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Abstract: The symplectic solution system of decagonal quasicrystal elastic mechanics is considered.
Hamiltonian dual equations together with the boundary conditions are investigated by utilizing
the principle of minimum potential energy. Then the symplectic eigenvectors are given on the basis
of the variable separation method. As application, analytical solution for decagonal quasicrystal
cantilever beam with concentrated load is discussed. The analytical expressions of the stresses and
displacements of the phonon field and phason field are obtained. The present method allows for the
exploration of new analytic solutions of quasicrystal elasticity that are difficult to obtain by other
analytic methods

Keywords: quasicrystal; Hamiltonian system; eigenvector; analytical solution

1. Introduction

In 1984, Shechtman et al. initially discovered quasicrystals (QCs) [1]. QCs are non-
periodic but ordered structural forms between crystals and glass. The elastic behavior
of QCs varies from that of ordinary crystals [2]. Experimental and theoretical studies on
mechanical and physical properties of QCs have been encouraged [3]. The dislocation of a
straight and moving screw in one-dimensional hexagonal QCs was studied by Fan et al. [4].
The fracture mechanics problem of cubic QCs with a crack or an elliptical hole was solved
by Gao et al. [5]. The Stroh formalism has been applied successfully to the study of two-
dimensional deformation of quasicrystal materials [6,7]. One dimensional hexagonal QCs
with planar cracks are mentioned in reference [8]. The Stroh-like formalism for the bending
theory of decagonal quasicrystal plates was developed by Li et al. [9]. Fundamental quanti-
ties for the generalized elasticity and dislocation theory of QCs were provided by Lazar and
Agiasofitou [10]. Ding et al. discussed two kinds of contact problems in three-dimensional
icosahedral QCs by a complex variable function method [11]. Lazar and Agiasofitou de-
rived material balance laws for quasicrystalline materials with dislocations [12]. The elastic
field near the tip of an anticrack in a homogeneous decagonal quasicrystalline material
was investigated by Wang et al. [13]. Guo et al. studied a mathematical model for nonlo-
cal vibration and buckling of embedded two-dimensional decagonal quasicrystal layered
nanoplates [14].

The Hamiltonian system exists extensively and is universally applicable. The symplec-
tic approach is the variable separation method which is actually based on the Hamiltonian
system [15]. This method does not assume the trial function in advance, but introduces the
problem into the Hamiltonian system, and uses the variable separation method to solve the
differential eigenvalue problem. Analytical solutions can then be obtained by the expan-
sion of eigenfunctions. Many researchers use the symplectic method to study problems
in mechanics and engineering science since it is helpful for finding analytical solutions of
some basic elasticity problems. The symplectic approach was first used in computational
solid mechanics by Feng [16]. Zhong introduced the symplectic approach in analytical
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solid mechanics [17]. In 2002, Zhong’s group originated the symplectic elasticity approach
and developed it to form a systematic methodology [18]. The symplectic approach was
then used successfully to research elasticity [19,20], piezoelectricity [21,22], functionally
graded effects [23] and differential equations [24–26], etc.

However, the symplectic approach for quasicrystal elasticity has not been developed
in a systematic way due to the complexity of QCs’ structure. In the present study, the basic
equations of decagonal quasicrystals are first transferred to the Hamiltonian dual equations
with the help of the variation principle. By introducing dual variables, the dual system
is established directly, and a complete eigen-solution space is obtained. The solutions of
the problem can be reduced to the zero-eigenvectors of the corresponding Hamiltonian
operator matrix and all their Jordan form eigenvectors. Then the analytical solution for the
problem is given by linear combination of these eigenvectors.

2. Theoretical Formulation
2.1. Basic Equations

Suppose that along the z direction, the decagonal quasicrystal is periodic, and quasi-
periodic in the x-y plane. Based on the quasicrystal elasticity theory [2], the strain-
displacement relations are

εij =
1
2
(

∂ui
∂xj

+
∂uj

∂xi
), wij =

∂wi
∂xj

. (1)

If ignoring the body forces, the equilibrium equations can be written as

∂σxx
∂x +

∂σxy
∂y = 0, ∂σyx

∂x +
∂σyy
∂y = 0,

∂Hxx
∂x +

∂Hxy
∂y = 0, ∂Hyx

∂x +
∂Hyy

∂y = 0.
(2)

and the constitutive equations are as follows

σxx = C11εxx + C12εyy + R(wxx + wyy),

σyy = C12εxx + C11εyy − R(wxx + wyy),

σxy = σyx = 2C66εxy + R(wyx − wxy),

Hxx = K1wxx + K2wyy + R(εxx − εyy),

Hyy = K1wyy + K2wxx + R(εxx − εyy),

Hxy = K1wxy − K2wyx − 2Rεxy,

Hyx = K1wyx − K2wxy + 2Rεxy,

(3)

in which C66 = (C11 − C12)/2. Here, σij(σij = σji) , ui and εij(εij = ε ji), respectively, repre-
sent the stress, displacement and strain of the phonon field. Hij , wi and wij, respectively,
represent the stress, displacement and strain of the phason field. Cij and Ki are the elastic
constants of the phonon field and the phason field, respectively. R represents the coupling
elastic constant of the phonon-phason field.

2.2. Variational Principle and Hamiltonian Dual Equation

Consider a decagonal quasicrystal rectangular domain with length l and width 2h
in the x-y coordinates (0 ≤ x ≤ l and −h ≤ y ≤ h). We use a dot to represent the
differentiation with respect to x, i.e., (.) = ∂/∂x.
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The strain energy density U(ux, uy, wx, wy,
.
ux,

.
uy,

.
wx,

.
wy) can be expressed as

U
(
ux, uy, wx, wy,

.
ux,

.
uy,

.
wx,

.
wy
)

=
1
2
(
σxxεxx + σyyεyy + 2σxyεxy + Hxxwxx + Hyywyy + Hxywxy + Hyxwyx

)
=

1
2

[
C11

(
.
u2

x +

(
∂uy

∂y

)2
)
+ C66

(
∂ux

∂y
+

.
uy

)2
+ K1

(
.

w2
x +

(
∂wx

∂y

)2
+

.
w2

y +

(
∂wy

∂y

)2
)]

+C12
.
ux

∂uy

∂y
+ R

[(
.
ux −

∂uy

∂y

)(
.

wx +
∂wy

∂y

)
+

(
∂ux

∂y
+

.
uy

)(
.

wy −
∂wx

∂y

)]
+K2

(
.

wx
∂wy

∂y
− ∂wx

∂y
.

wy

)
.

(4)

The principle of minimum potential energy of the problem can be represented as

δΠ = δ
∫ l

0

∫ h

−h
L(ux, uy, wx, wy,

.
ux,

.
uy,

.
wx,

.
wy)dydx = 0 (5)

where L(ux, uy, wx, wy,
.
ux,

.
uy,

.
wx,

.
wy) is the Lagrange density function. If the body forces

are neglected, we have

L(ux, uy, wx, wy,
.
ux,

.
uy,

.
wx,

.
wy) = U(ux, uy, wx, wy,

.
ux,

.
uy,

.
wx,

.
wy) (6)

From the partial integration of Equation (5) in y direction, we can obtain

[
C12εxx + C11εyy − R(wxx + wyy)

]
y=±h = σyy

∣∣
y=±h,[

2C66εxy + R(wyx − wxy)
]

y=±h = σxy
∣∣
y=±h,[

K1wyy + K2wxx + R(εxx − εyy)
]

y=±h = Hyy
∣∣
y=±h,[

K1wxy − K2wyx − 2Rεxy
]

y=±h = Hxy
∣∣
y=±h.

(7)

Thus, the homogeneous boundary conditions are

σyy = 0, σxy = 0, Hyy = 0, Hxy = 0, at y = ±h. (8)

Let the displacement vector be

q = (ux, uy, wx, wy)
T (9)

where the superscript T represents the transpose. Then the Lagrange density function can
be written as L(q,

.
q), from which the dual variable p required by Hamiltonian form is

derived as

p =
∂L
∂

.
q
=



C11
.
ux + C12

∂uy
∂y + R(

.
wx +

∂wy
∂y )

C66(
∂ux
∂y +

.
uy) + R(

.
wy − ∂wx

∂y )

K1
.

wx + K2
∂wy
∂y + R(

.
ux −

∂uy
∂y )

K1
.

wy − K2
∂wx
∂y + R( ∂ux

∂y +
.
uy)


= (σxx, σyx, Hxx, Hyx)

T (10)

By Equations (2), (3) and (10), the Hamiltonian dual equation of the problem can be
obtained as

.
v = Hv (11)
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where H =

[
A B
C −AT

]
,A =


0 a1

∂
∂y 0 a2

∂
∂y

− ∂
∂y 0 a3

∂
∂y 0

0 a4
∂

∂y 0 a5
∂

∂y
0 0 a6

∂
∂y 0

,B =


b1 0 b2 0
0 b3 0 b4
b2 0 b5 0
0 b4 0 b6

,

C =


0 0 0 0
0 a7

∂2

∂y2 0 a8
∂2

∂y2

0 0 a9
∂2

∂y2 0

0 a8
∂2

∂y2 0 a10
∂2

∂y2

, and v = (ux, uy, wx, wy, σxx, σyx, Hxx, Hyx)
T. AT is the

adjoint operator matrix of A. ai(i = 1, 2, · · · , 10) and bi(i = 1, 2, · · · , 6) in the matrices
are the elastic constants (see Appendix A). H satisfies JHJ = HT is a Hamiltonian op-

erator matrix [18], where J =

[
0 I4

−I4 0

]
in which I4 is the 4 × 4 unit matrix. From

Equations (3) and (11), Equation (8) can be written as

σyy = −a7
∂uy
∂y − a8

∂wy
∂y − a1σxx − a4Hxx = 0 ,

σxy = 0 ,

Hyy = −a8
∂uy
∂y − a10

∂wy
∂y − a2σxx − a5Hxx = 0 ,

Hxy = −a9
∂wx
∂y − a3σyx − a6Hyx = 0 .

(12)

at y = ±h.

2.3. Symplectic Analysis and Eigenvectors

Let
v(x, y) = X(x)Y(y) (13)

Substituting Equation (13) into Equation (11), we obtain

.
X(x) = µX(x) (14)

and the eigenvalue equation
HY(y) = µY(y) (15)

where µ and Y(y) are the eigenvalue and the corresponding eigenvector, respectively. Zero
eigenvalue of the problem exists because the fact that boundaries at both sides (y = ±h) are
free. There are Jordan form eigen-solutions of different orders for the eigen-solutions of zero
eigenvalue. The solution to the problem can be expressed by Jordan form eigen-solutions.
Now the problem is to solve the zero-eigenvalue equation.

The eigenvalue equation is
HY(y) = 0 (16)

when µ = 0. Solving Equation (16) yields the eigen-solutions of zero eigenvalue

Y(0)
1 = (1, 0, 0, 0, 0, 0, 0, 0)T, (17)

Y(0)
2 = (0, 1, 0, 0, 0, 0, 0, 0)T, (18)

Y(0)
3 = (0, 0, 1, 0, 0, 0, 0, 0)T, (19)

Y(0)
4 = (0, 0, 0, 1, 0, 0, 0, 0)T. (20)

These eigenvectors are the solutions of the original Equation (11) with boundary
conditions (8). Let

v1 = Y(0)
1 , v2 = Y(0)

2 , v3 = Y(0)
3 , v4 = Y(0)

4 . (21)
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Next, solve the Jordan form eigen-solutions of zero eigenvalue.

2.3.1. The First-Order Jordan Form Eigen-Solutions

The governing equations for finding the first-order eigen-solutions of Jordan form are

HY(1)
i = Y(0)

i (i = 1, 2, 3, 4) (22)

The solutions are

Y(1)
1 = (0, a1y, 0,−a4y,−a7, 0, a8, 0)T, (23)

Y(1)
2 = (−y, 0, 0, 0, 0, 0, 0, 0)T, (24)

Y(1)
3 = (0,−a2y, 0, a5y, a8, 0,−a10, 0)T, (25)

Y(1)
4 = (−a3y, 0, a6y, 0, 0, 0, 0,−a9)

T. (26)

These eigen-solutions are not directly the solutions of the original problem. The
first-order Jordan form solutions of the original problem are

v5 = Y(1)
1 + xY(0)

1 , (27)

v6 = Y(1)
2 + xY(0)

2 , (28)

v7 = Y(1)
3 + xY(0)

3 , (29)

v8 = Y(1)
4 + xY(0)

4 . (30)

2.3.2. The SecondOrder Jordan Form Eigen-Solutions

Consider equations
HY(2)

i = Y(1)
i (i = 1, 2, 3, 4) (31)

When i = 2, the solution of Equation (31) is

Y(2)
2 =

(
0,−1

2
a1y2, 0,

1
2

a4y2, a7y, 0,−a8y, 0
)T

(32)

When i = 1,3,4, no solutions of Equation (31) exist due to the fact that solutions
cannot satisfy the boundary conditions (8) at the same time. Hence, these chain of Jordan
form eigen-solutions are terminated. The 2nd-order Jordan form solution of the original
problem is

v9 = Y(2)
2 + xY(1)

2 +
1
2

x2Y(0)
2 (33)

2.3.3. The Third-Order Jordan Form Eigen-Solutions

Solving equation
HY(3)

2 = Y(2)
2 (34)

gives the eigen-solution

Y(3)
2 =

(
a11h2y + a12y3, 0, a13h2y +

1
2

a4y3, 0, 0,
1
2

a7(h2 − y2), 0, a14h2 + a15y2
)T

(35)

in which the constants ai(i = 11, 12, · · · , 15) can be found in Appendix A. The 3rd-order
Jordan form solution of the original problem can be composed in the same way

v10 = Y(3)
2 + xY(2)

2 +
1
2

x2Y(1)
2 +

1
6

x3Y(0)
2 (36)
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It can be proven that there are no other high-order Jordan form solutions.
Up to here, the expressions of the general solution of Equation (11) can be written as

v =
10

∑
i=1

mivi

=



m1 + m5x − (m6 + a3m8)y − m9xy + m10

(
a11h2y − 1

2 x2y + a12y3
)

m2 + m6x + (a1m5 − a2m7)y + m9

(
1
2 x2 − a1

2 y2
)
+ m10

(
1
6 x3 − a1

2 xy2
)

m3 + m7x + a6m8y + m10
(
a13h2y + a4

2 y3)
m4 + m8x − (a4m5 − a5m7)y + a4

2 m9y2 + a4
2 m10xy2

−a7m5 + a8m7 + a7m9y + a7m10xy
1
2 a7m10

(
h2 − y2)

a8m5 − a10m7 − a8m9y − a8m10xy

−a9m8 + m10
(
a14h2 + a15y2)



(37)

The constants mi(i = 1, 2, · · · , 10) in Equation (37) can be determined according to
the specific problem and boundary conditions. Then the stresses and displacements of the
problem can be obtained.

3. Bending of Decagonal Quasicrystal Cantilever Beam with Concentrated Load

As an application of the symplectic approach for quasicrystal elasticity, an analytical
solution for bending of a decagonal quasicrystal cantilever beam is discussed. Consider a
decagonal quasicrystal cantilever beam with length l, width 2h and thickness b, which is
under concentrated load P at the free end as pictured in Figure 1.

Figure 1. Decagonal quasicrystal cantilever beam.

The boundary conditions can be expressed as

σyy = σyx = Hyy = Hyx = 0, for y = ±h,

σxx = Hxx = 0, b
∫ h
−h σyxdy = −P, for x = 0,

(38)

ux = uy = wx = wy = 0,
∂uy

∂x
= 0, for y = 0 and x = l.

Substituting Equation (37) into the displacement and stress boundary conditions in
Equation (38) respectively, we have

m2 = − l3P
2a7bh3 , m4 = − 3b4lP

8bh , m6 = 3l2P
4a7bh3 ,

m1 = m3 = 0 .
(39)

and
m8 = 3b4P

8bh , m10 = − 3P
2a7bh3 ,

m5 = m7 = m9 = 0 .
(40)
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Thus, the phonon and phason stresses are obtained as

σxx = − 3P
2bh3 xy , σyy = 0 , σxy = σyx = 3P

4bh3 (y2 − h2) ,

Hxx = 3a8P
2a7bh3 xy , Hyy = 0 ,

Hxy = 3a3P
8bh3 (y2 − h2) , Hyx = − 3a15P

2a7bh3 (y2 − h2) .

(41)

The displacements are obtained as

ux = 3P
4a7bh3 x2y − 3a12P

2a7bh3 y3 − 3P
4a7bh3 l2y − 3b3P

4bh y ,

uy = 3a1P
4a7bh3 xy2 − P

4a7bh3 x3 + 3P
4a7bh3 l2x − 2P

4a7bh3 l3 ,

wx = − 3b4P
8bh3 y3 + 9b4P

8bh y ,

wy = − 3b4P
8bh3 xy2 + 3b4P

8bh x − 3b4P
8bh l .

(42)

Equation (41) shows that the expressions of the phonon stresses are exactly same as
the stresses of the well-known classical elasticity theory [27].

The coupling constant R has great influence on the mechanical behaviors of QCs,
and it has not been measured yet. Next, we consider the influence of the coupling elastic
constant of the phonon-phason field on the displacements of phonon field and phason field.
The phonon and phason elastic constants of the two-dimensional decagonal quasicrystals
are C11 = 234.33GPa, C12 = 57.41GPa, K1 = 122GPa and K2 = 24GPa [28]. Take other
parameters as P = 200KN, l = 1m, h = 0.08m and b = 0.1m.

ux = ux/
(
10−3m

)
,uy = uy/

(
10−3m

)
,wx = wx/

(
10−4m

)
and wy = wy/

(
10−4m

)
are normalized displacements of phonon field and phason field, respectively. Figures 2
and 3 show that the displacements of phonon field and phason field both increase with
the increase of the coupling constant R. The phonon field displacement is one order of
magnitude larger than the phase field displacement.

Figure 2. Normalized displacements of phonon field versus y at x = 0.2.
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Figure 3. Normalized displacements of phason field versus y at x = 0.2.

4. Conclusions

The unified framework of the symplectic approach for quasicrystal elasticity prob-
lems is established. The problem is reduced to the zero eigenvalues with their Jordan
forms, which are important in applications. Through working out an eigen-problem of the
symplectic dual system, the solution of the Hamiltonian dual equation is obtained. The
analytical solutions are obtained in a rigorous step-by-step manner, which is fundamentally
different from the classical semi-inverse method with pre-determined trial functions. The
stress and displacement can be calculated together. The symplectic approach is effective
and provides a new channel for the research of quasicrystal elasticity theory.
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Appendix A

a1 = −C12K1+R2

C11K1−R2 , a2 = R(K2−K1)
C11K1−R2 , a3 = R(K1−K2)

C66K1−R2 ,

a4 = R(C11+C12)
C11K1−R2 , a5 = −C11K2−R2

C11K1−R2 , a6 = C66K2−R2

C66K1−R2 ,

a7 = 2a4
b4

, a8 = − a3a4
b4

, a9 = a3(1+a6)
b4

, a10 = a2(a5−1)
b2

,

a11 = − (C11+C12)(2C66K2
1−(K1+K2)R2)

2(C11K1−R2)(C66K1−R2)
, a12 = 2C11K1+C12K1−R2

6(C11K1−R2)
,

a13 = (C11+C12)R(C66(−3K1+K2)+2R2)
2(C11K1−R2)(C66K1−R2)

,

a14 = − (C11+C12)(K1−K2)R(2C66K1−C66K2−R2)
2(C11K1−R2)(C66K1−R2)

,

a15 = 3(C11+C12)(K1−K2)R
2(C11K1−R2)

,

b1 = K1
C11K1−R2 , b2 = − R

C11K1−R2 , b3 = K1
C66K1−R2 ,

b4 = − R
C66K1−R2 , b5 = C11

C11K1−R2 , b6 = C66
C66K1−R2 .
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