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Abstract: In this paper, a microstructure-dependent magneto-electro-elastic functionally graded 

porous (MEEFGP) beam model is proposed using a variational approach. To account for the 

microstructure effect, the extended modified couple stress theory is incorporated in the new model. 

In addition, the porosity variation of the two-phase beam model through the thickness direction is 

also considered. The new developed model is verified in terms of its correctness with a FEM model. 

Based on the equations of motion and boundary conditions derived by Hamilton’s principle, the 

static bending and wave propagation behaviors of the new model are analytically determined. The 

results prove the existence of the microstructure effect and the magneto-electro-elastic multi-field 

coupling effect. There are significant differences between the new model and the classical model at 

the microscale. Moreover, the porosity also has an important influence on the mechanical properties 

of the new model. The results predicted by the new model can provide the theoretical basis for the 

design of microscale acoustic wave devices and micro-electro-mechanical systems. 

Keywords: Timoshenko beam theory; functionally graded porous material; magneto-electro-elastic 

material; microstructure effect; modified couple stress theory; Hamilton’s principle 

 

1. Introduction 

In recent years, as smart materials, magneto-electro-elastic (MEE) materials have 

attracted more and more attention. The MEE materials can convert electric, magnetic, and 

elastic energies, which are widely applied in health monitoring, actuation, stability 

control, and other applications [1–3]. Compared with homogeneous materials, 

functionally graded materials (FGMs) that have continuously varied material properties 

are found to have better mechanical behaviors [4–7]. Many micromechanical models of 

FGM have been developed to predict the effective material properties of FGM. 

Akbarzadeh et al. [8] studied Voigt, Reuss, Hashin–Shtrikman bounds, LRVE, Tamura, 

and self-consistent models, and analyzed the influence of different models on the dynamic 

and static responses of simply supported plates with elastic foundation. Due to the unique 

energy conversion ability and the superior mechanical performance, magneto-electro-

elastic functionally graded materials (MEEFGM) have become the focus of research in 

recent years. Akbarzadeh et al. [9] established a thermo-magneto-electro-elastic rotating 

hollow cylinder model made using a functionally graded material, and obtained the 

analytical solutions for the multiphysical responses of the model. However, because of 

the differences in solidification of the material constituents during the preparation 

process, the porosity is a common defect in FGM structures [10,11]. Therefore, it is 

necessary to consider the porosity in the design and analysis of magneto-electro-elastic 

functionally graded porous (MEEFGP) materials. Kiran et al. [12] evaluated the effects of 

the porosity on the static and dynamic responses of functionally graded skew MEE plates. 
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Based on the finite element procedures, Vinyas [13] studied the vibrational behavior of 

porous functionally graded MEE circular and annular plates. Ebrahimi et al. [14] 

developed a porous MEEFGM beam and analyzed the buckling behavior of the beam with 

different thermal loadings and boundary conditions. Vinyas and Dineshkumar [15] 

studied the large and nonlinear deflection of MEEFGP flat panels. Sh et al. [16] 

investigated the geometrically nonlinear free vibration rates and transient responses of 

porous MEEFG plates by applying the first-order shear deformation theory. 

As many structures tend toward miniaturization, structures made of MEEFGM at the 

microscale are also widely applied in micro-electro-mechanical systems (MEMS) and 

nano-electro-mechanical systems (NEMS) [17,18]. Many experiment results have proven 

that the thin structures always display size effects at the microscale [19,20]. Due to the 

existence of size effects and the absence of material length scale parameters in classical 

theory, the mechanical behavior of structures at the micro- or nanoscale predicted by 

classical theory is inaccurate. Thus, it is important to investigate the MEEFGP 

microstructure based on nonclassical theories. During the past few decades, many 

theories have been developed to deal with the size effect by introducing additional 

material parameters, such as nonlocal theory [21], couple stress theory [22–24], strain 

gradient theory [25–27], and a series of simpler versions [28–33]. Based on the nonlocal 

theory, numerous MEE/MEEFGM/MEEFGP structures have been developed, taking the 

nonlocal size effect into account [34–37]. According to nonlocal strain gradient theory 

(NSGT) [38], the static and dynamic responses of FGM microbeams have been 

investigated [39,40]. Additionally, the modified couple stress theory (MCST) [29,30] and 

its extended versions only take into account the symmetric part of the curvature tensor, 

so that fewer material parameters are required compared with its classical counterparts. 

These modified theories have been widely used in the development of micro- and 

nanobeam structures due to the enormous difficulties in obtaining additional parameters 

and explaining the associated microstructures [4,41–43]. Recently, the models of the MEE 

Timoshenko homogeneous beam [43], the MEEFGM Timoshenko beam [44], and the MEE 

homogeneous plates [45,46] have been developed using the extended MCST. 

However, according to the above reviewed literature, the extended MCST has not 

been used to develop an MEEFGP microbeam model. This kind of model would provide 

the theoretical basis for the miniaturization of smart devices [47–51]. This motivated the 

present work. 

In this paper, the extended modified couple stress theory is used to develop the 

MEEFGP Timoshenko model. The equations of motion and boundary conditions are 

derived by Hamilton’s principle. The static bending and wave propagation problems of 

the new model are analytically solved. 

2. Materials and Methods 

A two-phase MEEFGP Timoshenko microbeam with a length L, rectangular cross-

section, width b, and height h is shown in Figure 1. Because of the nonuniform porosity 

distribution [52–54], the material properties P(z) of the current beam vary smoothly in the 

thickness (z) direction, which are given by: 

( )P z PV P V= +ⅠⅠ Ⅱ Ⅱ  (1) 

1V V= −Ⅰ Ⅱ  (2) 

0 cos( )
2 4

z
V e

h

 
= +Ⅱ  (3) 

where PI and PII respectively are the material properties of material I, which is the skeleton 

of the current beam, and material II, which is filled in the pores; VI and VII are respectively 

the volume fractions of material I and material II; e0 is the porosity coefficient. It can be 

seen from Figure 1 and Equations (1)–(3) that the porosity distribution of the current beam 
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is asymmetric, with the largest porosity at the bottom surface and the smallest porosity at 

the top surface. Equations (1)–(3) are only used to describe the properties of FGP materials. 

As a two-phase or more complex composite structure, the model can be produced by 3-D 

printers capable of making two materials into a composite [55]. For general nonporous 

FGMs, the study of the FGM model completed by Akbarzadeh et al. [8] can be used as a 

reference. 

 

Figure 1. Magneto-electro-elastic functionally graded porous microbeam configuration. 

For the current MEEFGP Timoshenko beam shown in Figure 1, the displacement 

fields are given by: 

( ) ( ) ( )0 1 0

1 1 1 2 3 3( , ) ( , ),   0,   ( , )u u x t zu x t u u u x t= + = = , (4) 

where u1, u2, and u3 are the beam displacements; u
(0) 

1  and u
(0) 

3  are the extensional and 

bending displacements, respectively; u
(1) 

1  represents the rotation angle. 

Based on the MCST [29,30], the infinitesimal strain εij and symmetric curvature 𝜒ij can 

be defined by: 

( ), ,

1

2
ij i j j iu u = + , (5) 

( ), ,

1

4
ij ipq q pj jpq q piu u  = + , (6) 

with εijk being the Levi–Civita symbol. 

Substituting Equation (4) into Equations (5) and (6) yields: 

( ) ( ) ( )
( )

00 1

131 1

1

1
,

2
xx xz

uu u
z u

x x x
 

  
= + = +     

, (7) 

( ) ( )0 12

3 1

2

1

4
xy

u u

xx


  
= − +   

. (8) 

The electric potential Φ and magnetic potential M in the MEEFGP microbeam model 

can be assumed as first-order functions of the z-coordinate [56–58]: 

( ) ( )0 1 (0) (1),  ,  ( , ) ( , ),  ,  ,  ( , ) ( , )x z t x t z x t M x z t x t z x t    ( ) = + ( ) = + . (9) 

In addition, the components of the electric field intensity Ek and the components of 

the magnetic field intensity Hk are given by: 

, ,,  k k k kE H M= − = − . (10) 

From Equation (9) and (10) can be rewritten as: 

( ) ( )
( )

0 1
1

,  x zE z E
x x

 


 
= − − = −

 
, (11) 

( ) ( )
( )

0 1
1

,  x zH z H
x x

 


 
= − − = −

 
. (12) 
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By applying the extended MCST [45,59], the constitutive equations for transversely 

isotropic MEE materials are expressed as [43,45,60,61]: 

11 12 13
31

12 11 13
31

13 13 33
33

44
15

44
15

11 12

0 0 0
0 0

0 0 0
0 0

0 0 0
0 0

0 0 0 0 0
2 0 0

0 0 0 0 0
2 0 0

2 0 0 00 0 0 0 0
2

xxxx

yyyy

zzzz

yzyz

zxzx

xyxy

C C C
q

C C C
q

C C C
q

C
q

C
q

C C













                    
= −    

    
    
   − 

        

31

31

33

15

15

0 0

0 0

0 0

0 0

0 0

0 0 0

x x

y y

z z

e

e
H E

e
H E

e
H E

e

   
   
      
      

−      
      

      
   
      

, 
(13) 

11 12 13

12 11 13

13 13 33

44

44

11 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0
2

0 0 0 0 0
2

20 0 0 0 0
2

xx xx

yy yy

zz zz

yz yz

zx zx

xy xy

A A A
m

A A A
m

A A A
m

A
m

A
m

A A
m













 
    
    
    
       

=    
    
    
   − 
        

, (14) 

15 11

15 11

31 31 33 33

11

11

33

0 0 0 0 0 0 0

0 0 0 0 0 0 0
2

0 0 0 0 0
2

2

0 0

          + 0 0

0 0

xx

yy

x x

zz

y y

yz

z z

zx

xy

x

y

z

D e s E

D e s E

D e e e s E

d H

d H

d H













 
 
        
         

= +        
                

 
  

   
  
  
     

, (15) 

15 11

15 11

31 31 33 33

11

11

33

0 0 0 0 0 0 0

0 0 0 0 0 0 0
2

0 0 0 0 0
2

2

0 0

          + 0 0

0 0

xx

yy

x x

zz

y y

yz

z z

zx

xy

x

y

z

B q H

B q H

B q q q H

d E

d E

d E
















 
 
        
         

= +        
                

 
  

   
  
  
     

. (16) 

where Cαβ (α, β = 1, 2, …, 6) are the elastic stiffness constants; eiα and qiα are the piezoelectric 

and piezomagnetic constants; Aαβ (α, β = 1, 2, …, 6) are the couple stress stiffness constants; 

sij and μij are the dielectric and magnetic permeability constants; dij is the magneto-

dielectric constant; 𝜎ij, mij, Di, and Bi are respectively the components of the Cauchy stress 

tensor, the deviatoric part of the couple stress tensor, the electric displacement, and the 

magnetic flux. 

Based on Equations (7), (8), (11) and (12), the constitutive equations in Equations (13)–

(16) can be obtained as: 

11 31 31 44 15 15,  2xx xx z z xz xz x xC e E q H C e E q H   = − − = − − , (17) 

( )11 12xy xym A A = − , (18) 
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15 11 11 31 33 332 ,  x xz x x z xx z zD e s E d H D e s E d H = + + = + + , (19) 

15 11 11 31 33 332 ,  x xz x x z xx z zB q H d E B q H d E   = + + = + + . (20) 

Based on Equations (7), (8), (11), (12) and (17)–(20), the first variation in the total 

potential energy U in the current-deformed MEEFGP microbeam satisfying the extended 

MCST takes the form of [43,45]: 

(

)
0 0 0

d 2 2

                 d d d

T T L

xx xx xz xz xy xy
A

x x z z x x z z

U t m

D E D E B H B H A x t

     

   

= + +

− − − −

    , (21) 

where A is the area of the current beam section. 

The first variation in the kinetic energy of the current microbeam can be obtained as 

[62]: 

3 31 1

0 0 0
( ) d d d

T T L

A

u uu u
Kdt z A x t

t t t t


 

   
= + 

    
    , (22) 

where ρ(z) is the mass density of the current beam model. 

In addition, the virtual work of the external force applied on the beam can be given 

as [63,64]: 

( )( )0

3
0 0 0

d d d
T T L

W t q u x t =   , (23) 

where q is the z-component of the body force per unit length along the x-axis. 

Based on Hamilton’s principle [62,64]: 

 
T

0
δ ( ) dt = 0K U W− − . (24) 

Substituting Equations (21)–(23) into Equation (24), applying the fundamental lemma 

of the calculus of variations [65], leads to the equations of motion with the arbitrary nature 

of δu
(0) 

1 , δu
(1) 

1 , δu
(0) 

3 , δϕ(0), δϕ(1), δφ(0), and δφ(1): 

( ) ( )0 12 2

1 1

0 12 2
,xxN u u

f m m
x t t

  
+ = +

  
 (25) 

( ) ( )0 12 2

1 1

1 22 2

1
,

2

xyxx

xz

YM u u
N m m

x x t t

  
− + = +

   
 (26) 

( )2 02

3

02 2

1
,

2

xyxz
YN u

q m
x x t

 
+ + =

  
 (27) 

( )0

1 0,
x


=


 (28) 

( )0

1 0,
x


=


 (29) 

( )
( )1

0 1

3 0,
x


− + =


 (30) 

( )
( )1

0 1

3 0,
x


− + =


 (31) 

And the boundary conditions can be written as: 

0xxN =  or (0) (0)

1 1u u=  at x = 0 and x = L, (32) 

1
0

2
xx xyM Y+ =  or (1) (1)

1 1u u=  at x = 0 and x = L, (33) 
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1
0

2

xy

xz

Y
N

x


+ =


 or (0) (0)

3 3u u=  at x = 0 and x = L, (34) 

1
0

2
xyY =  or 

(0) (0)

3 3u u

x x

 
=

 
 at x = 0 and x = L, (35) 

(0)

1 0 =  or (0) (0) =  at x = 0 and x = L, (36) 

(1)

1 0 =  or (1) (1) =  at x = 0 and x = L, (37) 

(0)

1 0 =  or (0) (0) =  at x = 0 and x = L, (38) 

(1)

1 0 =  or (1) (1) =  at x = 0 and x = L, (39) 

where the overhead bar denotes the prescribed value, and the stress, electric, magnetic 

resultants, and mass inertias are defined as: 

( ) ( )
( ) ( )

0 1

1 11 1

31 31d e q

xx xx xx xx
A

u u
N A A B A A

x x
  

 
= = + + +

  , (40) 

( ) ( )
( ) ( )

0 1

1 11 1

31 31d e q

xx xx xx xx
A

u u
M z A B D B B

x x
  

 
= = + + +

  , (41) 

( )
( )

( ) ( )

( ) ( )

0 0 1
12 3

1 15 15

0 1

15 15

d

        

e e

xz s xz s xz s s
A

q q

s s

u
N k A k A u k A k B

x x x

k A k B
x x

 


 

   
= = + + +     

 
+ +

 


, (42) 

( ) ( )0 12

3 1

2
dxy xy xy

A

u u
Y m A F

xx

  
= = − +   
 , (43) 

( )
( )

( )
( ) ( )

( ) ( )

0 0 1

0 13

1 15 1 11 11

0 1

11 11

d

         

e s s

x s
A

d d

u
D A k A u A B

x x x

A B
x x

 

 

   
 = = + − −     

 
− −

 


, (44) 

( )
( )

( )
( ) ( )

( ) ( )

0 0 1

1 13

1 15 1 11 11

0 1

11 11

d

         

e s s

x s
A

d d

u
zD A k B u B D

x x x

B D
x x

 

 

   
 = = + − −     

 
− −

 


, (45) 

( )
( ) ( )

( ) ( )
0 1

0 1 11 1

3 31 31 33 33d e e s d

z
A

u u
D A A B A A

x x
 

 
 = = + − −

  , (46) 

( )
( )

( )
( ) ( )

( ) ( )

0 0 1

0 13

1 15 1 11 11

0 1

11 11

d

         

q

x s
A

d d

u
B A k A u A B

x x x

A B
x x

  

 

   
 = = + − −     

 
− −

 


, (47) 
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( )
( )

( )
( ) ( )

( ) ( )

0 0 1

1 13

1 15 1 11 11

0 1

11 11

d

         

q

x s
A

d d

u
zB A k B u B D

x x x

B D
x x

  

 

   
 = = + − −     

 
− −

 


, (48) 

( )
( ) ( )

( ) ( )
0 1

0 1 11 1

3 31 31 33 33d q q d

z
A

u u
B A A B A A

x x

 
 

 = = + − −
  , (49) 

( ) ( )2

0 1 2, , 1, , d
A

m m m z z A=  , (50) 

where ks denotes the shape correction factor, which considers the nonuniformity of εxz 

over the beam thickness [57,66], and the stiffness coefficients mentioned above are given 

in Appendix A. 

With the help of Equations (25)–(31) and Equations (40)–(50), the equilibrium 

equations can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 11 1 2 2

1 1 1 1

31 31 0 12 2
,e q

xx xx

u u u u
A B A A m m

x x x x x t t

       
+ + + = +         

 (51) 

( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( ) ( ) ( )
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12 31 1
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3 1 1 1

15 15 15 1 23 2 2 2

1
,

2

e q e

xx xx s xz s

e q q

s s s xy

uu u
B D B B k A u k A

x x x xx x

u u u u
k B k A k B F m m

x x x x x t t

  

  

     
+ + + − + − −        

      
− − + − + = +         

 (52) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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3 31
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u u
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u uu
F q m

x x t

         
+ + + + +       

  
+ − + = − +     

 (53) 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 1 0 12 2 2 2 2

3 1

15 11 11 11 112 2 2 2 2
0,e s s d d

s

u u
k A A B A B

xx x x x x

         
+ − − − − =       

 (54) 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
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1 1 31 1 1
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11 112 2
0,
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s
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uu u u
A B A A k B B D

x x xx x x

B D
x x

 
 

 

     
− − + + + + − −       

 
− − =

 

 (55) 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 1 0 12 2 2 2 2

3 1

15 11 11 11 112 2 2 2 2
0,q d d

s

u u
k A A B A B

xx x x x x

          
+ − − − − =       

 (56) 
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x x xx x x

B D
x x
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 

 

     
− − + + + + − −       

 
− − =

 

 (57) 

3. Analytical Solution 

In order to illustrate the new MEEFGP microbeam model developed in Section 2, the 

static bending and wave propagation problems of the current beam are solved in this 

section. 
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According to Equations (25)–(31), the relevant boundary conditions of the simply 

supported beam can be expressed as: 

0xxN = , (58) 

1
0

2
xx xyM Y+ = , (59) 

(0) (0)

3 30
0

x x L
u u

= =
= = , (60) 

0xyY = , (61) 

(0) (0)

0
0

x x L
 

= =
= = , (62) 

(1) (1)

0
0

x x L
 

= =
= = , (63) 

(0) (0)

0
0

x x L
 

= =
= = , (64) 

(1) (1)

0
0

x x L
 

= =
= = . (65) 

3.1. Static Bending 

For static bending problems, the elastic displacements and the electric and magnetic 

potential are independent of time t; thus, all terms related to time in Equations (25)–(31) 

and (51)–(57) can be ignored. Here, we consider Fourier solutions for u
(0) 

1 , u
(1) 

1 , u
(0) 

3 , ϕ(0), ϕ(1), 

φ(0), and φ(1): 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 0 1 1

1 1 3 3 1 1

1 1 1

0 0 0 0

1 1

1 1 1 1

1 1

( ) cos ,  ( ) sin ,  ( ) cos ,

( ) sin ,  ( ) sin ,  

( ) sin ,  ( ) sin , 

k k k

k k

k k

k x k x k x
u x U u x U u x U

L L L

k x k x
x x

L L

k x k x
x x

L L

  

 
 

 
 

  

= = =

 

= =

 

= =

= = =

=  = 

=  = 

  

 

 

 (66) 

where U
(0) 

1 , U
(1) 

1 , U
(0) 

3 , Φ(0), Φ(1), Ψ(0), and Ψ(1) are the undetermined amplitudes. Note that 

the assumptions of the solution in Equation (66) satisfy the boundary conditions of the 

simple supported beam in Equations (58)–(65). In the case of static bending, a uniform 

load q(x) can also be expanded by the Fourier series: 

1

( ) sin  k

k

k x
q x Q

L



=

= , (67) 

where the Fourier coefficient Qk calculated by q(x) = p0 is defined as: 

( )02
1 cosk

p
Q k

k



= −   . (68) 

Substituting Equation (66) into Equations (51)–(57) results in: 

( )

( )

( )

( )

( )

( )

( )

0

1
11 12 15 17

1

1
12 22 23 24 25 26 27

0

323 33 34 35 36 37

0
24 34 44 45 46 47

1
15 25 35 45 55 56 57

026 36 46 56 66 67

17 27 37 47 57 67 77 1

0 0 0

0

0

0

U
k k k k

Uk k k k k k k

Uk k k k k k

k k k k k k

k k k k k k k

k k k k k k

k k k k k k k

 
   
   
   
   
   

   
      
   
    

  

0

0

0

0

0

0

kQ

 
 
 
 −
 

=  
 
 
 
 
 

, (69) 
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. 

(70) 

By solving the linear algebraic equation system given in Equation (69), the 

amplitudes can be obtained. Here, we substitute the values of amplitudes into Equation 

(66), mean the solution of displacement field and electrical and magnetic potentials can be 

given. 

3.2. Wave Propagation 

In the wave propagation problem of the current model, the external force vanishes 

(i.e., q = 0) and the wave propagation properties due to extension (u
(0) 

1 ), shear (u
(1) 

1 ), and 

flexure (u
(0) 

3 ) can be investigated. Here, we consider the following waves for the elastic 

displacements and the electric and magnetic potential of the MEEFGP microbeam with 

infinite length: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

0 0 1 1

1 1 1 1
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3 3

0 0(0) (0)
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( , ) cos ,  ( , ) cos ,
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w w

i t

w

i t i t

w w

i t

w w

k k
u x t U x e u x t U x e

L L

k
u x t U x e

L

k k
x t x e x t x e

L L

k
x t x e x t

L

 



 



 



 
 


 

   
= =   

   

 
=  

 

   
=  =    

   

 
=  =  

 

(0) sin ,i tk
x e

L

 
 
 

. (71) 

where ω is the wave frequency and U
(0) 

1w , U
(1) 

1w , U
(0) 

3w , Φ
(0) 

w , Φ
(1) 

w , Ψ (0) , and Ψ
(1) 

w  are the 

undetermined amplitudes. 

Introducing Equation (71) to Equations (51)–(57) yields: 

( )

( )

( )

( )

( )

( )

( )

0

1

1

1

0

3

2 0

1

0

1

0

0

0

0

0

0

0

U

U

U



 
  
  
  
  
   − =     
     
  
    

  

K M , (72) 

where K is a 7 by 7 matrix, the components of which are given in Equation (70), and: 
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11 0 12 21 1

22 2 33 0

,  ,  

,  .

M m M M m

M m M m

= − = = −

= − = −
 (73) 

In order to develop the dispersion relations of wave propagation in the current 

MEEFGP microbeam, this requires: 

2 0− =K M . (74) 

Given a group of wave numbers, the wave frequencies satisfying Equation (74) can 

be determined. Then, fourteen dispersion relations can be identified in this way. By 

substituting a group of wave numbers and wave frequency that satisfies one of the 

dispersion relations in Equation (72), the ratios between the five unknown wave 

amplitudes in Equation (71) can be determined. 

4. Numerical Results 

The properties of material I and material II are given in Table 1. Material I in the 

current beam is considered as 50–50% BaTiO3-CoFe2O4 [43,45,67–69], and epoxy [70] is 

adopted for material II. The uniform load p0 is 1/2000h N/m, and the shear correction factor 

ks introduced to describe the nonuniformity shear strain is 0.80.5 [43,71]. The cross-sectional 

shape is taken as a rectangle with the aspect ratios b/h = 2 and L/h = 20. 

Table 1. The properties of material I and material II. 

Physical Parameter Material I Material II 

C11 (GPa) 226 4.889 

C44 (GPa) 44.15 1.241 

e15 (C/m2) 5.8 / 

e31 (C/m2) −2.2 / 

e33 (C/m2) 9.3 / 

s11 (10−9 C2/(N·m2)) 5.64 / 

s33 (10−9 C2/(N·m2)) 6.35 / 

q15 (N/(A·m)) 275 / 

q31 (N/(A·m)) 290.15 / 

q33 (N/(A·m)) 349.85 / 

d11 (10−12 Ns/(V·C)) 5.38 / 

d33 (10−12 Ns/(V·C)) 2740 / 

μ11 (10−6 Ns2/C2) 297.5 / 

μ33 (10−6 Ns2/C2) 83.5 / 

A11 (N) 11.7484 1.4014 

A12 (N) 6.4980 0.6903 

ρ (kg/m3) 5550 1180 

In order to verify the correctness of the new model, a comparative study of the 

deflection of a simply supported beam subjected to a uniform load between the current 

model without magneto-electric-elastic coupling and the relevant FEM model developed 

by COMSOL Multiphysics without microstructure effects are plotted in Figure 2. Since 

COMSOL Multiphysics cannot simulate the model made using magneto-electric-elastic 

materials, the magnetic and electric material properties are set to 0 in the comparison. 
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Figure 2. Comparison of the deflections of the simply supported microbeam model applied to a 

uniform load. 

From Figure 2, it can be found that the numerical results of the current elastic model 

are the same as those of the FEM model at the macroscale for all three cases. The results 

not only validate the current model but also show that the deflection will increase with 

the increase in the content of material II, as expected. The microstructure effect is not 

obvious for models at the macroscale. 

4.1. Static Bending 

Figure 3 shows the distribution of the deformation, axial normal stress, and electric 

and magnetic potentials of the current MEEFGP microbeam model. The beam thickness h 

is 20 μm, the porosity coefficient e0 is 0.5, and the uniform load p0 is 1/2000h N/m. 

 
 

(a) (b) 

  
(c) (d) 

Figure 3. Distribution of (a) deformation, (b) axial normal stress, (c) electric potential, and (d) 

magnetic potential (porosity coefficient e0 = 0.5). 

From Figure 3b, it can be found that the axial normal stress values at the bottom and 

top of the current model are larger, and there is little difference in their absolute values. 
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This is due to the fact that the current beam is not a homogeneous material, the porosity 

of the bottom layer of the beam is higher, and this layer contains more epoxy. If the 

porosity coefficient is higher, the difference in the absolute value of axial normal stress 

between the bottom and top layers of the current beam will be larger. From Figure 3c,d, it 

is clear that the electric and magnetic potential distributions in the current model are 

similar. The electric and magnetic potentials change uniformly in the x-direction. 

Figure 4a,b show the deflections and rotation angles of the MEEFGP microbeam with 

the different thicknesses of the current and classical models. The porosity coefficient is 

fixed at 0.5. The results of the current model taking the modified couple stress effect into 

account (with A11 ≠ 0 and A12 ≠ 0) are directly obtained from Equations (66) and (69), while 

the results of the classical model without considering the microstructure effect (with A11 = 

0 and A12 = 0) are obtained from the same equations. 

  
(a) (b) 

Figure 4. Deflection (a) and rotation (b) of the MEEFGP simply supported microbeam (porosity 

coefficient = 0.5) 

From Figure 4a,b, it can be seen that the deflections and rotation angles of the current 

model are always smaller than those of the classical model due to the modified couple 

stress effect. As the thickness increases, the influence of the modified couple stress effect 

on the results of the current model becomes small, and the difference between the 

numerical results predicted by the current model and the classical model decreases. 

Figure 5a,b display the electric and magnetic potentials of the MEEFGP simply 

supported beam with different thicknesses. The numerical results of the current and 

classical model are calculated using Equations (9), (66) and (69). The porosity coefficient 

is also fixed at 0.5. 

  
(a) (b) 

Figure 5. Electric potential (a) and magnetic potential (b) of the MEEFGP simply supported 

microbeam (porosity coefficient = 0.5) 
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From Figure 5a,b, it can be found that the magnitudes of the electric and magnetic 

potentials predicted by the current model are always different to those predicted by the 

classical model; while h increases, the differences between the results of the two models 

become small. This phenomenon verifies that for extremely thin beams, the 

microstructure effect is significant. 

In order to investigate the inhomogeneity of material properties, Figure 6 shows the 

maximum deflections wmax (x = L/2) of the MEEFGP beam with different porosity 

coefficients e0 for beam thicknesses h = 20 μm and h = 20 mm. From Figure 6a, it is clear 

that the maximum deflections wmax of both the current and classical models increase with 

the increase in porosity coefficient e0, and the numerical results of the current model are 

always smaller than those of the classical model. In addition, when e0 is equal to 1, the 

content of the material II is the largest, due to the low stiffness of material II, the maximum 

deflection wmax reaches the maximum value. From Figure 6b, it can be seen that there is 

almost no difference in wmax between the two models when the beam thickness is large 

enough. Additionally, from Figure 6a,b, the porosity coefficient e0 has an important effect 

on the static bending response at all length scales. 

  
(a) (b) 

Figure 6. Maximum deflections of the MEEFGP microbeam for different porosity coefficients with 

(a) h = 20 μm and (b) h = 20 mm. 

4.2. Wave Propagation 

Based on Equations (71)–(74), only three out of the fourteen dispersion relations 

possess positive real wave frequencies. These are identified as the dispersion relations due 

to the shear, extensional, and flexural waves. 

Figure 7 shows the dispersion curves of the current and classical MEEFGP models 

with the porosity coefficient e0 equal to 0.5. For convenience of comparison, the wave 

number and wave frequency have been nondimensionalized: 

,  h T   = = . (75) 

where T is equal to 10−9 s and ξ is the wave number, which is expressed as: 

k

L


 = . (76) 

From Figure 7a,b, the conclusion that the microstructure effects are only significant 

for structures at the microscale is confirmed again. 
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(a) (b) 

Figure 7. The dispersion curves due to the shear, extensional, and flexural waves for the current and 

classical MEEFGP models (e0 = 0.5) with thicknesses of (a) h = 20 μm and (b) h = 20 mm. 

To investigate the mode of the shear, extensional, and flexural waves in the current 

MEEFGP model with the modified couple stress effect, the dimensionless wave number 

is fixed as ξ
—

 = 3. Then, three dimensionless wave frequencies can be determined from 

Figure 7a. The three wave number and wave frequency groups before dimensionization 

are given by: 

5 1 8 1

1 1

5 1 8 1

2 2

5 1 8 1

3 3

( ,  ) (1.5 10 m ,  9.0617 10 s )

( ,  ) (1.5 10 m ,  6.5418 10 s )

( ,  ) (1.5 10 m ,  3.4231 10 s )

 

 

 

− −

− −

− −

=  

=  

=  

. (77) 

Then, the deformation shape, electric potential, and magnetic potential distribution 

of the current MEEFGP microbeam can be obtained. 

Figure 8a shows the deformation and electric potential of the point on the shear 

dispersion curve shown in Figure 7a. From Figure 8a, it can be seen that the model shows 

obvious shear deformation. Additionally, the electric potential mainly varies along the x-

direction. 

  
(a) (b) 

u

u

u
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(c) 

Figure 8. Distribution of the deformation and electric potential values of the (a) shear wave, (b) 

extensional wave, and (c) flexural wave. 

Figure 8b shows the deformation and electric potential of the point on the extensional 

dispersion curve shown in Figure 7a. From Figure 8b, it can be observed that the 

deformation is mainly caused by axial extension. In addition, because of the 

inhomogeneity of the material, the extensional deformation of the beam shows differences 

in the z-direction. The distribution of the electric potential is also nonuniform. 

Figure 8c displays the deformation and electric potential of the point on the flexural 

dispersion curve shown in Figure 7a. From Figure 8c, it can be seen that the deformation 

is mainly dependent on the flexure, as expected. 

5. Conclusions 

By using the extended modified couple stress theory, a new magneto-electro-elastic 

functionally graded porous microbeam was developed. Based on Hamilton’s principle, 

the equations of motion and complete boundary conditions of the new model were 

formulated by applying the variational approach. The magnetic, electric, and elastic field 

coupling effects and the microstructure effect were considered in the new model. For the 

purpose of examining the current beam, the numerical results of the static bending and 

wave propagation of a simply supported microbeam were obtained. 

For the static bending response, the new model was subjected to uniformly 

distributed loads. The parametric studies proved that the numerical results predicted by 

the extended modified couple stress effects of the deflection, rotation angle, electric 

potential, and magnetic potential were conspicuously influenced by the microstructure 

effect, and that the classical theory is not suitable for structures at the microscale. 

However, as the size of the model increased, there was almost no difference between the 

results predicted by the extended modified couple stress theory and the classical theory. 

In addition, by changing the porosity coefficient e0, the material distribution of the model 

can be controlled, meaning the deformation shape and electric and magnetic potentials 

can be optimized. 

For the problem of wave propagation, the wave frequencies predicted by the 

extended modified couple stress theory were always higher than those predicted by the 

classical theory, while the microstructure effect was not obvious when the beam size was 

large enough. These phenomena indicate that the microstructure effect tends to make the 

microbeam stiffer. Additionally, the porosity coefficient e0 can also change the wave 

propagation properties. These findings are able to provide not only information for the 

design and optimization of MEMS and NEMS devices made using MEEFGP materials, 

but also the theoretical basis for the development of microacoustic wave devices 
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