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Abstract: The effects of 1% Zn on the corrosion properties of homogenized Mg-3Sn-1Ca-1Cu alloys
were investigated. The corrosion behavior of homogeneous TXC311 and TXCZ3111 alloys in 3.5%
NaCl solution was studied by using a hydrogen evolution test, polarization curve and impedance
spectrum, and the corrosion properties of the alloys were discussed with considerations relative to
microstructure. The results show that the second phases of TXC311 alloy consist of CaMgSn and
Mg2Cu. The corrosion rate is 132 mm·year−1. After the addition of 1% Zn element, the grains are
significantly refined, the number of Mg2Cu phases is reduced and the MgZnCu phases are formed.
The corrosion rate of Mg-3Sn-1Ca-1Cu alloy decreased to 80 mm·year−1. TXCZ3111 alloy presents
fine grains and a reduced number of Mg2Cu phases, which improve the stability of the corrosion film
and reduce the corrosion rate of the alloy. Therefore, the corrosion resistance of TXCZ3111 alloy is
much higher than that of TXC311 alloy.

Keywords: Mg-3Sn-1Ca-1Cu alloy; Mg-3Sn-1Ca-1Cu-1Zn alloy; homogenized; corrosion properties

1. Introduction

Magnesium alloys, as the lightest metal structure material, are widely used in the 3C
electronics industry, aerospace, transportation and other fields at present due to their high
strength and specific stiffness [1]. However, their poor corrosion resistance has seriously
limited the practical application of magnesium alloys. There are two methods to improve
the corrosion resistance of magnesium alloys [2]. The first is a method of refining the grain
and changing the type and distribution of phases by alloying. The other method is to cover
the surface of a magnesium alloy by using surface technology such as coating to reduce
or eliminate contact between the magnesium alloy and the external environment [3,4].
Generally speaking, the preparation for coating is more complex. In most cases, alloying is
popular for improving the corrosion resistance of magnesium alloys.

Due to high solid solubility and significant precipitation strengthening effects, 1–2% Sn
forms a Mg2Sn phase with a high melting point in magnesium and its alloys [5]. Therefore,
the role of Sn in magnesium alloys has been investigated. For example, Sun [6] found
that the addition of Sn can transform microstructures from coarse columnar grains into
dendrites and obviously refine the grain. The addition to the alloy of 3% Sn can yield
better ultimate tensile strengths at room and high temperature, but elongation decreases
because the large amount of Mg2Sn second phase distributes onto the grain’s boundary,
which promotes the generation of cracks. In addition, Sn can also improve the corrosion
resistance of magnesium and its alloys. For example, adding 0.5% Sn to AZ91 reduces
the corrosion rate of the alloy by 18.2%, which greatly promotes the application of Sn in
magnesium alloys [7]. Furthermore, Mg-Sn-Ca alloys have attracted much attention in
recent years because of their good heat resistance. After adding Ca elements to magnesium
alloys, CaMgSn and Mg2Sn form heat-resistant phases and refine grains, which improves
high-temperature resistance [8–11]. Some studies indicate that adding Cu elements can
improve the castability, ductility and strength of magnesium alloys [12]. The age hardening
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ability of magnesium alloy containing Cu can also be improved by heat treatment [13]. For
example, ZK60 alloy with added 0.5%~1% Cu has better mechanical properties after aging
treatments [14]. The addition of Cu to Mg-Zn-Cu-Al-Mn high-strength alloys can enhance
the ductility of the alloy by forming separate eutectic MgZnCu phases [15]. Although Cu
can improve the mechanical properties of magnesium alloys, it can reduce their corrosion
resistance. Lotfpour [16] studied the effects of Cu on the mechanical properties and
corrosion properties of as-cast Mg 2%Zn alloy. The results show that the tensile strength
and elongation are 171 MPa and 15%, respectively, but the corrosion resistance of Mg 2%Zn
alloy significantly decreased by adding 0.5% Cu.

Zn, an inexpensive element, can significantly refine the grain and improve the corro-
sion resistance of magnesium alloys. Ha [17] studied the effects of different Zn contents
on the corrosion resistance of Mg-5Sn alloys, and the results show that the addition of Zn
improves the corrosion resistance of the alloy. Previous studies have shown that Mg-Sn-Ca
alloys are heat-resistant magnesium alloys with potential applications and development
value [18,19]. Previous tests show that adding 1% Cu can significantly improve the me-
chanical properties of Mg-3Sn-1Ca alloy, but it is observed that the corrosion resistance of
Mg-3Sn-1Ca-1Cu alloy is poor. Therefore, this study considers adding 1% Zn to improve
the corrosion resistance of Mg-3Sn-1Ca-1Cu alloys. The microstructure and corrosion resis-
tance of homogeneous Mg-3Sn-1Ca-1Cu and Mg-3Sn-1Ca-1Cu-1Zn alloys were studied by
XRD, OM, SEM, hydrogen evolution tests and electrochemical test.

2. Materials and Methods

In this experiment, Mg-3Sn-1Ca-1Cu and Mg-3Sn-1Ca-1Cu-1Zn alloys were prepared
by using industrial pure Mg (99.9 wt.%), pure Sn (99.9 wt.%), Mg 25%Ca master alloy,
pure Zn (99.9 wt.%) and pure Cu (99.9 wt.%). The process is as follows: Firstly, the pure
magnesium ingots in the iron crucible were melted in a resistance furnace with CO2 +
0.5% SF6 gas mixture for protection. After the magnesium ingots were completely melted,
the crucible was heated to 750 ◦C, and then the Cu sheets were added into the melt and
stirred homogeneously. The melt was decreased to 710 ◦C for 10 min for slag removal, and
Mg 25%Ca, Sn and Zn were placed into the melt and stirred homogeneously for 2~3 min.
Finally, the melt was left to stand for 20 min and then poured into the ϕ65 × 240 mold.
After cooling to room temperature, the ingots were homogenized for 400 ◦C × 24 h. The
chemical composition test results of the alloy samples are shown in Table 1.

Table 1. Actual chemical composition of the magnesium alloy (wt%).

Alloy Mg Sn Ca Cu Zn

Mg-3Sn-1Ca-1Cu (TXC311) Bal. 3.22 1.04 1.07
Mg-3Sn-1Ca-1Cu-1Zn (TXCZ3111) Bal. 3.18 1.04 1.04 1.07

Firstly, the heads of ingots with shrinkage defects (about 80 mm) were removed. The
specimens were taken from the center of the ingots by using a wire-cutting machine, as
shown in Figure 1. Secondly, the microstructure and phase morphology observations were
carried out by utilizing optical microscopy and scanning electron microscopy (SEM-S4800
by Hitachi, Japan) with EDS. Phase identification was performed by using X-ray diffraction
(XRD-7000 produced by Shimadzu, Kyoto, Japan).
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Figure 1. Sampling position of alloy.

The specimens were analyzed by conducting immersion and hydrogen evolution
reaction tests. They were cut into cubes with dimensions of 10 mm × 10 mm × 10 mm, and
then ground with several SiC papers and mechanical polishing. The immersion test was
conducted at 25 ± 1 ◦C in 3.5 wt.% NaCl solution (500 mL) for 24 h, and hydrogen gas was
collected with a burette and recorded every 2 h. In order to keep the concentration of the
solution stable, the NaCl solution was replaced every 12 h. The samples were taken out and
placed into chromate for 10 min of ultrasonic cleaning after corrosion. Each experiment
was repeated three times to ensure the accuracy of the data.

The corrosion rate can be expressed as PH (mm/year) and is calculated as follows:

PH =
8.76 × 104 × ∆V × M

A × t × ρ
(1)

where PH—hydrogen evolution corrosion rate, mm·year−1;
∆V—total amount of hydrogen gas during corrosion, mL;
M—the relationship between the hydrogen precipitation rate and the alloy mass loss

rate, 0.001083, g·mL−1;
A—total surface area of soaked sample, cm2;
t—soaking time, h;
ρ—sample density of weight loss measurement, g·cm−3.
Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were

acquired by using a standard three-electrode cell electrochemical workstation (CHI660E).
The saturated calomel electrode was the reference electrode, the platinum electrode was
the auxiliary electrode, and the working electrode was the sample.

In this experiment, the sample was immersed in the solution for 3600 s, and the
potentiodynamic polarization curve was tested after the potential was stable. The potential
was set to an instantaneous potential ± 0.5 V, and the scanning rate was 1 mV/s. When
measuring the electrochemical AC impedance spectrum, the amplitude of the AC signal was
5 mV/s, the scanning frequency range was 100 kHz~0.01 Hz, and the scanning direction
was from high frequency to low frequency. Each experiment was repeated three times.
The current densities (icorr) and corrosion potentials (Ecorr) were obtained by conducting
graphical Tafel analysis. The relationship between icorr (mA/cm2) and the electrochemical
corrosion rate (mm/year) is described by Equation (2) [20,21].

Pi = 22.85 icorr (2)

3. Results and Discussions
3.1. Microstructure Evolution

Figure 2 shows the microstructures and SEM/EDS of the homogenized TXC311 and
TXCZ3111 alloys. The average grain size of the TXC311 alloy is 449 µm, and the black
second phases are well-distributed. After the addition of 1% Zn element, the grain size is
obviously refined, and the average grain size is about 286 µm, while the microstructures
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show equiaxed grain. With the addition of 1% Zn, the amount of the second phase decreases
obviously, as shown in the SEM images. Moreover, energy spectrum results show that
the second phase of the TXC311 alloy is composed of strip CaMgSn phase (point A) and
spherical Mg2Cu phase (as shown at point B). A small amount of needle-like MgZnCu phase
(as shown at point D) is formed in the TXCZ3111 alloy, and the content of Mg2Cu phases
decreases. The formation of MgZnCu phase consumes Cu elements in the alloy, resulting
in the reduction of Mg2Cu phase. A large number of CaMgSn phases are distributed in
both alloys, which is mainly related to the Sn/Ca mass ratio. When the Sn/Ca mass ratio is
close to 3, CaMgSn phases mainly exist in TX31 alloys [18].
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Figure 3 shows the X-ray diffraction (XRD) of TXC311 and TXCZ3111 alloys. It can be
seen that both the TXC311 alloy and TXCZ3111 alloy have CaMgSn and Mg2Cu phases.
However, no MgZnCu phase was detected in the TXCZ3111 alloy because its amount is
so low.
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3.2. Corrosion Properties

Figure 4 shows the macro-photos and SEM images of the two alloys after soaking for
24 h. Compared with Figure 4a,b, it was observed that the surface corrosion of the TXC311
alloy is more severe than that of the TXC3111 alloy, and the corrosion pit can obviously be
observed in the TXC311 alloy. As shown in Figure 4c,d, the corrosion pits of the TXZ3111
alloy are relatively shallow, and spherical pitting pits are found in the corroded matrix
because the Mg2Cu phase has higher potential than that of α-Mg. Compared with the
MgZnCu and CaMgSn phases, Mg2Cu preferentially induces matrix corrosion. Therefore,
it can be concluded that the addition of Zn reduces the Mg2Cu phase of TXC311 alloys,
which can effectively improve the matrix’s potential.
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Figure 5 shows the average hydrogen content and corrosion rate of the TXC311 and
TXCZ3111 alloys after soaking for 24 h. It shows the approximate linear relationship
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between the amount of hydrogen and the soaking time in the two alloys, which indicates
that the amount of hydrogen is almost equal in each time period. From Figure 5a, it can
be found that the hydrogen evolution amount of TXC311 and TXCZ3111 alloys is linearly
correlated with time. During this time period (0–2 h), the hydrogen evolution of the
TXCZ3111 alloy has a nonlinear relationship with time. The corrosion rate of TXC311 and
TXCZ3111 alloys are 132 mm·year−1 and 80 mm·year−1, respectively, as shown in Figure 5b.
Therefore, the addition of 1% Zn can reduce the corrosion rate of Mg-3Sn-1Ca-1Cu alloys.
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Figure 6 shows the polarization curves (a), Nyquist plots (b) and Fitting circuit (c) of
the TXC311 and TXCZ3111 alloys. Generally speaking, the cathodic polarization curve
represents the hydrogen evolution reaction of water reduction, and the anodic polarization
curve represents the dissolution of the magnesium matrix. Table 2 shows the fitting data of
the polarization curve and impedance spectrum. The corrosion potential of the TXCZ3111
alloy is slightly higher than that of the TXC311 alloy, and the corrosion current density
of the TXCZ3111 alloy is much lower than that of the TXC311 alloy, which indicates that
Mg-3Sn-1Ca-1Zn alloys has better corrosion resistance. The corrosion rate calculated by
electrochemistry shows a similar trend relative to the immersion test. However, the corro-
sion rate obtained from the polarization curve is quite different from that calculated from
hydrogen evolution because the corrosion rate measured by the polarization curve is suit-
able for the sample right after being soaked (3600 s), while the corrosion rate measured by
the hydrogen evolution method is the corrosion rate after soaking for 24 h. The polarization
curve reflects the thermodynamic tendency of corrosion, and the impedance graph (EIS)
reflects the kinetic tendency of corrosion. EIS is usually used to reflect the actual corrosion
resistance of materials, and the polarization curve is used as a supplemental method [22].
Therefore, in order to further study the corrosion mechanism, the impedance spectra of
the two alloys are shown in Nyquist curves, as shown in Figure 6b. The Nyquist curves of
both the TXC311 and TXCZ3111 alloys have a high-frequency capacitive reactance arc, a
medium-frequency capacitive reactance arc and a low-frequency inductive reactance arc,
which indicates that Zn addition does not change the corrosion mechanism. The TXC311
alloy has the largest capacitive arc resistance at any frequency. It can be concluded that
the charge transfer resistance and the resistance of the surface film are the highest. The
stability of the oxide film is higher than that of the TXC311 alloy in the dynamic corrosion
process, which can hinder the corrosion of the α-Mg matrix and improve the corrosion
resistance of the alloy [23]. Equivalent circuit fitting was performed on the impedance
spectra of the TXC311 and TXCZ3111 alloys, as shown in Figure 6c, and specific parameters
are shown in Table 2. Rs is the solution resistance, Rct is the charge transfer resistance
and Rf is the surface film resistance. RL and L in the series circuit represent the rupture
of the partial oxide layer in the alloy’s surface, which is used to fit the low-frequency
inductive reactance arc in the equivalent circuit. The constant phase angle element CPEdl
is connected in parallel with resistance Rct to fit the high-frequency capacitive reactance
arc, and the normal-phase angle element CPEf and resistance Rf are used in parallel to
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fit the intermediate-frequency capacitive arc in the equivalent circuit. As observed from
Figure 5b, the simulation results of equivalent circuit are in accordance with the experi-
mental results. With increasing values of Rf and RL, the corrosion resistance of the films
increases. Table 2 shows the results that RL(TXCZ3111) > RL(TXC311) and Rt(TXCZ3111) >
Rt(TXC311). Therefore, it can be concluded that pitting corrosion occurs on the surfaces of
TXC311 and TXCZ3111 alloys during the corrosion process, but the corrosion product film
induced destruction, and the extent of pitting corrosion of the TXCZ3111 alloy is less than
that observed in the TXC311 alloy. Therefore, the TXCZ3111 alloy has higher corrosion
resistance than that of the TXC311 alloy.
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Rt(TXCZ3111) > Rt(TXC311). Therefore, it can be concluded that pitting corrosion occurs 
on the surfaces of TXC311 and TXCZ3111 alloys during the corrosion process, but the 
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alloys. 

Alloy Ecorr/V 
Icorr/uA. 

cm2 
Pi 

(mm/Year) 
Rs Ω cm2 

CPEdl 
Rct Ω cm2 

CPEf 
Rf Ω cm2 RL Ω cm2 L H. cm2 

Y1/μΩ−1·cm−2·Sn n1 Y2/μΩ−1·cm−2·Sn n2 
TXC311 −1.479 ± 0.009 88.9 ± 10.2 2.03 ± 0.23 2.61 ± 0.34 8.68 ± 1.35 0.89 ± 0.02 4.67 ± 0.23 385 ± 13.32 0.91 ± 0.03 29.53 ± 4.13 30.67 ± 2.61 368.4 ± 30.55 

TXCZ3111 −1.457 ± 0.0015 43.7 ± 5.3 0.98 ± 0.03 2.80 ± 0.25 1.63 ± 0.36 0.87 ± 0.02 3.10 ± 0.15 276 ± 9.96 0.90 ± 0.02 55.16 ± 5.56 95.05 ± 10.56 1683 ± 155.78 

The hydrogen evolution test shows that the corrosion rate of the TXCZ3111 alloy is 
lower than that of the TXC311 alloy. As observed from the Tafel polarization curve, the 
corrosion current density of the TXCZ3111 alloy decreases, and the corrosion potential 
increases. The obvious passivation zone can be also observed in the cathode curve, which 
indicates that the more stable corrosion film forms on the surface of the TXZ311 alloy. It 
hinders the formation of corrosion pits, as shown in Figure 4. 
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corrosion rate of the alloy in a physical shielding role. Secondly, the subsequence of cor-
rosion resistance ability is as follows: CaMgSn > MgZnCu > Mg2Cu. Meanwhile, the 
Mg2Cu phase has a higher potential (−1.69V) than that of α-Mg. Therefore, the Mg2Cu 
phase and α-Mg, as cathodes and anodes, respectively, accelerate the corrosion of alloys 
through the process of micro-galvanic corrosion [27]. Therefore, the corrosion resistance 
of the TXC311 alloy is poor due to its large number of Mg2Cu phases. After adding Zn 

Figure 6. (a) Polarization curves; (b) Nyquist plots; (c) Fitting circuit.

Table 2. Polarization curves and impedance fitting results of homogenized TXC311 and TXCZ3111 alloys.

Alloy Ecorr/V Icorr/uA.
cm2

Pi
(mm/Year) Rs Ω cm2 CPEdl Rct Ω cm2 CPEf Rf Ω cm2 RL Ω cm2 L H. cm2

Y1/µΩ−1 ·cm−2 ·Sn n1 Y2/µΩ−1 ·cm−2 ·Sn n2

TXC311 −1.479 ±
0.009 88.9 ± 10.2 2.03 ± 0.23 2.61 ± 0.34 8.68 ± 1.35 0.89 ± 0.02 4.67 ± 0.23 385 ± 13.32 0.91 ± 0.03 29.53 ± 4.13 30.67 ± 2.61 368.4 ±

30.55

TXCZ3111 −1.457 ±
0.0015 43.7 ± 5.3 0.98 ± 0.03 2.80 ± 0.25 1.63 ± 0.36 0.87 ± 0.02 3.10 ± 0.15 276 ± 9.96 0.90 ± 0.02 55.16 ± 5.56 95.05 ±

10.56
1683 ±
155.78

The hydrogen evolution test shows that the corrosion rate of the TXCZ3111 alloy is
lower than that of the TXC311 alloy. As observed from the Tafel polarization curve, the
corrosion current density of the TXCZ3111 alloy decreases, and the corrosion potential
increases. The obvious passivation zone can be also observed in the cathode curve, which
indicates that the more stable corrosion film forms on the surface of the TXZ311 alloy. It
hinders the formation of corrosion pits, as shown in Figure 4.

The corrosion resistance of magnesium alloy is mainly attributable to grain size, the
homogeneity of microstructure and defect density [24]. The results show that smaller grain
size can improve corrosion resistance. In addition, second-phase particles also play an
important role in the corrosion behavior of magnesium alloys. In general, the self-corrosion
potential of the second-phase particles is higher than that of the magnesium matrix [2,25].
Therefore, when the magnesium alloy is immersed in 3.5 wt.% NaCl solution, the second
phase usually acts as a micro-cathode. Galvanic corrosion occurs between the second phase
and the magnesium matrix, resulting in rapid corrosion of the magnesium matrix around
the second phase [26]. The corrosion mechanism of TXC311 and TXCZ3111 alloys is shown
in Figure 7. The grain size of the TXCZ3111 alloy (286 µm) is obviously smaller than that
of the TXC311 alloy (449 µm), and more grain boundaries can reduce the corrosion rate
of the alloy in a physical shielding role. Secondly, the subsequence of corrosion resistance
ability is as follows: CaMgSn > MgZnCu > Mg2Cu. Meanwhile, the Mg2Cu phase has a
higher potential (−1.69 V) than that of α-Mg. Therefore, the Mg2Cu phase and α-Mg, as
cathodes and anodes, respectively, accelerate the corrosion of alloys through the process
of micro-galvanic corrosion [27]. Therefore, the corrosion resistance of the TXC311 alloy
is poor due to its large number of Mg2Cu phases. After adding Zn elements, the volume
fraction of the second phase is significantly reduced. MgZnCu phases can decrease the
number of Mg2Cu phases, which improves the corrosion resistance of the alloy [28].
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4. Conclusions

The microstructure and corrosion properties evolution in homogenized TXC311 alloy
and TXCZ3111 alloy are studied in this paper, and the following conclusions were obtained:

TXC311 alloys contain a large number of CaMgSn and Mg2Cu phases. After adding
1% Zn, the grain size of TXC311 alloy decreases significantly, and the MgZnCu phase
is formed.

TXC311 alloys have poor corrosion resistance, which is due to the Mg2Cu phase
possessing a higher potential (−1.69 V) than that of α-Mg. The addition of Zn can effectively
reduce the corrosion rate of TXC311 alloy, which can be attributed to grain refinement and
the reduction of the Mg2Cu phase. In addition, the formation of the MgZnCu phase also
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