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Abstract: Reaction of N-(2,6-diisopropylphenyl)-[6-(2,4,6-triisopropylphenyl)-pyridine-2-yl]-amine
(ApH) in equimolar ratio with anhydrous FeBr2 and FeI2 in tetrahydrofuran (THF) afforded, after
workup in toluene, the first examples of mono(aminopyridine) Fe(II) complexes, [ApHFeBr(µ-Br)]2

(1) and [ApHFeI2(thf)] (2), respectively. X-ray analysis shows 1 to be dimeric, whereas compound
2 is monomeric. In both cases, aminopyridine ligands show rare η1-coordination to Fe through
pyridine nitrogen atom. Compound 1 exhibits intramolecular N–H· · ·Br hydrogen bonds [3.363 Å]
with an N–H· · ·Br angle of 158.84◦. Hirshfeld surface and fingerprint plots identify the significant
intermolecular interactions in the crystal network. Both compounds crystallized in the monoclinic
space group. For compound 1, C2/c, the cell parameters are: a = 25.5750(5) Å, b = 10.5150(5) Å,
c = 18.9610(8) Å, β = 97.892(5)◦, V = 5050.7(3) A3, Z = 4. For compound 2, P21/c, the cell parameters
are: a = 10.3180(7) Å, b = 16.1080(10) Å, c = 18.6580(11) Å, β = 102.038(5)◦, V = 3032.8(3) A3, Z = 4.
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1. Introduction

The coordination chemistry of 2-aminopyridines is a highly popular area of research
mainly due to their easy accessibility as well as steric and electronic versatility [1,2]. The
ligand class has shown rich coordination chemistry with predominantly chelating (com-
mon) and bridging coordination modes (Figure 1). In comparison, monodentate fashion of
coordination to metal has rarely been observed. The η1-coordination via the pyridine nitro-
gen occurs particularly if the metal fragment is reluctant to accept six electrons resulting
from π coordination [3]. On the other hand, η1-bonding via the weaker amine nitrogen is
rather exceptional and may occur only if coordination at the pyridine N-donor site is not
feasible for steric reasons.
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The coordination chemistry of 2-aminopyridines is a highly popular area of research 

mainly due to their easy accessibility as well as steric and electronic versatility [1,2]. The 
ligand class has shown rich coordination chemistry with predominantly chelating 
(common) and bridging coordination modes (Figure 1). In comparison, monodentate 
fashion of coordination to metal has rarely been observed. The η1-coordination via the 
pyridine nitrogen occurs particularly if the metal fragment is reluctant to accept six elec-
trons resulting from π coordination [3]. On the other hand, η1-bonding via the weaker 
amine nitrogen is rather exceptional and may occur only if coordination at the pyridine 
N-donor site is not feasible for steric reasons. 
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Figure 1. Chelating and bridging coordination modes of aminopyridinato ligands (R = alkyl, aryl or 
silyl; M = transition metal). 

Since the introduction of bulky versions of these ligands in 2004, they have been 
successfully used to stabilize not only p-block and early transition metals but also lan-
thanides with good control of metal to ligand stoichiometry [2,4,5]. Surprisingly, their 
coordination chemistry with late transition metals has not been explored yet. Despite the 
fact that aminopyridines have been investigated for years, little is known about iron 
aminopyridinates [6]. Among late transition metals, the versatile coordination chemistry 
of iron in different oxidation states with a variety of chelating ligands has always at-
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Figure 1. Chelating and bridging coordination modes of aminopyridinato ligands (R = alkyl, aryl or
silyl; M = transition metal).

Since the introduction of bulky versions of these ligands in 2004, they have been
successfully used to stabilize not only p-block and early transition metals but also lan-
thanides with good control of metal to ligand stoichiometry [2,4,5]. Surprisingly, their
coordination chemistry with late transition metals has not been explored yet. Despite
the fact that aminopyridines have been investigated for years, little is known about iron
aminopyridinates [6]. Among late transition metals, the versatile coordination chemistry of
iron in different oxidation states with a variety of chelating ligands has always attracted
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chemists [7–9]. Iron commonly exists in +2 and +3 oxidation states [10,11]. It also rarely ex-
ists in +4 [12] and +5 [13] oxidation states. Due to our interest in stabilization and structural
elucidation of transition metals in low or unusually low oxidation states [14–21], we opted
to explore iron (II) complexes with varying halide ligands using saturated 2-aminopyridines.
Saturated nitrogen ligands are known for their increased reducing power [22] and satu-
rated α-aminopyridines of iron have been proven as efficient atom transfer radical transfer
polymerization and isoprene polymerization catalysts [23,24]; however, their structural
elucidation using single crystal analysis is not straightforward [25]. Here, we report the first
examples of structurally characterized iron complexes with saturated 2-aminopyridines.

2. Materials and Methods
2.1. General Information

All manipulations were performed with the rigorous exclusion of oxygen and mois-
ture in Schlenk-type glassware on a dual manifold Schlenk line or in an N2-filled glove
box (mBraun 120-G) with a high-capacity recirculator (<0.1 ppm O2). Solvents were dried
by distillation from sodium wire/benzophenone. Aminopyridine ligand was prepared
according to the published procedure [4]. Elemental analyses (CHN) were determined
using a Vario EL III instrument. X-ray crystal structure analyses were performed by
using a STOE IPDSII equipped with an Oxford Cryostream low-temperature unit. Struc-
ture solution and refinement was accomplished using SIR97 [26], SHELXL2014 [27] and
WinGX [28]. Data collection and cell refinement by X-AREA-STOE. The single crystal was
irradiated with Mo-Kα at 133 K. The non-hydrogen atoms were refined with anisotropic
thermal parameters. All hydrogen atoms except N-H (modelled using electron density)
were added at calculated positions and refined using riding model. Crystallographic de-
tails are summarized in Table 1. CCDC-2168545 (1) and CCDC-2168544 (2) contain the
supplementary crystallographic data for this paper. These data can be obtained free of
charge at www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 6 May 2022) (or from
the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
Fax: + 44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Table 1. Crystallographic data of the compounds 1 and 2.

Compound 1 2

CCDC number 2168545 2168544
Empirical formula C50H60Br4Fe2N4 C29H38FeI2N2O

Formula weight 1148.36 740.26
crystal system monoclinic monoclinic
space group C 2/c P 21/c

a [Å] 25.5750(5) 10.3180(7)
b [Å] 10.5150(5) 16.1080(10)
c [Å] 18.9610(8) 18.6580(11)

α [deg]
β [deg] 97.892(5) 102.038(5)
γ [deg]
V, [Å3] 5050.7(3) 3032.8(3)

crystal size, [mm3] 0.25 × 0.21 × 0.16 0.37 × 0.30 × 0.24
ρcalcd, [g cm−3] 1.510 1.621

µ, [mm−1] (Mo Kα) 3.775 2.556
T, [K] 133(2) 133(2)

2θ range, [deg] 3.22–53.18 3.37–53.13
No. of reflections unique 5052 6095

No. of reflections obs. [I > 2σ (I)] 3014 4453
No. of parameters 281 326

wR2 (all data) 0.0816 0.1004
R value [I > 2σ (I)] 0.0352 0.0375

www.ccdc.cam.ac.uk/conts/retrieving.html
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2.2. Syntheses

Synthesis of 1: ApH (358 mg, 1 mmol) was added to FeBr2 (216 mg, 1 mmol) in
tetrahydrofuran (THF) (50 mL) at room temperature and the resulting suspension was
stirred overnight at 50◦C. Solvent was evaporated and re-dissolved in toluene (20 mL).
Solution was filtered and the volume was reduced to ca. 10 mL to afford orange crystals at
room temperature. Yield: 220 mg (38.3%). Elemental analyses for C50H60Br4Fe2N4. H2O:
Calcd. C 51.49, H 5.36, N 4.80%; found C 51.57, H 5.39, N 4.71%.

Synthesis of 2: ApH (358 mg, 1 mmol) was added to FeI2 (310 mg, 1 mmol) in THF
(50 mL) at room temperature and the resulting brown-green solution was stirred overnight
at 50◦C. Solvent was evaporated and the material was re-dissolved in toluene (20 mL).
Solution was filtered and the volume was reduced to ca. 10 mL to afford orange crystals at
room temperature. Yield: 315 mg (42.5%). Elemental analyses for C29H38FeI2N2O: Calcd.
C 47.05, H 5.17, N 3.78%; found C 46.55, H 5.05, N 3.57%.

2.3. Hirshfeld Surface Analysis

The Hirshfeld surfaces and 2D fingerprint plots were generated using Crystal Explorer
17.50 [29]. The X-ray single-crystal crystallographic information files were used as input
files. The default setting used for Hirshfeld Surface/fingerprint generation in Crystal
Explorer is as follows: property: none; resolution: High (standard). For fingerprint gener-
ation (di vs. de plot) we used: range: standard; filter: by elements and fingerprint filter
options is both inside-outside elements including reciprocal contacts. The interactions with
normalized contact distance in crystal structure shorter than the sum of the corresponding
van der Waals radii of the atoms are highlighted by red spots and the longer contacts with
the positive dnorm value are represented in blue colour.

3. Results

The two iron (II) compounds [ApHFeBr(µ-Br)]2 (1) and [ApHFeI2(thf)] (2), were pre-
pared by reacting one equivalent of N-(2,6-diisopropylphenyl)-[6-(2,4,6-triisopropylphenyl)-
pyridine-2-yl]-amine (ApH) with anhydrous FeBr2 and FeI2, respectively in THF at room
temperature (Scheme 1). After work up, orange crystals of paramagnetic 1 and 2 were
isolated after couple of days from toluene solution at room temperature. Both compounds
were characterized by single crystal X-ray analysis and the purity was further proved by
elemental analysis.
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Scheme 1. Synthesis of aminopyridine Fe complexes.

The molecular structure of 1 shows a centrosymmetric dinuclear mono(aminopyridine)
iron bromide complex (Figure 2). Noteworthy is the rare η1-coordination of the aminopy-
ridine ligand through pyridine nitrogen (d(N2–Fe1) = 2.093(3) Å) [30]. The coordination
around each iron atom can be best described as distorted trigonal pyramidal and is com-
pleted by one N atom of the pyridine ring of the aminopyridine, and two bromide ligands.
As expected, the Br-Fe bond for the bridging bromide ligand [Br1–Fe1 2.5260(8) Å] is
longer than the terminal bromide ligand [Br2–Fe1 2.3985(8) Å] (Table 2). The long Fe···Fe
distance of 3.439 Å rules out any possible metal-metal bonding interaction. It also exhibits
intramolecular N–H···Br hydrogen bonds having an N···Br distance of 3.363 Å and an
N–H···Br angle of 158.84◦.
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Table 2. Selected bond lengths (Å) and angles (◦) of structures 1 and 2.

Compound Atoms Bond Length Atoms Angles

1

Br1–Fe1 2.5260(8) Fe1–Br1–Fe1 86.55(3)
Br2–Fe1 2.3985(8) N2–Fe1–Br2 104.84(10)
Fe1–N2 2.093(3) N2–Fe1–Br1 138.02(10)

Br2–Fe1–Br1 103.62(3)
N2–Fe1–Br1 98.07(10)
Br2–Fe1–Br1 120.32(3)

Br1–Fe1–Br1A 93.45(2)
N2–C5–N1 117.3(3)

2

I1–Fe1 2.6245(7) O1–Fe1–N3 123.45(13)
I2–Fe1 2.6024(7) O1–Fe1–I2 100.82(9)
Fe1–O1 2.032(3) N3–Fe1–I2 108.21(9)
Fe1–N3 2.080(3) O1–Fe1–I1 105.87(9)

N3–Fe1–I1 106.25(0)
I2–Fe1–I1 112.22(3)

C5–N1–C6 123.4(4)

Hirshfeld surface analyses were used to get insights into the detailed information
about the strength of intermolecular interactions. The interactions with normalized contact
distance in crystal structure shorter than the sum of the corresponding van der Waals radii
of the atoms, are highlighted by red spots and the longer contacts with the positive dnorm
value are represented in blue colour (Figure 3). The significant intermolecular interactions
are mapped in Figure 4. On the Hirshfeld surfaces, the H···H interactions appear as
the largest region (76.4%) of the fingerprint plot. The C–H···π interactions give rise to a
pair of characteristic wings in the fingerprint plot decomposed into C···H/H···C contacts
contributing 12.3%. The pair of sharp spikes represent the Br···H/H···Br contacts with a
contribution of 10 % due to the intermolecular C–H···Br hydrogen bonding. The C···C π

interactions are found to be negligible (1.3%).
The molecular structure of 2 shows a monomeric mono(aminopyridine) iron iodide

complex (Figure 5). The coordination around each iron atom can be best described as dis-
torted tetrahedral and is completed by one N atom of the pyridine ring of the aminopyridine,
two iodides and an O atom of the tetrahydrofuran ligand. Although the aminopyridine
ligand is η1-coordinated (d(N3−Fe1) = 2.080(3) Å), no intramolecular hydrogen bonding
has been observed. The formation of monomeric structure and lack of hydrogen bonding
may be attributed to the larger size and the electro-positivity of the iodide ligand. This is
also evident by the comparatively wider C–N–C bond angle [C5–N1–C6 123.4(4)◦] of the
aminopyridine ligand in 2 than in 1 [N2–C5–N1 117.3(3)◦] (Table 2).
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Figure 4. Two-dimensional fingerprint plots for all intermolecular contacts in 1. The percentage of
contribution is specified for each contact.

Hirshfeld surface analyses show that although the fingerprint profiles are still domi-
nated by H···H contacts (72.4%), the contributions due to the intermolecular C-H···I hydro-
gen bonding are the maximum that have been observed (Figures 6 and 7). The I···H/H···I
interactions contribute 16.5%, and due to the intermolecular C-H···I hydrogen bonding,
these contacts appear as sharp spike to the fingerprint profile. Other major contributions
are due to the C-H···π interactions (10.7%) forming a pair of characteristic wings.
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4. Conclusions

The first examples of structurally characterized iron (II) halide complexes of saturated
2-aminoypridine are reported here. The coordinated aminopyridine ligand adopts rare
η1-coordination through a pyridine nitrogen atom instead of the chelating mode known
for the majority of aminopyridine complexes. The formation of dimeric or monomeric
structures could be attributed to the varying sizes of coordinated halide ligands. The
dimeric compound 1 exhibits intramolecular hydrogen bonding. Hirshfeld surface analy-
ses also identified significant intermolecular interactions in the crystal network for both
the complexes.
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