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Abstract: Physical multilevel models of inelastic deformation that take into account the material struc-
ture evolution hold promise for the development of functional materials. In this paper, we propose
an advanced (modified via analyzing the mutual arrangement of crystallites) statistical multilevel
model for studying thermomechanical processing of polycrystals that includes a description of the
dynamic recrystallization process. The model is based on the consideration of homogeneous elements
(grains, subgrains) aggregated into a representative volume (macropoint) under the Voigt hypothesis.
In the framework of this statistical approach, there is no mandatory requirement for continuous
filling of the computational domain with crystallites; however, the material grain structure cannot be
created arbitrarily. Using the Laguerre polyhedra, we develop a method of grain structure simulation
coupled with subsequent processing and transferring of the necessary data on the grain structure to
the modified statistical model. Our research is of much current interest due to the fact that the mutual
arrangement of crystallites, as well as the interfaces between them, has a significant impact on the
properties of polycrystals, which are particularly important for physical mechanisms that provide
and accompany the processes of inelastic deformation (recrystallization, grain boundary hardening,
grain boundary sliding, etc.). The results of the simulations of the high-temperature deformation of a
copper polycrystal, including the description of the recrystallization process, are presented.

Keywords: multilevel models; dynamic recrystallization; grain shape and grain size; defect and grain
structure evolution

1. Introduction

Methods for processing polycrystalline materials, especially hard-to-deform alloys,
via severe plastic deformation (stamping, drawing, extrusion, forging, etc.) usually include
high homological temperatures [1,2]. An actual problem that manufacturers face during
this processing is to obtain structures and products with optimal mechanical properties
(high strength, high yield strength, low weight, etc.) [3,4]. Plastic deformation in these
processes is usually accompanied by the appearance and evolution of structural defects
at various structural-scale levels, which in turn causes inhomogeneity of the physical
and mechanical properties [5,6]. The high temperature of the plastic deformation process
and subsequent heating reduce the number of defects and promote their redistribution,
increasing the uniformity of the structure. This is possible due to the implementation of
a combination of two high-temperature processes, namely dynamic recovery (DRV) and
dynamic recrystallization (DRX) [5,7–10]. DRV is followed by reduction and redistribution
of defects (primarily, dislocations) and densities, which usually results in the formation of
subgrain, block–cellular, and cellular structures [5,7,8,11]. DRX refers to the formation and
further development of new, less-defective grains by absorbing neighboring grains [5,7,8].
If this process is implemented in the material in a heterogeneous way, where the stages
of formation of DRX nuclei and their subsequent growth are clearly separated, then it is
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called discontinuous dynamic recrystallization (DDRX) [5] or classical DRX [7]. However,
if the DRX process occurs homogeneously in such a way that the stages of formation and
growth of new grains are not clearly distinguished, then it is called continuous dynamic
recrystallization (CDRX) [5,7]. The main material characteristic of the development of a
grain and defect structure during DRX and its type is the stacking fault energy (SFE). The
increased SFE values promote the formation of a subgrain structure under active recovery
effects, and accordingly the implementation of CDRX, while the lower SFE values are
responsible for the occurrence of DDRX [5,7].

At present, the multilevel models of inelastic deformation with internal variables are
widely used to simulate changes in the structure and responses of the materials [6,12–16].
There are three classes of multilevel models: statistical, direct, and self-consistent. Statistical
models consider a representative macrovolume of a material (“macropoint”) as a set of
individual grains combined into a polycrystalline aggregate, as hypothesized by Voigt,
Reiss, and Kroener [17–19]. Self-consistent (mean-field) models are based on solving the
boundary single inclusion problem of a crystallite (grain, subgrain, fragment) embedded in
a matrix by imaging the averaged (effective) characteristics of a polycrystal [20–22]. Direct
models rely on solving boundary value problems and on determining the field values
of the model (stresses, strains, and internal variables) for each crystallite included in the
representative macrovolume under consideration [13,23,24]. Statistical models have been
recognized by many authors as the least accurate among all three classes of models, yet their
modifications make it possible to explicitly consider the current state of neighboring grains
by highlighting their contact interactions along the conjugate flat sections of boundaries
(facets) of grains [25,26]. Additionally, these models have high computational efficiency [27].
One of the main drawbacks of the self-consistent models is that they are unable to take into
account real physical interactions between the neighboring crystallites (e.g., exchange of
dislocation flows, formation of orientation misfit dislocations) and require the replacement
of the environment by a continuum with averaged properties, which do not reflect the real
state of the grain and defect structures. Direct models are known to be the most accurate
models, yet they remain the most resource-intensive [28]. The implementation of direct
models of crystallites with varying compositions and moving boundaries involves great
computational difficulties, especially when studying a wider range of physical processes,
including solid-state phase transitions and recrystallization processes.

Numerous approaches and methods have been developed to model DRX [5,29,30].
Phenomenological models are the most simplified models, which include an empirical or
semi-empirical description of a recrystallized material fraction. The Johnson–Mehl–Avrami–
Kolmogorov (JMAK) kinetic equations form the basis for describing the evolution of the
recrystallized volume fraction of polycrystals in these models [31–33]. The development of
this approach is associated with creating models able to describe such characteristics of the
grain structure, as the grain size, grain shape, and grain boundary orientation [34–36]. The
JMAK equations often turn out to be insufficient for studying the grain structure evolution
because they do not take into account the heterogeneous nature of the DRX process and
are only applicable within a narrow range of variation in the initial structure, temperature,
strain, and strain rate [37,38]. Recent developments in the computer technology provide
an opportunity to develop physical approaches that permit an explicit description of the
grain structure evolution [5,6]. In the framework of this class of models, internal variables
and parameters are introduced to characterize the material structure and to assess factors
responsible for the formation of DRX nuclei and for the migration of grain boundaries. Due
to this, these models are applied to describe the formation of the required material structure,
and they are well suited to technological regimes in the metallurgical and manufacturing
industries. Within this physical approach, there are several types of models that include
descriptions of dynamic recrystallization, in particular self-consistent [8,21,39,40] and di-
rect [41–43] models. One of the main problems encountered in modeling DRX processes
is the description of the grain structure evolution that occurs due to the formation of new
grains and due to the migration of their high-angle boundaries. To describe the grain
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structure evolution by applying the models of the above type, various approaches are typi-
cally used, including the Monte Carlo method [44], cellular automaton method [38,45,46],
phase-field method [47], level set method [43,48], graph theory based methods [49,50], and
some others.

Despite the great number of approaches and methods, the problem of modeling the
grain structure evolution during DRX still remains an urgent research issue and requires
further research. Recent papers [8,38,40,43] are indicative of a current interest in this subject.
The topicality of the problem is also related to the presence of a relationship between the
current state of the grain structure and the macro-properties of polycrystals. This fact has
been repeatedly confirmed by the results of many independent experiments [5,51,52]. The
most well-known manifestation of the influence of the state of the grain structure on the
properties of the material is the dependence of the yield strength on the average grain size
(Hall–Petch equation) [53–55]. Severe hot plastic deformation produces significant changes
(usually refinement) in the grain structure, which are mainly associated with DRX [5,7]. The
grain structure determined by the shape and size of crystallites is of decisive importance
in providing effective mechanical properties (plasticity, creep, hardness, fatigue, etc.) of a
polycrystalline material [56,57]. As an example, the formation of equiaxed grains and their
refinement during recrystallization facilitate the implementation of grain boundary sliding,
and consequently the initiation of deformation in the structural superplasticity mode under
appropriate temperature and velocity conditions [26,58]. This causes abnormally large
deformations to appear at almost constant and relatively low values of plastic flow stress.

In view of the foregoing, the problem of developing an advanced constitutive physical
model of a polycrystalline material relying on an explicit physical description of the DRX
process needed to analyze the evolution of grain and defect structures is of particular
importance. In this paper, we propose an original method of statistical modeling to form
and reconstruct the grain structure by applying Laguerre polyhedra [59]. The developed
geometric model for describing the grain shape and grain size allows one to overcome the
above-mentioned difficulties inherent in using self-consistent and direct models. It has high
computational efficiency and is able to describe the peculiarities of physical mechanisms,
where the decisive factor is the interaction between contacting grains.

Section 2 presents the structure, scale levels, and relationships of an advanced statis-
tical multilevel model for describing inelastic deformation with allowance for the DDRX
and the mechanism governing the formation of nuclei and their development into in-
dividual low-defect grains. Section 3 discusses a method for grain structure formation
and reconstruction during high-temperature deformation using the Laguerre polyhedra,
as well as subsequent processing and transfer of the obtained data on the grain struc-
ture to the advanced statistical model. Section 4 gives a description and analysis of the
obtained results.

2. The Advanced Statistical Multilevel Model for Describing Inelastic Deformation
during Discontinuous Dynamic Recrystallization

This study investigates DDRX, which is a common phenomenon encountered in plastic
formation of a wide class of polycrystalline materials with medium and low SFE values,
including copper, nickel, austenitic steels, and some aluminum alloys [5,7]. At the initial
stage of hot plastic deformation, DDRX is characterized by the formation of low-defect
nuclei, which absorb the neighboring more-defective grains due to boundary migration.
Thus, two processes are responsible for the occurrence of DDRX: (1) the formation of
nuclei and their further development into new grains; (2) the migration of the high-angle
boundaries of DRX grains [5,7]. DRX nuclei have a characteristic size of the order of
a micrometer and are not formed due to random fluctuations, as in the case of phase
transitions [5]. They appear in the course of directed rearrangement of defect and subgrain
structures. For most metals, the commonly accepted mechanism of nuclei formation
during DDRX involves the movement (“bending”, “swelling”) of the grain boundary
regions associated with the original subgrains of a polycrystal [60–63]. This mechanism,
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first investigated for static recrystallization, was described in [64]. The presence of this
phenomenon during DDRX was confirmed by the theoretical and experimental results of
many researchers [60,61,63,65]. The development of the DDRX process governed by this
mechanism is presented schematically in Figure 1. Initially, the first nuclei layer is formed
at the original grain boundaries, and it has orientation coherency with the parent grain
(Figure 1b). In a similar way, new grains (their average size decreases gradually) are formed
at the boundaries of previously recrystallized grains (Figure 1c,d). These grains occur due
to the addition of atoms to a subgrain (a DRX nucleus) along the grain boundaries and due
to their subsequent penetration deep into the defective grain. In Figure 1, the following
designations are used: εc is the critical deformation up to which no DRX occurs; εm is the
deformation corresponding to the maximum value of stresses σm in the load diagram; εs is
the deformation corresponding to almost complete recrystallization of the material; εx is
the deformation corresponding to one recrystallization cycle (εs = εc + εx).
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Figure 1. Scheme for the formation of a fine-grained structure during DDRX at various degrees of
deformation ε: ε < εc (a), ε ≈ εc (b), 3/4εx < ε < εs (c), ε ≈ εs (d) (it was developed based on [61]).

Previously, the authors developed an advanced statistical multilevel model intended
for describing static [25] and dynamic recrystallization [66,67]. In these papers, the pro-
cesses of preliminary plastic deformation and the subsequent annealing of the material
or its deformation at a given temperature were investigated to evaluate the initial stage
of recrystallization. The present article provides a description of a significantly modified
model in regard to refining the simulation of the polycrystal grain structure evolution. The
model is designed to study the processes of severe plastic deformation of polycrystalline
materials at elevated temperatures of inelastic deformation.

In solving the formulated problem, we distinguish three structural levels in the struc-
ture of a statistical multilevel model. They are the macrolevel, mesolevel-I, and mesolevel-II.
At the macrolevel, the statistical description of a representative number of grains with
uniform distribution of orientations of crystallographic axes in the space of the reference
configuration is carried out. At mesolevel-I, the behavior of a separate grain consisting
of mesolevel-II elements (homogeneous subgrains) is investigated. The grains are sepa-
rated by high-angle boundaries, whose misorientation is greater than 10–15 degrees; the
subgrain misorientation is about several degrees, and as a rule it increases with increasing
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inelastic deformation [5,68]. A scheme illustrating the relationship between the scale-based
submodels is shown in Figure 2.
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Figure 2. Scale levels and the connection between the structural elements of a multilevel model (thin
lines correspond to subgrain boundaries, bold lines show grains boundaries).

At the macrolevel, the effective properties of the material are determined and the
impacts are transferred from this level to the underlying scale levels. For each moment of
time t, the mechanical and thermal effects are prescribed and the velocity gradient ∇̂V(t)
and temperature Θ(t) are assumed to be known at the macrolevel. Therefore, for each
grain, the following equality is true [6]:

∇̂v(t) = ∇̂V(t), θ(t) = Θ(t), (1)

where ∇̂v(t) is the velocity gradient of the grain’s material particle; θ(t) is the grain
temperature; ∇̂ is the Hamilton operator in the current Lagrangian coordinate system; V, v
are the velocity vectors obtained at macro and mesolevels. The indexes denoting the grain
(subgrain) number are omitted hereinafter, unless otherwise specified.

At mesolevel-I, the problem of determining the stress–strain state of a grain and
the corresponding internal variables of the model is solved using an advanced statistical
model. The mathematical formulation of a mesolevel-I model contains the following
relations [66,67]:

κcr = п :
(
∇̂vT −ω− zin

)
, (2)

zin =
K

∑
k=1

.
γ
(k)b(k)n(k), (3)

τ(k) = b(k)n(k) : κ, (4)

.
γ
(k)

=
.
γ0

(
τ(k)

τ
(k)
c

)m

H
(
τ(k) − τ(k)c

)
, (5)

.
τ
(k)
c =

.
τ
(k)
cs +

.
τ
(k)
cgb, (6)

.
τ
(k)
cs =

Ns

∑
j=1

h(kj) .
γ
(j), (7)

h(kl) =
[
qlat + (1− qlat)δ

(kl)
]

h(l), h(l) = h0

∣∣∣1− τ(l)c /τsat

∣∣∣a, (8)

.
τ
(k)
cgb = η

N f

∑
j=1

Sj

S

Ns

∑
s=1
ξ(s,j) .

γ
(s)
τ
(k,s)
bs , (9)

ω =
.
o · oT = I× (k3k1k2 − k2k1k3 + k1k2k3) : le, (10)

ze = z− zin, (11)

est =
α

G

(
τ2

c − τ2
c0

)
. (12)
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The corresponding initial conditions are written as follows [6]:

κ| t=0 = κ0, o| t=0 = o0, τ(k)cs

∣∣∣
t=0

= τ
(k)
cs0, τ(k)ctw

∣∣∣
t=0

= τ
(k)
ctw0, γ

(k)
s

∣∣∣
t=0

= γ
(k)
s0 . (13)

Here, κ = ρ
ρ̂σ is the mesolevel weighted Kirchoff stress tensor; κcr = dκ/dt + κ ·ω−

ω · κ is its corotational derivative; σ is the mesolevel Cauchy stress tensor; z = ∇̂vT −ω is
the strain measure satisfying the objectivity requirement; ze, zin are the mesolevel elastic
and inelastic components of the strain rate measure; le is the elastic component of the
transposed velocity gradient; ρ,ρ̂ denote the material density in the reference and current

configurations, respectively;
.
γ
(k) is the shear rate on the k-th intragranular slip system;

.
γ0 is the shear rate on the slip system when the tangential stress reaches the critical
shear stress; m is the strain rate sensitivity exponent of the material; b(k), n(k) are the
unit vectors of the slip direction and the normal to the k-th slip system, respectively; H
is the Heaviside function; τ(k), τ(k)c are the shear and critical stresses of the k-th system,
respectively; τ(k)cs , τ(k)cgb are the components of critical stresses of the k-th system, which occur
due to the interactions of dislocations with the dislocation structure and grain boundaries,

respectively; τ2
c =

Ns
∑

k=1

(
τ
(k)
c

)2
, τ2

c0 =
Ns
∑

k=1

(
τ
(k)
c0

)2
are the total squared critical stresses in the

grain under study at the current and initial instants of deformation, respectively; h(kl) is the
matrix describing the crystal hardening caused by the interactions between dislocations
and forest dislocations; qlat is the latent hardening parameter; τsat is the saturation stress;
h0, a are the parameters describing material hardening; Ns, N f denote the number of
slip systems and the number of facets of the considered grain, respectively; S, Sj are the
grain area and the j-th grain facet, respectively; ξ(s,j) is the parameter characterizing the
interactions between the dislocations of the s-th slip system of the considered grain and
those of the neighboring grain along the j-the facet, respectively (the definition of this
parameter is given in [69]); τ(k,s)

bs is the component of the shear barrier stresses acting on
the k-th slip on the side of orientation misfit dislocations that appear in the facets because
of the dislocation motion on the s-the system; η is the dimensionless parameter defined
during the model identification procedure; п is the elastic tensor of the crystallite, the
components of which пijmn were defined and turned out to constant in the actual basis ki
(in the reference configuration, the basis vectors are denoted by ki

0) of the rigid moving
coordinate system (MCS) rotating with spinω. The rigid orthonormal coordinate system
is related to one crystallographic direction and the crystallographic plane containing this
direction. In the reference configuration, the basis of the MCS coincides with the basis of
the crystallographic coordinate system (CCS). The basis of the CCS is distorted during
deformation, while the basis of the MCS remains rigid. The motion relative to the CCS
is a deformation motion. The definition of MCS and spin is given in [70]; o = kik

i
0 is

the tensor that combines the MCS with the laboratory coordinate system (LCS); α is the
dimensionless experimentally determined correction parameter characterizing the fraction
of energy stored in dislocations; G is the shear modulus; δ(kl) is the Kronecker delta; the dot
above the corresponding mesolevel variables denotes the material time derivative t; the
subscript T denotes the transpose of the value of the second rank tensor. The transition to
macrolevel variables is implemented via volume averaging of the corresponding mesolevel
variables. To describe hardening by analyzing the interaction of mobile dislocations with
forest dislocations (relation for

.
τ
(k)
cs ), we apply the known hardening law [71,72] and the

grain boundary hardening law (relation for
.
τ
(k)
cgb) described in [69].

At the macrolevel, we calculate the average values of stresses Σ, elastic properties II,
and an inelastic component of the velocity gradient ∇̂Vin [6]:

Σ = 〈σ〉, II = 〈п〉, ∇̂Vin =
〈
∇̂vin

〉
, (14)
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where 〈 〉 is the volume averaging operator.
At the mesolevel-II (the level of individual subgrains), which is an auxiliary level,

there is an opportunity to accurately evaluate the above DDRX recrystallization mechanism
when modeling the formation of the nuclei located near the grain boundary. When the
Bailey–Hirsch criterion is satisfied, the DRX nuclei start to grow, and as a result new grains
are formed. According to this criterion, a decrease in local volume energy due to defect
elimination must be greater or equal to an increase in grain boundary energy that is caused
by an increase in the boundary area during the formation of a recrystallized grain [73]:

f (i,j) = e(i,j)dst − e(i,j)gb ∆s/∆v ≥ 0, (15)

where ∆s is the increase in the boundary area when a subgrain volume (a DRX nucleus)
changes by ∆v, e(i,j)dst is the difference between the specific energies of adjacent subgrains

stored per unit volume i and j, and e(i,j)gb is the energy per area unit for the boundary between
the i-th and j-th subgrains.

In order to apply criterion (15) and calculate the values of ∆s, ∆v, we introduce an
additional mesolevel-II variable (a characteristic subgrain size) r. We speak of nuclei
that are spherical in shape and assume that the initial subgrain size distribution obeys
the Rayleigh law [62,63]. If the necessary experimental data are available, then we can
use other distribution laws. It is assumed that the size of subgrains does not change
during deformation. The recrystallization nuclei are located near the boundary (a set of
facets). Each facet of the grain under consideration is assigned a sample of subgrain sizes
(recrystallization nuclei) r according to the Rayleigh law. The validity of the recrystallization
criterion (15) is verified for every subgrain separated by the high-angle boundary from the
neighboring ones.

We do not consider here the mechanism governing the formation of new grains from
subgrains during their rotation until the high-angle misorientations with the parent grain
occur. We suppose that new grains are formed only during the DRX process. In the volume
of one grain, the subgrains are separated by the low-angle boundaries and are slightly
misoriented relative to each other. Thus, it is reasonable to believe that the stored energy
est, determined by relation (15), is approximately the same in all subgrains within one grain.
The data on the stored energy eI

st calculated at mesolevel-I and needed to verify the validity
of the recrystallization criterion (15) are transmitted to mesolevel-II. Thus, we have:

eI I
st = eI

st
de f
= est, (16)

where eI I
st is the stored energy at mesolevel-II. The difference in stored energy between the

subgrains belonging to different grains but having a common high-angle boundary may
be significant.

In fulfilling criterion (15), we assume that DRX nuclei are active and that they are
separated into individual grains. This separation proceeds in two stages. At the first
stage, when condition (15) is satisfied, the active nuclei are added to the static model; at the
second stage, the polyhedral grain structure is rearranged by considering new recrystallized
grains. The description of this method is given in Section 3. The new DRX grains are
considered to be low-defective; thus, all internal variables of a recrystallized grain in the
annealed material correspond to the reference configuration, with the exception of the new
grain orientation determined by the tensor o and the geometric characteristics. A refined
definition of these characteristics is also given in Section 3. The volume of the new DRX
grain is subtracted from the volume of the parent grain. Experimental data [5,61] indicated
that for the mechanism of DRX nuclei formation considered here, the new (recrystallized)
grains have a consistent orientation coherency with the parent grain. It was shown that
the new grain is separated from the parent grain by a high angle boundary, and it has
initial orientation with respect to the parent grain within the range from 10 to 15◦ with a
random axis of rotation [5,61]. The DRX grain orientation with respect to the neighboring
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(absorbed) grain is arbitrary (Figure 1b). At this stage of modeling, in order to evaluate the
influence of grain boundary hardening, we assume that the new grain is surrounded by six
identical facets, and the neighboring grains are determined in a random way.

The migration of the high-angle boundary of a new grain occurs at temperatures
sufficient to ensure its mobility. The Arrhenius law is used to study the effect of temperature
on the high-angle mobility [5]:

m = m0 exp
(
− Q

Rθ

)
, (17)

where θ is the absolute temperature; R is the universal gas constant; Q is the activation
energy of the grain boundary migration; m0 is the experimentally determined pre-exponent.
The high angle boundary migration velocity vm is determined by the product of the driving
force f (the indexes denoting the neighboring crystallites are omitted) and the mobility m [5]:

vm = f m. (18)

At this stage of model development, we assume for simplicity that the shape of the
recrystallization nuclei is spherical (the refine geometry of recrystallized grains is described
in Section 3) and that each new recrystallized grain penetrates deep into the neighboring
grain. In this case, vm is equal to the rate of change of the ball radius r, which describes
the shape of the recrystallized grain, i.e.,

.
r = vm (the dot above r shows the material

derivative). The absorbed grain volume is reduced by the volume of recrystallized grains.
The volume fraction of the recrystallized material X in a polycrystal is determined through
the following relation:

X =
Vr

V0
, Vr =

Nr

∑
i=1

v(i)
r , (19)

where V0 is the initial value of the representative volume of a polycrystal under considera-
tion; Vr is the DRX material volume; Nr is the number of DRX grains; v(i)

r = 4
3πr(i)3 is the

i-th DRX grain volume.

3. Rearrangement of the Grain Structure Formed during High-Temperature
Deformation with Recrystallization

During recrystallization, the grain structure varies continuously; changes are related
to changes in the number, shape, and size of the grains under study. We propose a method
for the formation of the grain structure and its rearrangement during deformation, which
allows consideration of the formation of new DRX grains. The developed method is
applied for a statistical model, one of the main tasks of which is to solve the problem of
grain structure rearrangement during recrystallization and to establish a correspondence
between the geometric image of a real grain structure described by polyhedra (Figure 3a)
and its model representation in the framework of the modified statistical model (Figure 3b).
In this model, the grain structure is determined by such internal variables as the grain
volume vg, the facets with the normal ni and the area sj (where j denotes the number
of a facet), and through assigning neighboring grains to the considered grain. First, the
initial polyhedral grain structure is formed in the software package Neper [59]. Then, the
obtained data are transferred to the calculation module of the statistical model for the
implementation of the inelastic deformation model described above.

The modeling of active recrystallization nuclei proceeds in two stages. Information on
the first stage of the simplified description is given in the previous section of this article.
During this stage, subgrains (DRX nuclei) are assigned to each facet of the initial grains. As
the recrystallization criterion (15) is met, these subgrains are considered as independent
grains added, without taking into account their geometric shape, to sample data of the
statistical model. When the volume fraction of active recrystallization nuclei fcr reaches its
critical value of 20% (found in computational experiments), the second stage at which the
new grains are introduced into the geometric model of a representative volume begins. To
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this end, we again start the procedure for generating a polyhedral grain structure in the
Neper program [59]. This allows us to take into account new grains and to find whether
the statistical model is consistent with the calculation scheme. With the software package
Neper, we construct a polyhedral structure on the basis of the laws of distribution through
the sphericity parameters ψg (the ratio of the surface area of the sphere, whose volume is
equal to the volume of a considered grain to the grain surface area) and the normalized
grain size deq (deq = d

〈d〉 , where d is the grain size defined as the radius of a sphere of
equivalent volume and 〈d〉 is the average grain size). To this end, the Neper involves the
numerical implementation of optimization methods [59].
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After the polyhedral grain structure is formed in Neper, the obtained data (grain
volumes, normals, and facet areas with indication of neighboring grains) are transferred to
the statistical model, where the grain structure is redefined. Note that new crystallites are
introduced into the geometric structure of the considered region through DRX simulations;
previously, the statistical model does not take into account the geometry of this region.
To compare the initial and newly deformed structures, we consider two types of grains:
original defective grains and new DRX grains. The main geometric characteristic of grains
is their size, which is determined by the volume of an equivalent sphere. The defect
structure is primarily characterized by the stored energy est. At critical deformation εc,
large non-recrystallized grains usually coexist with fine recrystallized grains (Figure 1b),
and a bimodal grain size distribution is generally observed. In this case, we distinguish
a cluster of grains, namely a large “consumed” defective grain surrounded by fine DRX
grains for the initial grain structure (Figure 4). Initially, we compare all grains according
to their characteristic sizes. For this purpose, the square of difference in grain sizes is
assumed to be minimal for original and new grain structures. At later recrystallization
stages where the grain size distribution is close to unimodal (Figure 1d), the grains are also
compared vs. their sizes. In both cases, the variant of the grain structure, determined with
regard to the best fit of grain sizes, is taken as the initial approximation. Then, the genetic
algorithm method [74] is applied to perform a purposeful selection of grains. This allows
us to reach a minimum in distribution of the difference between the energies stored in the
grains of original and new structures (comparison is made by the mathematical expectation
of the stored energy distribution and grain sizes). The conditions for the migration of grain
boundaries before and after the geometric structure rearrangement will be statistically
equivalent, which ensures “continuity” in the simulation of the recrystallization process.

Next, we describe the grain structure evolution in terms of a statistical model. The
grain structure is subjected to thermomechanical loading change for the following two rea-
sons. The first is due to mechanical influences, mainly due to the movement of dislocations
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during inelastic deformation, whereby the areas and normals of grain facets vary according
to the known formulas of continuum mechanics [75]:

ŝi = sidet(f)
(

ni · f−1 · f−T · ni

)−1/2
, n̂i =

(
ni · f−1 · f−T · ni

)−1/2
fT · ni (20)

where si, ŝi are the areas of facets in the reference and actual configurations with corre-
sponding normal ni, n̂i; det( ) is the operation of a determinant; is the facet number. The
changes in grain volume observed during elastoviscoplastic deformation are neglected.
The statistical model of inelasticity is based on the Voigt hypothesis, and a deformation
gradient f is known at every instant of deformation.

Crystals 2022, 12, x FOR PEER REVIEW 10 of 21 
 

 

stage at which the new grains are introduced into the geometric model of a 
representative volume begins. To this end, we again start the procedure for generating a 
polyhedral grain structure in the Neper program [59]. This allows us to take into account 
new grains and to find whether the statistical model is consistent with the calculation 
scheme. With the software package Neper, we construct a polyhedral structure on the 
basis of the laws of distribution through the sphericity parameters ψg  (the ratio of the 
surface area of the sphere, whose volume is equal to the volume of a considered grain to 
the grain surface area) and the normalized grain size eqd  ( eq

dd d , where d  is the 

grain size defined as the radius of a sphere of equivalent volume and d  is the average 
grain size). To this end, the Neper involves the numerical implementation of 
optimization methods [59]. 

After the polyhedral grain structure is formed in Neper, the obtained data (grain 
volumes, normals, and facet areas with indication of neighboring grains) are transferred 
to the statistical model, where the grain structure is redefined. Note that new crystallites 
are introduced into the geometric structure of the considered region through DRX 
simulations; previously, the statistical model does not take into account the geometry of 
this region. To compare the initial and newly deformed structures, we consider two types 
of grains: original defective grains and new DRX grains. The main geometric 
characteristic of grains is their size, which is determined by the volume of an equivalent 
sphere. The defect structure is primarily characterized by the stored energy ste . At 
critical deformation εc , large non-recrystallized grains usually coexist with fine 
recrystallized grains (Figure 1b), and a bimodal grain size distribution is generally 
observed. In this case, we distinguish a cluster of grains, namely a large “consumed” 
defective grain surrounded by fine DRX grains for the initial grain structure (Figure 4). 
Initially, we compare all grains according to their characteristic sizes. For this purpose, 
the square of difference in grain sizes is assumed to be minimal for original and new 
grain structures. At later recrystallization stages where the grain size distribution is close 
to unimodal (Figure 1d), the grains are also compared vs. their sizes. In both cases, the 
variant of the grain structure, determined with regard to the best fit of grain sizes, is 
taken as the initial approximation. Then, the genetic algorithm method [74] is applied to 
perform a purposeful selection of grains. This allows us to reach a minimum in 
distribution of the difference between the energies stored in the grains of original and 
new structures (comparison is made by the mathematical expectation of the stored 
energy distribution and grain sizes). The conditions for the migration of grain boundaries 
before and after the geometric structure rearrangement will be statistically equivalent, 
which ensures “continuity” in the simulation of the recrystallization process. 

 
Figure 4. Scheme used for modeling a cluster of grains (a “consumed” defective grain surrounded 
by DRX grains). 

Figure 4. Scheme used for modeling a cluster of grains (a “consumed” defective grain surrounded by
DRX grains).

The second mechanism governing the grain structure changes is diffusion, which is
realized when the high-angle boundaries migrate deep into the defective grains in the
direction of the outer normal. Due to this process, both the numbers of grains and their
neighbors (adjacent grains) change, and hence there arises a need for reconstructing a
polyhedral grain structure in the software package Neper. In DRX simulation, the known
value is the boundary migration velocity vm, which is determined by Equation (18) for each
facet at every instant of thermomechanical process. The driving force f is determined by
relation (15), where ∆s, ∆v mean that the area and volume, respectively, of recrystallized
grains increase. As the grain grows, the second term in (15) does not contribute to f ,
meaning this value is almost completely determined by the difference in stored energy
between neighboring grains. It is assumed that the migration velocity of the boundary facet
is directed along the outer normal n̂ of the boundary facet, i.e., the following ratio is true:

vm = vmn̂. (21)

Due to its significant non-linearity, the problem is solved by a step-by-step method,
where the step size ∆t is determined from the analysis of the results of a series of numerical
experiments. It is assumed that in the time interval ∆t, vm is constant. The velocity vector
um resulting from the boundary migration is calculated for ∆t by integrating (21) as:

um =

τ+∆t∫
τ

vmn̂dt = vmn̂∆t. (22)

Figure 5 presents a scheme illustrating how the grain shape changes during the
migration of the facet with the normal n̂. Further, we will consider only the migrating facet
and the adjacent facets. The elements of the migrating facet are denoted by the index m
and the adjacent facets by the index f . In this model, the grain structure is represented by
flat sections, meaning the “bending” of the boundary cannot be described. However, there
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is a possibility of considering the rotation of the adjacent facets under the assumption that
an increase in volume is provoked by this effect (see Figure 5). In this case, it is assumed
that the polyhedron remains convex. In the statistical model, the change in the geometry
of the polyhedra is not actually simulated. The characteristic size and sphericity of grains
needed for rearrangement of the polyhedral grain structure in Neper are determined in a
simplified way after a certain number of time steps.
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According to the scheme given in Figure 5, the volume of the recrystallized part of the
grain occurred due to the facet migration vr is calculated as the sum of two terms:

vr = vm + v∑ f = βvm, (23)

where vm is the volume swept by the mobile facet; v∑ f is the total volume made up of the
“rotation” of the facets; β > 1 is the parameter describing the change in the volume of a
DRX grain due to the migration of the facets. The relation for vm is determined assuming
that the swept volume is the volume of a rectangular parallelepiped:

vm = umsm, (24)

where sm is the area of the migrating facet. During the facet migration and assuming that
the rectangular shape of the facets remains unchanged, the area of each of the adjacent
facets increases by the value sr:

sr = um
√

s f , (25)

where s f is the initial area of the facet adjacent to the migrating facet. For the consumed
grain adjacent to the migrating facet, the volume decreases by the value vr calculated by
relation (23), and the areas of the neighboring grain facets adjacent to the migrating facet
decrease by the values determined by (25). If the volume of the neighboring grain reduces
to zero (to an accuracy of computational error), then it is replaced by the grain from a
representative volume of the statistical model. This grain is determined from the facet of
the closest orientation, which is assumed to be conjugated with the migrating facet.

Finally, the characteristic size rg (to do this, the sphere of equal volume is associated
with a grain) and sphericity ψg are obtained for each grain:

rg =

(
3

4π
vg

)1/3
,ψg =

4πrg
2

sg
, (26)

where vg = vg0 + vr, sg = sg0 + sr is the volume and area of the grain determined by the
above-mentioned relations. The distributions of rg and ψg obtained for the considered
representative volume are transferred to Neper to construct a new polyhedral structure,
and then the grain structure data are introduced into the statistical model; this procedure is
repeated many times.
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4. Simulation Results and Their Analysis

This paper investigates the inelastic deformation of a copper polycrystal sample. The
multilevel model parameters are given in Table 1.

Table 1. The parameters of the multilevel model of inelastic deformation.

Parameter Value Literature Source

п1111 140 GPa [76]
п1122 104 GPa [76]
п1313 63 GPa [76]

G 39 GPa [77]
τc0 10 MPa Identification procedure
τsat 27 MPa Identification procedure
h0 200 MPa Identification procedure
a 1.4 Identification procedure

qlat 1.4 [72]
.
γ0 0.001 s–1 [72]
m 83 [72]
η 1.0 Identification procedure
α 0.0012 Identification procedure

egb 0.625 J/m2 [5]
r0 0.25 µm [62]
Q 121 kJ/mol [5]
m0 1.5 × 10–6 s·m2/kg [5]

The identification of material parameters for the inelastic deformation model (Table 1)
was carried out on the basis of the experimental data [78]. This table includes the results
of experimental studies of the stress–strain state of cylindrical samples measuring 8 mm
in diameter and 12 mm in height. The uniaxial compression tests were carried out at a
temperature of 775 K and at a strain rate of 2× 10–3 s–1 for a polycrystal of commercial pure
copper, which was pre-treated by annealing at 973 K for two hours [78]. The values of the
anisotropic elastic moduli of the grain пijkl [76] and the shear modulus of the polycrystal
G [77] correspond to the absolute temperature 775 K adopted for the numerical experiment.
In order to perform specific calculations by applying an advanced statistical model, the
grain structure of a polycrystal should be given in the reference configuration (the procedure
for grain structure formation is described in [79]). Based on the available experimental
data, statistic laws were derived for the distribution of normalized grain size deq and
sphericity ψg of the copper polycrystal grains. The average polycrystalline copper grain
size d0 was 78 µm [78]. To approximate the grain size distribution, the lognormal law was
used [80,81]. According to the data collected from the microsectional analysis [78], there
is a scattering in grain sizes, which is characteristic of annealed materials. The following
parameters are needed to specify a log-normal distribution: µ = 3.86, σ = 1 such that the
mathematical expectation exp(µ + σ2/2) be equal to the average grain size d0 = 78 µm.
If the representative experimental data on grain size distribution exist, then there is no
difficulty in solving the optimization problem of determining the statistical distribution
law and identifying its parameters, as was done in [82] for subgrain size distributions.
We suppose that in the initial state, the copper sample after annealing has predominantly
equiaxed grains with an average sphericity

〈
ψg

〉
= 0.90; the data on sphericity are given

in [83]. Figure 6 presents the grain size distribution deq and grain sphericity ψg histograms
obtained based on existing experimental data [78,83].

The applied statistical two-level mathematical model is based on Voigt’s hypothe-
sis. The kinematic influence is prescribed and the velocity gradient is known. Plastic
deformations corresponding to uniaxial deformation are considered [6]:

∇̂V =
.
γk01k01 −

.
γ

2
k02k02 −

.
γ

2
k03k03, (27)
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where k0i = ki
0 is the orthonormal basis of the laboratory coordinate system;

.
γ is the

prescribed deformation velocity.
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Further, we present the results of the computational experiments carried out at de-
formation velocity

.
γ = 10–3 s–1 and temperature θ = 775 K. The loading diagram (with

and without the recrystallization process) is given in Figure 7a, and the corresponding
deformation textures formed after the end of plastic deformation are shown in Figure 7b.
We emphasize a significant contribution of recrystallization to the deformation texture
“blurring”, which is attributed to the appearance of new DRX grains with an orientation
consistent with the parent grain—numerous points for DRX grains are seen on the pole
figure near the point reflecting the orientation of the parent grain.
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Figure 8a illustrates the evolution of the average grain size
〈
rg
〉

during plastic defor-
mation. Figure 8b shows a change in the average value of the facet area

〈
sg
〉
. Figure 8c

demonstrates the evolution of the ratio of the average grain volume to the facet area
φg =

〈
sg
〉
/
〈
vg
〉
. Notice that the recrystallization process refines the initially coarse poly-

crystal grains. At the end of deformation, the average grain size reaches a value of 14 µm.
The fraction of high-angle boundaries also increases due to the appearance of many recrys-
tallized grains (Figure 8c). Initially, the representative volume of the polycrystal contains
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300 grains, and at the end of deformation it consists of 2017 grains. In the reference config-
uration, the edge of the representative volume in the form of a cube is about 421 µm. At
the end of deformation, the size of the edge along which tension occurred is 767 µm, and
the remaining two edges are 312 µm in size. The violations of the curves correspond to the
instants of time at which the polyhedral grain structure rearranges in Neper.
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correspond to the instant of deformation εm  = 0.25 at which the stress tensor σm  
reaches its maximum (Figure 9a) and to the end of deformation ε f  = 0.53 (Figure 9b). It 
is interesting that at the instant of deformation εm , both large initial grains and new 
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Figure 9 presents the polyhedral structures formed in Neper. These structures cor-
respond to the instant of deformation εm = 0.25 at which the stress tensor σm reaches its
maximum (Figure 9a) and to the end of deformation ε f = 0.53 (Figure 9b). It is interesting
that at the instant of deformation εm, both large initial grains and new grains with a small
size appear. At the instant of deformation ε f , practically no large grains are kept.
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This is confirmed by the grain size distribution rg (Figure 10a,b) and sphericity ψg
(Figure 10c,d) histograms, plotted for two different instants of deformation εm, ε f . For
εm, the distribution of grain sizes rg and sphericity ψg is a bimodal distribution with two
characteristic peaks that reflect the initial stage of DRX implementation. At the end of
deformation ε f , the structure becomes fine-grained (Figure 10b) and equiaxed (Figure 10d)
with an average grain size of about 14 µm. The grain size distribution (Figure 10b) is
characterized by the presence of a fraction (about 9%) of non-recrystallized grains with
sizes that range from 30 µm to 150 µm. The sizes of non-recrystallized grains significantly
exceed those of recrystallized grains, as evidenced by the data from Figure 10a,b. The level
of energy stored on defects in non-recrystallized grains is much higher as compared to
recrystallized grains. Therefore, the current critical stresses caused by the interaction of
mobile dislocations with forest dislocations (relation (8)) exhibit high values. On the other
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hand, in large non-recrystallized grains, the contribution of the grain size to strengthening
due to the interaction of mobile dislocations with grain boundaries is smaller (relation (9)).
During the recrystallization process, large initial grains are gradually replaced by less
defective recrystallized grains of a smaller size, which causes the current critical stress
values to reduce. Due to the competing processes of hardening and softening, the resistance
to deformation becomes stationary. The original non-recrystallized grain boundaries are
non-equilibrium (new recrystallized grains are formed on these boundaries), which pro-
motes the subsequent absorption of non-recrystallized grains. Under further deformation
and at increasing stored energy level in recrystallized grains, these grains may become
absorbed because of the appearance of less defective grains, which is an indication of the
cyclic nature of the process of intermittent dynamic recrystallization. Thus, the amount of
recrystallized material should be determined for each cycle separately.
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5. Discussion and Conclusions

The construction of models that are suitable for designing functional materials is a
complex task that requires a careful study of many aspects of their behavior. The polycrys-
talline materials used in industry for the manufacture of real products are alloys. As a rule,
these materials must meet the yield stress and strength requirements, meaning they are
difficult to deform and their processing takes place at elevated deformation temperatures.
During material processing, processes accompanying this deformation occur, among which
the most significant with regard to the material structure evolution is recrystallization.
This is why the description of recrystallization should be included in the models under
study. In contrast to pure metals, recrystallization that develops in alloys depends on the
behavior of impurity atoms and particles of secondary phases, which have a retarding
effect on the motion of recrystallized grain boundaries. Moreover, the particles of sec-
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ondary phases are also the sites for the predominant formation of recrystallization nuclei.
The above-mentioned structural metals exhibit the ability to undergo solid-state phase
transformations, meaning they have two or more phases in original billets, or experience
solid-state phase transformations during thermomechanical processing. The occurrence
of different phases and the increasing complexity of the model parameter identification
process raise the non-trivial question of modeling the interaction between them. Hence, it
follows that the development of a universal model capable of describing a variety of pro-
cesses that occur during the thermomechanical processing of real materials is a challenging
but feasible task. By analyzing the obtained results, we can conclude that the multilevel
modeling approach based on the introduction of internal variables offers the possibility
of developing additional blocks of a mathematical constitutive model needed to describe
different physical mechanisms observed during thermo-mechanical treatment and for their
further integration into in the full model to describe metal processing. The statistical model
proposed in this work was primarily used to study the grain structure evolution in a copper
polycrystal during its recrystallization and the coupled response of the stress–strain state of
a half-crystal representative volume. Furthermore, this model has potential for determining
thermomechanical factors that govern the formation of the necessary (given by statistical
laws) grain structure, which ensures the required material properties.

We modified the advanced statistical model of inelastic deformation with the intent
of introducing a process of dynamic recrystallization. For this purpose, we developed a
method for describing the grain structure evolution in the framework of a geometrical
approach based on Laguerre polyhedra. The obtained data were analyzed and transferred
to the modified statistical model. The developed model has a number of advantages
compared to existing models, namely it has higher computational efficiency and is able
to take into account the physical interactions between neighboring grains. The results
of the computational experiments obtained with this model are in good agreement with
the experimental data. The model makes it possible to evaluate the effects associated
with the refinement of the grain structure and its transformation to an equiaxed shape
and to analyze the tendency of the average grain size to decrease. We also proposed
a method to introduce a description of new recrystallized grains into the model and a
method to establish a correspondence between the geometric image of a real grain structure,
described by a polyhedral, and the grain structure of a statistical model, determined by
a set of volumes, normals, and grain facet areas, indicating the neighboring grains in the
recrystallization process.
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