
to the free surface. The problem of unidirectional laminates was analyzed by Zweben [28],
by making use of shear lag assumptions. He was able to successfully predict the fiber load
concentration factor and initiation of matrix failure near the notch tip. Mar and Lin [29]
have experimentally studied the split initiation and have argued in favor of shear stress
being responsible for split initiation. By using woven construction fabric, which has a
natural resistance to splitting. Due to the interaction of the fibers at the crossovers, this
represents a barrier to a crack in the matrix running and causing catastrophic failure.

There is a clear difference between compression and tension in both uniform and
holed coupons, as summarized in Table 8. The fracture stress in compression is about 40%
of the tension for the 0◦ coupons; however, in the 90◦ coupons, it is more than three-times
the tension value. The modulus and the fracture strain are higher for the 0◦ coupons
under tension, compared to compression, and the trend is reversed for the 90◦ coupons.
This dissimilarity between tension and compression for the 0◦ orientation is related to
the micro-buckling, or kinking, in 0◦ plies, a phenomena which developed during the
compression mode, as illustrated in Figure 6d and mentioned by [8]. In the case of the
90◦ orientation, where no kinking is observed, the properties in the compression mode are
higher, as compared to tension.
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Figure 21. The hole and the notch effect on the mechanical response in tension; (a) first stress
relaxation vs. hole diameter and notch depth; (b) fracture stress; (c) the amount and the number of
stress relaxations.

Table 8. Comparison of mechanical properties between tension and compression of uniform coupons.

Property Modulus (GPa) Fracture Stress (MPa) Fracture Strain (%)

Mode
Orientation 0◦ 90◦ 0◦ 90◦ 0◦ 90◦

Tension 132.5 ± 1.7 9.1 ± 0.3 2799 ± 2 36 ± 2 1.96 ± 0.11 0.40 ± 0.003

Compression 118 ± 2.1 10.3 ± 1.7 1175 ± 157 142 ± 10.6 1.1 ± 0.2 1.85 ± 0.4

For holed coupons, the fracture stress in the 0◦ coupons does not change with the
presence of holes, no matter the diameter dimension or the loading mode. However, in the
pre-failure phenomena, some changes can be pointed out: (1) The value in compression
is slightly higher than tension (700 MPa compared to 640 MPa for the smallest diameter);
(2) A moderate decrease in the pre-failure stress is obtained in compression, compared to
tension, which indicates the sensitivity of this value to the mode of loading; (3) A large
number of stress relaxations (more than six, and up to 10) is observed, compared to two in
compression, in spite of the increase in hole diameter; (4) The amount of stress relaxations
in compression is almost constant at about of 5–7 MPa, compared to tens of MPa under
tension; (5) The two events in compression are apart from each other by about 100 MPa
without any effect on the hole diameter, compared to sometimes greater than 400 MPa and,
alternatively, less than 20 MPa; (6) In terms of failure appearance, in compression, the two
split cracks are in opposite directions, whereas, under tension, two delamination cracks
were observed on both sides, leaving two ligaments on both sides of the hole.

The ASTM standard D7078 [21] cannot be used as is for the determination of the shear
modulus of unidirectional composites, since a different modulus is obtained when using
0◦ coupons, compared to 90◦ coupons. The correct shear modulus was computed using
high-order FEA (Stress Check by ESRD, St. Louis, MO, USA), as explained herein. By using
the measured force F, displacement of the right (or left) edge Uy and shear strain γ in the
center of the coupon, for the two orientations 0◦ and 90◦, using FEA, one may determine
the accurate value of the shear modulus. In the experiments, the applied force vs. the shear
strain (F vs. γ), and F vs. displacement curves, are available; so, ∆γ and ∆Uy (as shown
schematically in Figure 22a,b, respectively) are used to determine the modulus for a given
∆F in the linear behavior. A 2D plane-stress FE model that mimics the non-gripped region
of the shear coupon is created, as depicted in Figure 22c. The mesh consists of a high-order
(A high-order element allows to increase the polynomial order of the shape functions from 1
to 8 to monitor the error in energy norm – see Barna Szabo and Ivo Babuska, “Finite Element
Analysis”, Wiley, 1991) triangle and quadrilateral elements. On the left boundary, a vertical
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displacement Uy = ∆UExp and horizontal displacement Ux = 0 is prescribed, whereas, at
the right edge clamped boundary, conditions are prescribed. The Young modulus ELt and
ETt and Poisson ratio obtained in the tensile experiments are assigned to all finite elements.
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Figure 22. Experimental curves used for the FEA procedure; (a) F vs. γ; (b) F vs. displacement; (c) 
FE model and boundary conditions. 

Eight FEAs were performed by increasing the polynomial degree of the shape func-
tions in a hierarchical manner, thus ensuring that the numerical errors are under control 
and are less than 1% at p = 8. The shear stress computed by the FEA, normalized by the 
“average shear stress” (F/A), denoted by τxy/τavg, is presented in Figure 23a,b for 0° and 
90°, respectively. The shear stress is not uniform for both orientations and significantly 
different. In the center region of the 90° coupon, the shear stress is larger by about 11%, 
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Figure 22. Experimental curves used for the FEA procedure; (a) F vs. γ; (b) F vs. displacement; (c) FE
model and boundary conditions.

Eight FEAs were performed by increasing the polynomial degree of the shape func-
tions in a hierarchical manner, thus ensuring that the numerical errors are under control
and are less than 1% at p = 8. The shear stress computed by the FEA, normalized by the
“average shear stress” (F/A), denoted by τxy/τavg, is presented in Figure 23a,b for 0◦ and
90◦, respectively. The shear stress is not uniform for both orientations and significantly
different. In the center region of the 90◦ coupon, the shear stress is larger by about 11%,
compared to the average stress, while in the 0◦ coupons, it is 13% smaller. To determine
the correct shear modulus, we first started with an approximation of the shear modu-
lus G*LT that was assigned to the finite element model. By applying the displacements
Uy = ∆UExp and computing ∆FFE on the left edge (integrating τxy along the left edge), we
may inspect its value and also estimate the average shear strain ∆γ*FE at the strain gauge
location. Iteratively, one needs to correct the assigned value of G*LT in the FE model, so
that the FE force fits the experimental one (linear analysis) and ∆γ*FE strain is similar to
the experimental value.
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The correct shear modulus is the one that, when assigned to the FE model, the FE results
of F vs. γ and F vs. displacement are obtained in the experiments for the two orientation
coupons. Displacements were not measured during the experiments (this was not required
according to the standard), so we found ∆UExp and G, by trial and error, having ∆F and ∆γ.
Finally, the obtained shear modulus for the pultrusion was: GLT = GT L = 5.33 GPa.

To confirm the shear-modulus determination (a material property independent of the
direction of the shear load), we used it to mimic the experimental observations of F vs. γ
for the 0◦ and 90◦ orientations. One may note that the FE results with the determined GLT,
fit well with the experimental results (Figure 23c). The different slopes in Figure 23c, for
the same assigned shear modulus in the FEA, are due to the assignment of the longitudinal
Young modulus along the 0◦ or 90◦ directions.

FEA was also applied to investigate the sensitivity of the ultimate shear stress due to
defects related to manufacturing (Figure 24a) and inaccuracies associated with the experi-
mental procedures (Figure 24b,c). Two extreme conditions of manufacturing imperfections
are presented in Figure 24a. The FEA results demonstrated that both defects may have
a large influence on σyy; however the change in τxy is less than 10%. The current study
experimentally examined this issue for a smaller deviation, as shown in Figure 25a,b, for a
perfect and defective radius, respectively, only for the 0◦ orientation. Table 9 summarizes
the results for coupons of 1 mm and 2 mm thickness. As shown, the shear values are
unaffected by manufacturing imperfections or by coupon thickness. In the condition shown
in Figure 24b, FEA revealed that asymmetrical gripping of up to 3 mm does not change σyy
or σxy. For the 3mm, an orientation angle from the load-line of up 2◦ decreased the τxy by
about 7%, where for 1◦, no change was found.
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Figure 24. (a,b) Possible sources that may be affecting the shear stress value; (a) defect in the notch
radius (marked by arrows); (b) asymmetrical gripping, a 6= b; (c) deviation from the load line marked
by the angle α.

Table 9. Shear values for different radius profile and thickness.

Thickness (mm)

Property
GLT

(GPa)
τxy

(MPa)
γ

(%)
Number of
Coupons

1 defective 6 ± 0.2 44.1 ± 2.3 0.97 ± 0.05 5

2 defective 6 ± 0.2 45.0 ± 3 3

1 perfect 6.6 ± 0.2 44.8 ± 3.2 6
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mark the defect) and (b) water cutting.

The experimental results, as well as the FEA predictions, follow the same trends
as reported by Jinmen et al. [30], using the V-notch shear test for unidirectional hybrid
composites. First, the mechanical response, in terms of stress–strain curves, is very similar
for both orientations, namely two consecutive load drops for the 0◦ orientation and a
continuous one up to fracture for the 90◦ orientation. Second, non-linearity is observed in
the shear stress–strain curve for both orientations, starting from the lower level of shear
strain (around 0.5%), the same order of magnitude as in the current study. They claim that
this deviation is related to the initiation of micro-cracks or micro-damage, together with
fiber instability at the notch root, rather than the plasticity of the epoxy which exhibits a
shear yield strain range of about 6%. This argument is correct based on a preliminary study
(not reported here) using the AE method which indicates other damage events instead of
the deformation plasticity mechanism of the epoxy resin. Third, the location of the cracks
in both orientations initiated at the intersection of the notch root and the straight flank,
as in our study, is shown in Figure 9a,b. They confirmed this by FEA and showed that
the maximum values of the stress components (σx, σy, τxy) occurred near the intersection
point. Fourth, the values of the predicted shear modulus by FEA are independent of the
orientation (5.07 GPa) as predicted here (5.37 GPa), as well the average shear modulus is
higher for the 0◦ orientation as compared to the 90◦ one (6.8 GPa, 4.9 GPa, respectively), as
observed here (6.6 GPa, 4.9 GPa). Moreover, they corrected the modulus by extracting the
C factor using FEA and found the value for the 90◦ is close to the one predicted by FEA
(5.34 GPa, 5.07 GPa). Here, we also found the same tendency based on FEA. This result is
because the 90◦ coupons had better purity and uniformity in the shear stress distribution
over the test region compare to the 0◦ coupons.

At last, some differences in the microscopic fracture modes of 0◦ and 90◦ were ob-
served, which related to the state of the stresses at the notch root. Jinmen et al. [30] showed
that for the 0◦ coupons, a mixed-mode prevails but is dominated by the opening mode,
while the 90◦ orientation is dominated by the opening mode.

Finally, concerning the effect of the opening hole on the mechanical behavior in the
shear mode for the 0◦ coupons, FEAs were performed mimicking the experimental results,
showing the highest stress concentration in the vicinity of a notch and at a hole (Figure 26).
Table 10 summarizes the results indicating that, as the hole diameter increases, the ratio of
the maximum transverse, σyy, of the notch to the corresponding hole increases as well. The
same trend was obtained for the shear stress ratio listed in Table 10. These results confirm
the finding that the presence of holes in the double V-notch did not affect the shear stress
or the shear-strain curve.
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Figure 26. Stress concentration, as computed by a FEA at p = 8 at a notch (a,c) and at a hole (b,d) for
the different predicted stresses: (a,b) σyy, (c,d) τxy.

Table 10. Ratios of the notch/hole transverse and shear stresses for different holes diameter.

Hole Diameter (mm) (σyy)notch/(σyy)hole (τxy)notch/(τxy)hole

2.5 0.08 1.22

3.5 1.11 1.25

4 1.13 1.27

4.5 1.16 1.28

5.5 1.21 1.31

6.5 1.26 1.34

5. Conclusions

1. An extensive study on the material properties of pultrusion has shown that the Young
modulus and Poisson ratio can be obtained with high repeatability, with a significant
difference between tensile and compressive behavior in the 0◦ orientation (2800 MPa
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in tension and 1175 MPa n compression). This is attributed mainly to the kinking
phenomenon, which is also the origin of the deviation from linear behavior.

2. We also showed that ASTM standard D7078 cannot be used in its present form to
determine shear material properties for pultrusion, and a remedy using FEA was
provided. In both orientations, approximately the same shear strength was detected
(45 MPa for 0◦ and 47 MPa for 90◦). The latter tendency is mainly related to the
mechanical properties of the epoxy resin.

3. In the presence of holes, the remote fracture stress in the various modes of loading did
not change significantly, as compared to uniform coupons; however, some localized
delamination crack growth occurred at the vicinity of the holes, manifested by load
drops up to the final fracture. This trend was also noticed in the case of tension of
notched coupons.

4. FEA shows that the shear values were unaffected by manufacturing imperfections,
coupon thickness, and by asymmetrical gripping of up to 3 mm, with a minor effect in
the case of a small deviation from the load line. These trends were verified by selected
experimental tests.
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