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Abstract: Currently, the research of energy storage devices mainly focuses on enhancing their
electrochemical performance. Core-shell structured NiCo2S4@NiMoO4 is thought to be one of the
most promising electrode materials for supercapacitors due to its high specific capacitance and
excellent cycle performance. In this work, we report NiCo2S4@NiMoO4 nanosheets on Ni foam by a
two-step fabricated method. The as-obtained product has a high capacitance of 1035 F g−1 at 1 A g−1.
The as-assembled supercapacitor has a high energy density of 32.4 W h kg−1 at a power density of
3230 W kg−1 and a superior cycle performance, with 70.1% capacitance retention. The electrode
materials reported here might exhibit potential applications in future energy storage devices.

Keywords: NiCo2S4@NiMoO4; electrochemical performance; battery-type electrode; asymmetric
supercapacitor; cyclic stability

1. Introduction

In today’s highly developed society, the demand for energy has reached a supreme
point. With the shortage of fossil energy, the call to develop clean energy is increasing day
by day. Thus, it is urgent to design and develop sustainable devices for energy storage
and conversion [1–4]. Among all kinds of energy storage equipment, supercapacitors
are widely acknowledged for their fast charge–discharge rate, high power density, long
cycling life and environmentally benign behavior [5,6]. However, the low energy density
of supercapacitors limits their further application in the field of energy storage. According
to the different charge storage mechanisms, supercapacitor electrodes can be classified
into electric double layer electrodes and pseudo-capacitors [7,8]. The energy storage of
pseudocapacitive electrode materials mainly depends on Faraday redox reaction, which
makes the specific capacitance and energy density of pseudocapacitive electrodes higher
than that of EDLEs [9–11]. The materials of pseudo-capacitors mainly include transition
metal oxides, nitrides, sulfides and conducting polymers.

Transition metal compounds have been proved to be reliable electrode materials for
supercapacitors, which have better electron conductivity and cycling stability than metal ox-
ides [12,13]. Among them, NiCo2S4 is considered to be one of the most promising electrode
materials for supercapacitors because of its unique atomic structure and electronic proper-
ties [14,15]. In particular, NiMoO4 is provided with high theoretical capacity, excellent rate
performance, good conductivity and high redox reversibility. However, cycle performance
and specific capacitance usually restricts their electrochemical performance. In order to
deal with above issues, Various nanostructures of NiCo2S4/NiMoO4 nanostructures, such
as nanorods, nanosheet arrays, nanoneedle-sheets and core-shell structures have been
explored as electrode materials for supercapacitors, and have been proved to have excellent
electrochemical properties [16–18]. This is because the single-electrode materials are limited
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by their slow reaction kinetics, moderate active sites, unstable structure, poor cycle stability
and low rate performance [19]. At the same time, the low energy density severely limits
the large-scale application of its devices. Therefore, it is still a great challenge to design and
prepare structurally stable NiCo2S4@NiMoO4 electrode materials.

Herein, we synthesized NiCo2S4@NiMoO4 samples using the two-step method. The
nanosheet structure provides a shorter transport path for ions and electrons. The
NiCo2S4@NiMoO4 nanosheets as supercapacitor electrode materials show high capac-
itance of 1035 F g−1 at a current density of 1 A g−1 and good capacitive retention after
10,000 cycles. Moreover, an asymmetric supercapacitor is constructed by NiCo2S4@NiMoO4
structures as positive electrode and active carbon as negative electrode. It possesses an
energy density of 32.4 W h kg−1 at a power density of 3230 W kg−1. These excellent
electrochemical performances could be credited to its unique nanosheets structure.

2. Experimental
2.1. Synthesis of NiCo2S4@NiMoO4 Structure

At first, NiCo2S4 nanosheets were grown on Ni foam by a simple solvothermal method.
A total of 1 mM NiCl2·6H2O, 2 mM CoCl2·6H2O, 1.0 g Urea and 0.6 g NH4F were dissolved
in 40 mL solution of deionized water and stirred for 30 min under constant magnetic
force. Then, the above solution with the pretreated Ni foam was transferred into an 80 mL
autoclave and kept at 100 ◦C for 8 h. After natural cooling down to room temperature, the
as-synthesized samples were taken out and washed with deionized water. NiCo2S4 was
prepared through a vulcanization process. A total of 0.3 g Na2S was added into 50 mL DI
water and the above obtained samples were added into 80 mL autoclave and kept at 120 ◦C
for 4 h.

Hybrid NiCo2S4@NiMoO4 structures were fabricated by a subsequently hydrothermal
method; 0.5 mM NiCl2·6H2O, 0.5 mM NaMoO4, 0.6 g Urea and 0.3 g NH4F were dissolved
in 40 mL solution of deionized water and carried out at 160 ◦C for 6 h. The average mass
loads were 1.3 and 1.7 mg cm−2, respectively.

2.2. Electrochemical Measurements

The electrochemical properties of the synthesized products are tested by chi660e
electrochemical workstation (Shanghai Chenhua, China). During the testing procedure,
the Pt foil and Hg/HgO electrode were used for the purpose of the counter and reference
electrodes, respectively. Moreover, the NiCo2S4@NiMoO4 product was used as a working
electrode. Cyclic voltammetry curves (CV), galvanostatic charge–discharge (GCD) and
electrochemical impedance spectroscopy (EIS) measurements were measured in a 3 M KOH
aqueous electrolyte.

2.3. Assembly of the Asymmetric Supercapacitor

All-solid-state supercapacitors were manufactured by using NiCo2S4@NiMoO4 and
AC (active carbon) as cathode and anode respectively, and using a separator and PVA-KOH
gel as polymer electrolyte. AC electrode was fabricated by mixing AC, carbon black and
7 wt% polymer binders (polyvinylidene fluoride, PVDF) in a weight ratio of 7:2:1.

3. Results and Discussion

Firstly, crystalline structure and phase purity of the products are analyzed by XRD.
Figure 1 shows the XRD spectra of the samples as-prepared samples. The three samples
have sharp diffraction peaks at 2 theta value of 44.5◦, 51.8◦ and 76.4◦, corresponding to the
surface index (111), (200) and (220) of Ni foam. It is found that there are several distinct
diffraction peaks at 21.8◦, 31.1◦, 37.8◦, 50.1◦ and 55.2◦ corresponding to (101), (110), (003),
(211) and (122) crystal planes of NiCo2S4 (JCPDS No.20-0782), respectively. Other peaks
at 21.8◦, 31.1◦, 37.8◦, 50.1◦ and 55.2◦ corresponding to (101), (110), (003), (211) and (122)
crystal planes, respectively, can be indexed to NiMoO4 (JCPDS No.12-0348). There is no
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diffraction peak of other impurities, which indicates that the sample is NiCo2S4@NiMoO4
phase with high purity.
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Figure 1. Structure characterization for XRD pattern of the samples.

Figure 2a shows Co 2p spectra, two distinct characteristic peaks at the binding energy
of 777.8 eV and 795.1 eV, which are consistent with Co 2p3/2 and Co 2p1/2, respectively [20].
The existence of Co2+ and Co3+ can be proved by spin orbit coupling. In addition, the
satellite peaks at the binding energies of 784.8 eV and 879.2 eV are named Sat., which
are caused by the electronic transition in the valence band [21,22]. Mo 3d spectra are
shown in Figure 2b. NiCo2O4@NiMoO4 samples exhibit two peaks at 229.9 and 232.5 eV,
which correspond to Mo 3d5/2 and Mo 3d3/2. Binding energy at 235.23, 230.4 and 226.5 eV
corresponds to Mo-S bond [23,24]. Ni 2p emission spectra are fitted with two kinds of nickel
species containing Ni2+ and Ni3+ (Figure 2c). Binding energies at 853.4 eV and 856.5 eV
correspond to Ni 2p3/2 and those at 874.5 and 871.6 eV for Ni 2p1/2. Those at 787 and 873 eV
could be indexed to shakeup satellites (noted as Sat.), revealing that most of Ni exists in the
form of Ni2+ ion [25,26]. The S 2p spectrum in Figure 2d shows two characteristic peaks at
162.59 eV and 163.2 eV, which can be ascribed to S 2p1/2 and S 2p3/2, respectively, indicating
that the S2+ valence exists in NiCo2S4@NiMoO4. Furthermore, a satellite peak of S was
checked at 168.2 eV [27], which may be owing to the high oxidation of S on the surface of
NiCo2S4@NiMoO4 sample during the test procedure. XPS characterization further proved
that the prepared NiCo2S4@NiMoO4 sample had high purity and good crystal quality [28].
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SEM and TEM were used to analyze the surface morphology and structure of as-
prepared products. Figure 3a,b shows the SEM images of the prepared products at dif-
ferent magnification. Ni foam surface is covered with a three-dimensional nanowires
structures (Figure 3a). From high magnification SEM images (Figure 3b), it is found that
adjacent nanowires are linked to each other. Figure 3c,d show SEM images of hybrid
NiCo2S4@NiMoO4 samples. The diameter of the nanowires is 30 nm. From the TEM im-
ages of Figure 3e, a layer of nanosheets uniformly coat on the surface of NiCo2S4 nanosheest,
which exhibited fill consistency with the observed SEM images. The HRTEM image of
Figure 3f shows that the lattice distances of 0.281 and 0.288 nm correspond to the (311) and
(111) faces of NiCo2S4 and NiMoO4, respectively.

Figure 4a–c shows the CV curve of NiCo2S4@NiMoO4, NiCo2S4 and NiMoO4 elec-
trodes at different scan rates. At different scanning rates, there are obvious oxidation and
reduction peaks, which are caused by the reversible redox reaction. With the increase
of scanning rate, the positions of oxidation peak and reduction peak move to positive
voltage and negative voltage, respectively, and the CV curve still keeps a similar shape
and the envelope area becomes larger, which proves that NiCo2S4@NiMoO4 electrode has
the characteristics of fast charge–discharge and high-rate capacity. Figure 4d–f shows the
GCD curves of NiCo2S4@NiMoO4, NiCo2S4 and NiMoO4 electrodes between 0 and 0.5 V
at different current densities. It can be observed that these curves are symmetrical, and
each curve shows a relatively flat area, which reveals the Faraday characteristics of the
electrode material and high reversibility of its Faraday reaction. In addition, the capacitance
of NiCo2S4@NiMoO4-8 electrode is 1035, 805, 613, 374 and 198 F g−1 at the current densities
of 1, 2, 4, 6 and 8 A g−1, respectively.
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Figure 3. (a,b) SEM images for NiCo2S4 samples, (c) low magnification SEM images for
NiCo2S4@NiMoO4, (d) high-magnification SEM images, (e,f) TEM images for NiCo2S4@NiMoO4

samples.

Figure 5a depicts the CV curves of NiCo2S4@NiMoO4, NiCo2S4 and NiMoO4 elec-
trodes at 10 mV s−1. It is discovered that the envelope area of the CV curve of the
NiCo2S4@NiMoO4 electrode is larger than that of NiCo2S4 and NiMoO4 samples, in-
dicating that the NiCo2S4@NiMoO4 electrode has a large capacitance. The GCD curves of
three electrode materials at 1 A g−1 are shown in Figure 5b, in which NiCo2S4@NiMoO4
electrode material has longer discharge time than NiCo2S4 and NiMoO4 samples, indi-
cating its high specific capacitance. The dynamic characteristics of different electrodes in
the frequency range of 100 kHz to 0.01 Hz with an amplitude of 0.01 V are analyzed by
electrochemical impedance spectroscopy (EIS), as shown in Figure 5c. In the high-frequency
region, the intercept of the real axis corresponds to the equivalent series resistance (Rs),
and the radius of the semicircle corresponds to represents the transfer resistance (Rct). In
the low-frequency region, the slope of the line is attributed to the Warburg resistance [29].
The lower Rs value of NiCo2S4@NiMoO4 electrode indicates that it has higher conductivity.
The NiCo2S4@NiMoO4 electrode showed a more vertical line along the imaginary axis,
indicating that the ion diffusion process was relatively fast. NiCo2S4@NiMoO4 electrode
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has excellent electrical conductivity. In order to study the cycle stability of three electrode
materials, 10,000 cycles of charge–discharge experiments were carried out at 3 A g−1 current
density, as shown in Figure 5d, indicating that NiCo2S4@NiMoO4 has good cycle stability
with 69% capacitance retention.
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Figure 4. (a) CV curves of NiCo2S4, (b) GCD curves of NiCo2S4, (c) CV curves of NiMoO4 samples,
(d) GCD curves, (e) CV curves of NiCo2S4@NiMoO4 samples, (f) GCD curves of NiCo2S4@NiMoO4

samples.

In order to further explore the practical application of the as-prepared samples, the
asymmetric supercapacitor (ASC) was prepared with NiCo2S4@NiMoO4 as positive elec-
trode and AC as negative electrode. Looking at the CV curves of the device, it is found that
the curve area increases with the increase of sweep speed. Figure 6b shows the CV curves
of ASC devices under different operating voltage windows. Therefore, the stable voltage
windows of the ASC device should be 0–1.6 V. GCD curves of the assembled capacitor un-
der different current densities are shown in Figure 6c. The device delivers a long discharge
time of 234.2 s at 1 A g−1. From Figure 6d, it is also confirmed that the device exhibits
low resistance. Figure 6e shows the Ragone diagram of NiCo2S4@NiMoO4//AC ASC.
The as-assembled devices possess an energy density of 32.4 W h kg−1 at power density



Crystals 2022, 12, 821 7 of 10

of 3230 W kg−1, reveals that the achieved energy density of our device is distinctly than
previously reported capacitive devices [30–34]. Figure 6e shows the cycle stability of the
device at 2 A g−1. After 10,000 charge discharge cycles, the capacitance retention of the
device reaches 70.1%.
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added into 50 mL DI water and the above obtained samples were added into 80 mL au-
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Hybrid NiCo2S4@NiMoO4 structures were fabricated by a subsequently hydrother-
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Figure 5. (a) Comparison of CV curves of NiCo2S4@NiMoO4 samples, (b) Comparison of GCD
curves, (c) electrochemical impedance spectroscopy, (d) cycle stability.

Finally, the electrochemical performance of the as-prepared samples is also compared
with the reported electrode materials, presented in Table 1.

Table 1. Electrocatalytic performance comparison of hybrid structured NiCo2S4@NiMoO4 with the
reported samples.

Material Capacitance Current Density Electrolyte Ref.

NiMoO4/CoMoO4 clusters 740 F g−1 1.0 A g−1 2 M KOH [35]
Co3O4@NiO nanosheet 718 F g−1 2 mA cm−2 3 M KOH [36]
CoMoO4 nanoparticles 771.6 F g−1 1.0 A g−1 3 M KOH [37]

NiMoO4 nanorods 680 F g−1 1.0 A g−1 6 M KOH [38]
NiCo2S4@NiMoO4 1035 F g−1 1.0 A g−1 3 M KOH This work
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4. Conclusions

In summary, NiCo2S4@NiMoO4 electrode material has been successfully synthesized
through a simple hydrothermal method. The as-obtained products show high specific
capacitance of 1035 F g−1 at a current density of 1 A g−1, and excellent cycle stability,
which can be ascribed to the unique structure features. Moreover, the as-assembled device
shows an outstanding energy density (32.4 W h kg−1), and capacitive retention after
10,000 cycles. This work developed an innovative and simple synthesis method to prepare
NiCo2S4@NiMoO4 electrode materials, and proved the application potential of the prepared
NiCo2S4@NiMoO4 nanosheets structure in energy storage equipment.
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