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Abstract

:

Four pincer-type Co (II) complexes of the 2,4-bis (3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine ligand (L) were evaluated for their cytotoxic activities against lung and breast cancer cell lines using cell viability assay. The X-ray single crystal structure of [Co(L)(H2O)2Br]Br (1) confirmed the pincer coordination behavior of the ligand L as an N-tridentate chelate. The hexa-coordination environment of Co (II) is completed by one bromide ion completing the equatorial plane of the octahedral structure and two trans water molecules at the axial positions. It crystallized in the monoclinic crystal system and P21/m space group with crystal parameters of a = 11.3170(10) Å, b = 7.4613(7) Å, c = 12.6917(12) Å and β = 95.927(3)°. Based on Hirshfeld analysis, the most dominant contacts are H…H (48.8%), Br…H (17.6%), H…C (11.2%) and O…H (10.1%), where the Br…H interactions are the most significant. The cytotoxic evaluation of the studied systems indicated that complex [Co(L)(NO3)2] (4) has the highest activity against lung (A-549) and breast (MCF-7) cell lines. In contrast, complex [Co(L)(H2O)3](ClO4)2.H2O(3) has the lowest cytotoxic activity against both cell lines.
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1. Introduction


s-Triazine and its derivatives are key heterocyclic compounds due to their remarkable chemical behavior and high biological activities. These compounds are associated with interesting pharmaceutical applications, due to their antimicrobial [1,2,3,4,5], anticancer [6,7,8,9] and antiviral activities [10]. For example, s-triazine aminobenzoic acid derivatives were found to exhibit promising antimicrobial activity [11]. They also showed useful assets in many other applications, such as the fabric, plastic, and rubber industries, and also as pesticides, dyestuffs, optical decolorizes, and explosives [12].



The coordinating capability of multidentate s-triazine ligands through nitrogen donor atoms allows the formation of supramolecular associations which possess valuable photosensitive and electrical properties [13]. On the other hand, the concern with metal-based therapy has received increasing attention with respect to efficient schemes in the design of repository, slow-release, or long-acting drugs [14]. In this regard, many organometallic complexes of triazine with different transition metals exerting numerous and sole biological, chemical, and physical properties have been synthesized [15,16]. It is well known that many transition metal complexes have promising biological properties [17,18,19,20,21,22].



2,4-Bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (L, Figure 1), is a powerful N-pincer chelator [23,24,25,26,27] which is used to synthesize many discrete and polymeric metal (II) complexes via a self-assembly technique. Cobalt (II) complexes have well-known antimicrobial and anticancer activities [28,29,30,31], especially those containing N-donor ligands. Recently, we reported the synthesis and antimicrobial evaluation of some Co (II) complexes with the bis-pyrazolyl-s-triazine ligand (L) [32]. In continuation to this study, a new Co (II) complex with the same ligand was synthesized and its structural aspects were analyzed using single-crystal X-ray diffraction and Hirshfeld analysis. The main goal of this study is to shed light on the possible biological applications of these Co (II) complexes as anticancer agents.




2. Materials and Methods


Chemicals and instrumentation, as well as the single-crystal X-ray structure measurement details [33,34,35,36,37], are presented in the Supplementary Materials. Synthesis and NMR characterizations of L are described in Figure S1 (Supplementary Materials).



2.1. Synthesis of Co (II) Complexes


Synthesis of the [Co(L)(H2O)2Br] Br complex (1) was performed by mixing 10 mL methanolic solution of L (~0.299 g, 1 mmol) with Co(NO3)2.6H2O (0.291 g, 1 mmol) in 5 mL methanol followed by the addition of 1 mL of saturated KBr aqueous solution. After five days, pink block crystals of 1 were obtained.



Yield: C14H21Br2CoN7O3 (1) 73%. Anal. Calc. C, 30.35; H, 3.82; N, 17.69; Br, 28.84; Co, 10.64%. Found: C, 30.13; H, 3.73; N, 17.55; Br, 28.68; Co, 10.49. FTIR (KBr, cm−1): 3385 (υO-H), 3209 (υO-H), 3079 (υC-H), 1620(υC = N), 1573(Sh; υC = N), 1545(υC = C), (Figure S2, Supplementary data).



Syntheses of [Co(L)(H2O)2Cl]Cl; (2), [Co(L)(H2O)3](ClO4)2.H2O, (3) and [Co(L)(NO3)2]; (4) complexes were performed using a self-assembly technique, as reported in our previous study [32].




2.2. Cytotoxic Activity Determination


The cytotoxic activity of L and complexes 1–4 against lung (A-549) and breast (MCF-7) cancer cell lines was determined. The details of the cytotoxicity determinations are described in Method S1 (Supplementary data).





3. Results and Discussion


3.1. Structure Description of [Co(L)(H2O)2Br]Br Complex; (1)


The pincer structure of complex 1 was confirmed by determining its single-crystal X-ray structure (Figure 2). The crystal parameters are a = 11.3170(10) Å, b = 7.4613(7) Å, c = 12.6917(12) Å and β = 95.927(3)° (Table 1). Hence, the complex had crystallized in the monoclinic crystal system. The unit cell volume was 1065.95(17) Å3 and there were two compounds of the formula [Co(L)(H2O)2Br]Br per unit cell. The complex crystallized in the centrosymmetric P21/m space group with a mirror plane passing horizontally through the skeleton of the organic ligand, Br¯ and Co (II) ion. Hence, the asymmetric formula of this complex is half one [Co(L)(H2O)2Br]Br unit.



The X-ray structure revealed the pincer coordination behavior of the s-triazine ligand (L). It acts as a tridentate N-chelate coordinated to the Co (II) ion via three Co–N bonds with two nitrogen atoms from the pyrazolyl moieties and one nitrogen from the s-triazine core. The corresponding Co–N distances are 2.211(5), 2.226(4), and 2.059(4) Å for Co1–N1, Co1–N7, and Co1–N5 bonds, respectively. As a general trend in similar s-triazine complexes [32], the Co–N (triazine) is shorter than the Co–N (pyrazole) bonds (Table 2). The bite angles of the N-chelate are 73.62(17) and 73.11(17) for N5–Co1–N1 and N5–Co1–N7, respectively, whereas the N1–Co1–N7 bond angle is 146.73(16). The coordination sphere of Co (II) is completed by two interactions with two symmetrically related water molecules at the axial positions and an interaction with one bromide ion in the equatorial plane, which is located at a trans position to the Co–N (triazine) bond. The Co1-O1 and Co1-Br1 bond distances are 2.063(3) and 2.5261(8) Å, respectively. The structure of this cationic complex is completed by another bromide anion (Br2) in the outer sphere. Hence, the coordination geometry of the Co (II) could be described as a distorted octahedral. In the structurally related [Co(L)(H2O)2Cl]Cl, the Co–N distances are slightly longer than the corresponding values found in the bromide complex (Table 2). In both structures, the Co–O bond distances are comparable, and of course, the Co–Cl bond in the previously reported structure is shorter than the corresponding value found in the [Co(L)(H2O)2Br]Br complex.



The supramolecular structure of [Co(L)(H2O)2Br]Br is controlled by strong O–H…Br hydrogen bonds and weak C–H…Br interactions (Figure 3). A list of the hydrogen bond parameters is presented in Table 3. The perfectly planar ligand backbone is arranged in a highly symmetric fashion in a way which connects the polar regions comprising the coordinated water molecules and bromide anions with the complex units along the crystallographic b-direction via strong O1–H1A...Br2 and O1–H1B...Br1 hydrogen bonds in addition to the weak C3–H3A...Br2 interaction. On the other hand, the other two C9–H9A...Br2 and C12–H12...Br2 interactions connected the less polar part (organic ligand) of the complex along the a-direction. For simplicity, these weak interactions were omitted from the packing scheme; hence, the supramolecular structure of this complex could be described as 1D hydrogen bonding polymer extended through the b-direction.




3.2. Hirshfeld Analysis


Decomposition of the different intermolecular contacts with the aid of Hirshfeld analysis is important to further inspect the molecular packing at both qualitative and quantitative levels. Using the Crystal Explorer 17.5 program [38], the contacts involved in the molecular packing and their percentages are presented in Figure 4. It is clear that the most dominant contacts are H…H (48.8%), Br…H (17.6%), H…C (11.2%) and O…H (10.1%). The majority of these contacts (except the Br…H) is generally weak and appeared as blue or white regions in the dnorm map (Figure S3; Supplementary data). The blue and white colored area represent contacts with longer distance than the vdWs radii sum of the interacting atoms [39,40,41,42,43].



On the other hand, the Br…H contacts appeared as red regions, indicating a shorter distance than the vdWs sum of the Br and H atoms (Figure 5). Additionally, the Br…H contacts appeared as sharp spikes in the fingerprint plot revealed short distance atom-atom interactions. The Br2…H1A (2.307 Å), Br1…H1B (2.368 Å), Br2…H13 (2.655Å), Br2…H9A (2.708 Å), and Br2…H12 (2.781 Å) contacts are the most important.




3.3. Cytotoxic Activity


The free ligand L and the four Co (II) complexes were examined for their cytotoxic activities against lung (A-549) and breast (MCF-7) cancer cell lines. The detailed cytotoxicity results using cell viability assay for the studied compounds against these cell lines are given in Tables S1–S10 (Supplementary data). In addition, the effect of concentration of the studied compounds on the cell viability of A-549 cell line is presented graphically in Figure 6. Evaluation of the cytotoxic activity of the studied compounds was performed by detecting the IC50 value, which is the concentration required to cause toxic effects in 50% of intact cells. The cytotoxicity activity of the free L against the lung A-549 cell line is 1245.37 ± 45.57 μM. For complexes 1–4, the IC50 values were determined to be 367.60 ± 14.74, 486.25 ± 20.27, 694.35 ± 25.87, and 353.13 ± 13.04 μM, respectively. The order of the cytotoxic activity is 4 > 1 > 2 > 3 > L. As a result, the nitrato complex 4 has the best cytotoxic activity against lung carcinoma. Additionally, the bromo complex (1) has better cytotoxic activity than the chloro compound (2).



On the other hand, the effect of concentration of the studied compounds on the cell viability of MCF-7 cell line is presented graphically in Figure 7. The order of the cytotoxic activity of the studied compounds was found to be 4 > 2 > 1 > 3 > L. The IC50 values of the studied complexes indicated that complex 4 (IC50 = 431.23 ± 20.28 μM) slightly outperformed complexes 1 (439.27 ± 19.76 μM) and 2 (IC50 = 438.79 ± 19.17 μM) against the MCF-7 cell line. The IC50 value is the least for complex 3 (674.40 ± 30.85 μM) and the free L ligand (940.77 ± 54.22 μM). In both cell lines, the perchlorate complex has the worst cytotoxic activity. Notably, all the studied complexes comprised the [Co (L)] unit but differed in the structure of the small coordinating groups and the anion as well. These differences could have a significant impact on the cytotoxic activity of the studied complexes. For cisplatin as a positive control and in the same experimental conditions, the IC50 values against the A-549 and MCF-7 cell lines were determined to be 25.01 ± 2.29 and 15.31 ± 1.76 μM, respectively. Hence, the cytotoxic activity of the studied Co (II) complexes was considered weak against both cell lines. Notably, the free salts CoCl2 and Co(NO3)2.6H2O have no or very weak cytotoxic activities against both cell lines (Tables S11–S14, Supplementary data).





4. Conclusions


The X-ray single-crystal structure of the new [Co(L)(H2O)2Br]Br complex was determined and its molecular and supramolecular structural aspects have been discussed. It comprised a hexa-coordinated Co (II) ion with one L ligand as a tridentate pincer chelate, two trans water molecules at the axial positions, and one equatorial bromide ion. The cationic [Co(L)(H2O)2Br]+ inner sphere was neutralized by one free uncoordinated bromide ion in the outer sphere. Its supramolecular structure was controlled by H…H (48.8%), Br…H (17.6%), H…C (11.2%), and O…H (10.1%) intermolecular interactions, where the Br…H contacts are the most important. Additionally, the cytotoxic activity of four structurally related Co (II) complexes of the pincer ligand L was evaluated against lung (A-549) and breast (MCF-7) cell lines. The results indicated the variation in the cytotoxic activity of the studied Co (II) complexes depending on the small coordinating group and the nature of the anion. Complex 4 had the best activity against breast cancer (MCF-7) and lung (A-549) cancer cell lines, where its cytotoxic activity was two and three times better than the free ligand (L), respectively.
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Figure 1. Structure of the ligand (L). 
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Figure 2. X-ray structure of 1. Symmetry code for O1# is x, 1.5 − y, z. 
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Figure 3. Important contacts (A) and packing scheme (B) of the [Co(L)(H2O)2Br]Br complex via O–H…Br hydrogen bonds along the ab plane. All weak C–H…Br interactions were omitted from the packing scheme for better clarity. 
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Figure 4. Percentages of all intermolecular contacts in the [Co(L)(H2O)2Br]Br complex. 
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Figure 5. The decomposed dnorm and fingerprint plots of the Br…H and O…H interactions in the [Co(L)(H2O)2Br]Br complex. 
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Figure 6. The cytotoxic activity of the studied compounds against A-549 cell line. 
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Figure 7. The cytotoxic activity of the studied compounds against MCF-7 cell line. 
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Table 1. Crystal data and refinement details of 1.






Table 1. Crystal data and refinement details of 1.










	CCDC
	2154990
	





	Empirical formula
	C14H21Br2CoN7O3
	



	Formula weight
	554.13 g/mol
	



	Temperature
	293(2) K
	



	Wavelength
	0.71073 Å
	



	Crystal system
	Monoclinic
	



	Space group
	P21/m
	



	Unit cell dimensions
	a = 11.3170(10) Å
	α = 90°



	
	b = 7.4613(7) Å
	β = 95.927(3)°



	
	c = 12.6917(12) Å
	γ = 90°



	Volume
	1065.95(17) Å3
	



	Z
	2
	



	Density (calculated)
	1.726 g/cm3
	



	Absorption coefficient
	4.582 mm−1
	



	F(000)
	550
	



	Theta range for data collection
	3.17 to 28.33°
	



	Index ranges
	−15 ≤ h ≤15, −9 ≤ k ≤9, −16 ≤ l ≤16
	



	Reflections collected
	24,040
	



	Independent reflections
	2843 [R(int) = 0.0445]
	



	Completeness to theta = 28.33°
	99.60%
	



	Refinement method
	Full-matrix least-squares on F2
	



	Data/restraints/parameters
	2843/0/161
	



	Goodness-of-fit on F2
	1.024
	



	Final R indices [I > 2sigma(I)]
	R1 = 0.0440, wR2 = 0.1168
	



	R indices (all data)
	R1 = 0.0687, wR2 = 0.1305
	



	Largest diff. peak and hole
	0.572 and −1.102
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Table 2. Selected bond distances and angles for 1 and 2.
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	Bond
	Distance
	Distance a
	Bond
	Distance
	Distance a





	Br1–Co1
	2.5261(8)
	2.388(9)
	Co1–O1#
	2.063(3)
	2.068(2)



	Co1–N5
	2.059(4)
	2.095(3)
	Co1–N1
	2.211(5)
	2.218(3)



	Co1–O1
	2.063(3)
	2.068(2)
	Co1–N7
	2.226(4)
	2.238(3)



	Bond
	Angle
	Angle
	Bond
	Angle
	Angle



	N5–Co1–O1
	91.42(7)
	91.18(6)
	N1–Co1–N7
	146.73(16)
	146.38(11)



	N5–Co1–O1#
	91.42(7)
	91.18(6)
	N5–Co1–Br1
	178.34(13)
	178.30(8)



	O1–Co1–O1
	177.14(15)
	177.62(11)
	O1–Co1–Br1
	88.58(7)
	88.82(6)



	N5–Co1–N1
	73.62(17)
	73.01(10)
	N1–Co1–Br1
	104.72(12)
	108.69(8)



	O1–Co1–N1
	90.22(8)
	90.21(6)
	N7–Co1–Br1
	108.55(12)
	104.93(8)



	N5–Co1–N7
	73.11(17)
	73.37(10)
	
	
	



	O1–Co1–N7
	90.59(8)
	90.47(6)
	
	
	







a The corresponding values for the chloro complex (2).
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Table 3. Hydrogen bond parameters in the [Co(L)(H2O)2Br]Br complex.
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	Atoms
	D-H (Å)
	H…A (Å)
	D…A (Å)
	D-H…A (º)
	Symm. Code





	O1–H1A...Br2
	0.86
	2.42
	3.241(3)
	159
	



	O1–H1B...Br1
	0.86
	2.49
	3.313(3)
	162
	1 − x,−1/2 + y,1 − z



	C3–H3A...Br2
	0.93
	2.86
	3.768(7)
	167
	1 − x,1/2 + y,−z



	C9–H9A...Br2
	0.96
	2.77
	3.709(10)
	165
	2 − x,1/2 + y,−z



	C12–H12...Br2
	0.93
	2.92
	3.809(7)
	160
	2 − x,1/2 + y,1 − z
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