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Abstract: As an emerging research field, two-dimensional (2D) metals have been the subject of
increasing research efforts in recent years due to their potential applications. However, unlike typical
2D layered materials, such as graphene, which can be exfoliated from their bulk parent compounds,
it is hardly possible to produce 2D metals through exfoliation techniques due to the absence of
Van der Waals gaps. Indeed, the lack of effective material preparation methods severely limits
the development of this research field. Here, we report a PDMS-assisted hot-pressing method in
glovebox to obtain ultraflat nanometer-thick 2D metals/metal oxide amorphous films of various
low-melting-point metals and alloys, e.g., gallium (Ga), indium (In), tin (Sn), and Ga0.87Ag0.13 alloy.
The valence states extracted from X-ray photoelectron spectroscopy (XPS) indicate that the ratios
of oxidation to metal in our 2D films vary among metals. The temperature-dependent electronic
measurements show that the transport behavior of 2D metal/metal oxide films conform with the
2D Mott’s variable range hopping (VRH) model. Our experiments provide a feasible and effective
approach to obtain various 2D metals.

Keywords: 2D metals; low-melting-point; hot-pressing; oxidation; 2D Mott’s VRH model

1. Introduction

Studies on 2D materials have advanced fundamental condensed matter physics and
semiconductor engineering since the discovery of graphene [1]. Benefiting from the unique
structural advantages of 2D layered materials, exotic physical phenomena have been stud-
ied in the extreme 2D limit [2]. In the aspect of electronic engineering applications, 2D
metals/metal oxides have attracted great attention in recent years [3–6], showing great
potential applications in catalysis [7], optoelectronics [8], sensors [9], and flexible electron-
ics [10]. Considerable progress has been achieved in research on 2D metals and metal oxides.
For example, Fang Yang et al. discovered topological edge states in single bismuth (Bi:111)
bilayer [11]. Natalie Briggs et al. observed superconductivity in the graphene/Ga/SiC
system [12]. Hui-Min Zhang et al. detected a superconducting phase in a bilayer hexagonal
Ga/GaN system [13]. Nonetheless, the synthesis of 2D metals or metal oxides remains
challenging. Usually, most 2D layered materials can be exfoliated from their bulk parent
compounds thanks to the Van der Waals gap between layers, e.g., graphite, transition metal
dichalcogenides, and hexagonal boron nitride. Unfortunately, for metals, the lack of Van der
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Waals gaps makes it hardly possible to obtain 2D metal films by mechanical exfoliation [14].
Conventional film synthesis methods, such as molecular beam epitaxy (MBE) [11,15,16],
hydro/solvothermal method [17], and atomic layer deposition (ALD) [18] have been used
to prepare high-quality pure metal nanosheets but are usually limited by lavish conditions,
special substrate requirements, or complex procedures. Recently, efforts have been made to
optimize the 2D metal preparation strategy. Various techniques, such as hot-pressing [19],
squeeze transfer [20,21], templated printing [22], solid–melt exfoliation [23], and gas injec-
tion method [24], have been developed. However, the obtained films usually suffer from
considerable oxidation, leading to unexpected large resistance and inhibiting the access to
their intrinsic properties and realization of further applications [20–22].

Here, we report the synthesis of large-area homogeneous 2D metal films (Ga, In, Sn,
and Ga0.87Ag0.13) on SiO2/Si substrates via a modified PDMS-assisted hot-pressing method
in glovebox. SiO2/Si substrates were pretreated by O2 plasma to increase the adhesion
force between liquid metals and substrates. The obtained metal films with their thicknesses
varying from 1 to 6 nm are ultraflat with a surface roughness of 0.2~0.6 nm. Their chemical
states and crystal structures were characterized by XPS and scanning transmission electron
microscopy (STEM). The temperature-dependent electronic transport behaviors of as-
obtained Ga and In films can be fitted with Mott’s 2D VRH model, attributing to the
amorphous nature of films.

2. Results and Discussion

The fabrication process of 2D metal films is depicted in Figure 1a. First, metal particles
were placed on O2 plasma-pretreated substrates in glovebox and then heated above their
melting temperatures to obtain liquid metal droplets. Next, these liquid metal droplets
on SiO2/Si substrate were pressed by PDMS/glass in a homemade hot-pressing machine.
Finally, 2D metal films were formed on SiO2(300 nm)/Si substrate. See Section 3 for
more details.

Typically, large-area homogeneous metal films can be easily formed in air by this
hot-pressing method (Figure 1b) since the liquid metal drops have low surface energy in air
due to the surface oxidation. Such freshly made metal films are not stable in air and easily
oxidized. In order to minimize oxidation, we then performed hot-pressing processes in
glovebox. However, the surface energy of liquid metal drops is extremely high in vacuum
or inert environments, leading to a poor adhesion force between metals and substrates. As
a result, only discrete metal particles can be obtained on the SiO2/Si substrate after hot-
pressing in glovebox (Figure 1c). Here we used O2 plasma treatments of substrate surface
to improve the adhesion between liquid metal drops and SiO2/Si substrates. Usually, O2
plasma treatment of substrates is used for dry etching and surface modification, especially
for turning hydrophobic surfaces into hydrophilic ones [25]. It is believed that O2 plasma
treatment can increase the density of Si–O and Si–OH bonds on the SiO2 surface, thereby
decreasing the surface energy of metal drops on the substrate. Contact angles between
liquid Bi drops and SiO2/Si substrate with or without O2 plasma treatments show obvious
differences (Figure S1). Figure 1d presents the as-obtained large-area continuous and
homogeneous In film made in glovebox on O2 plasma-pretreated SiO2/Si substrates.

The chemical states of In films were investigated by XPS (Figure 1e). In control samples
made in air, two peaks centered at 444.5 and 452.0 eV are seen, confirming the complete
oxidation of the In films. In contrast, samples made in glovebox show the In 3d5/2 peaks at a
binding energy of 443.3, 444.3, and 445.3 eV, corresponding to metal In, In2O3, and indium
hydroxyl species, respectively [26–28]. The oxidation is possibly due to the remaining
oxygen on the substrate. The indium hydroxyl species are attributed to hydroxyl groups
absorbed on the substrate surface. As for Ga films, the peaks centered at 18.5 and 20.0 eV
corresponding to metal Ga and Ga3+(Ga2O3), respectively (Figure S2a). The comparison
between Ga films made in air and in glovebox suggests that Ga films made in glovebox
are less oxidized than those made in air. In addition to Ga and In films, more metal films
were synthesized by this hot-pressing method, as illustrated in Figures S3 and S4. These
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films are also continuous and homogeneous with a scale of at least tens of microns and
partially oxidized as indicated by the XPS results (Figure S2). The stability of In films
in the air and glovebox are examined by XPS. The XPS peaks corresponding to metal In
(Figure 1f) showed continuous decreased intensity during 12 days of storage in air, while
the same peak showed nearly no change after 12 days of storage in glovebox (Figure 1g).
This demonstrates that In film is only stable in oxygen-free environment such as glovebox.
The same is true of Ga film (Figure S5a,e).
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Figure 1. (a) Process diagram of fabricating 2D metal/metal oxide films. Optical images of In
films made (b) in air, (c) in glovebox on SiO2 (300 nm)/Si substrate, and (d) in glovebox on O2

plasma-pretreated SiO2/Si substrate. Inset of (d) shows scanning electron microscope (SEM) image
of corresponding sample. (e) XPS spectra of In 3d in In films made in air (top panel) and in glovebox
(bottom panel). (f,g) The variation of XPS spectra of In 3d from In films made in glovebox and then
stored in air (f) and in glovebox (g) for 12 days.
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In order to further characterize the thickness and roughness of as-obtained metal
films, we performed in situ Atomic force microscopy (AFM) measurements in glovebox.
Figure 2a,b show a typical ultrathin In film with a thickness of ~3.0 nm and a surface
roughness of ~0.46 nm. After checking many different samples, the thinnest metals we
could obtain were plotted in Figures 2c and S6. Depending on the different metals, the
thinnest thickness varies from 1.1 to 5.0 nm, and the roughness falls between 0.2 nm (Sn
film) and 0.6 nm (Ga0.87Ag0.13 film), comparable with that of the substrate (~0.27 nm).
The comparatively large roughness of Ga and Ga0.87Ag0.13 films is attributed to the little
Ga and Ag particles dispersed in those films (Figure S6a,c), due to the agglomeration of
residual liquid metals. This situation of residual metal droplets also occurred in solid–
melt exfoliation [23]. The PDMS-assisted hot-pressing method can effectively increase
the flatness of films. The crystallinity of 3.1 nm thick Ga film was then examined by
electron diffraction and high-resolution STEM image in Figure 2d, and the ring halo pattern
in the diffraction image verified the amorphous nature of the Ga film. Raman spectrum
(Figure S7) of all films showed no additional Raman peak compared to the Raman spectrum
of the substrate, suggesting the lack of crystalline structure in the films. X-ray diffraction
(XRD) (Figure S8) spectra of all films have no sharp and strong peaks and also confirmed
the amorphous structure of the films.
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(d) High-resolution STEM image of Ga film, inset is the selected area electron diffraction (SAED).

We further fabricated three-terminal devices based on as-obtained In and Ga films
to investigate their transport properties. Due to their instability in air, the as-obtained
films would be contaminated during the commonly used device fabrication process. In
particular, unencapsulated devices based on Ga film show extremely large resistance of
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~TΩ, demonstrating an insulating behavior similar to Ga2O3 [22]. Therefore, a method
of transfer via contact in glovebox was performed before lithography procedures in air
to avoid contamination or additional oxidization [29]. Figure 3a illustrates the device
structure in which the metal film is encapsulated by h-BN and contacted with gold (see
detailed fabrication process in Section 3 and Figure S9). Four-probe electronic transport
measurements were performed at various temperatures. I–V curves of a typical 5 nm thick
In film device at temperatures varying from 6 to 280 K are shown in Figure 3c, exhibiting
linear characteristics with sheet resistances of ~10 kΩ at room temperature. Temperature-
dependent R� behavior (Figure 3d) extracted from Figure 3c is in agreement with Mott’s
law ρ = ρ0 exp[(T0/T)1/3] for 2D VRH mechanisms [30]. Similar R�–T behavior was
also observed in 4 nm thick Ga film devices (Figure S10). The devices exhibit resistances
larger than 10 kΩ, falling into a strongly disordered regime [31]. This electronic transport
behavior is believed to originate from the hopping mechanism caused by defects and
disordered atom arrangements in the amorphous metal films. Mott’s 2D VRH has been
observed in various systems with different origins of disorders, such as intergrain hopping
and localized gap states [32–34]. In MoS2 nanoflakes, the R–T behavior changes from
thermally activated transport at high temperatures to the Mott’s 2D VRH transport at low
temperatures [35]. Our films, on the other hand, exhibit Mott’s 2D VRH transport across
the measured temperature, indicating the dominance of disorder in this system. Further
measurements are needed for the determination of the localization length, the hopping
distance, and the hopping energy. Our work, for the first time, observed the Mott’s 2D
VRH behavior among amorphous metal films with nanometer thickness.
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Figure 3. Electronic properties of three-terminal devices based on In film. (a) Schematic of the
device structure; (b) Optical image of the fabricated devices; (c) I–V curves of the device at various
temperatures; (d) The relationship of sheet resistance R� and T fitted by 2D Mott’s VRH model; inset
shows R� versus T plotted in double logarithmic scale; (e) Comparison of R� versus gate voltage
curves for In film made in air and in glovebox; (f) On/off ratio and current of In device after 2 months
of exposure in air.

So far, thin films of low-melting-point metals and alloys can be synthesized by various
approaches [11–13,16,19–24,36,37]. In these materials, superconductivity [12,13], p-/n-
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type semiconductors [20,21,37], or insulators [22] have been observed (Table 1). However,
the transport behavior of few nanometer-thick amorphous metal films has been rarely
investigated. It is well known that In2O3 is an n-type semiconductor with a direct bandgap
of 3.6 eV [38]. Transistors based on amorphous In2O3 have been fabricated with a mobility
of 15 cm2 V−1 s−1 and an on/off ratio of 106 [39]. In our In films obtained in glovebox,
the sheet resistances R� showed very weak dependence on Vg, as shown in Figure 3e.
The on/off ratio of the device was 1.90~2.37 at temperatures varying from 100 to 290 K,
suggesting a metallic nature of the as-obtained In films. In contrast, devices fabricated from
In films made in air displayed significantly larger sheet resistance and an on/off ratio of
103. The increase in sheet resistance and on/off ratio were attributed to the high oxidation
degree of In films made in air, leading to their semiconducting behavior. In addition, the
metallic behaviors of our encapsulated In films also persisted after 70 days in ambient
conditions (Figure 3f), verifying great stability of In devices. The conversion of transport
behavior from metallic to semiconducting provides us with a new degree of freedom to
manipulate 2D materials, which can be realized by changing the oxygen concentration of
the synthesis environment.

Table 1. Summary of representative 2D metal and metal oxide film fabrication methods.

Ref. Material Processing
Temperature [◦C] Method Thickness [nm] Oxidation Degree Crystallinity Electrical

Properties

[40] Ag, Au, Fe RT a Mechanical
rolling method 1~5 Metal Polycrystal (Ag) N/A

[17] Co, Ni, Cu, Ag 100~110 Hydro/solvothermal ~8 Metal Crystal N/A

[14] Sb RT a Mechanical
exfoliation >14 Metal Sb Crystal N/A

[15] Pb N/A MBE 12~28 layers Metal Pb on Si(111) Crystal SC b

[36] Bi 100 PLD 1~15 Metal Bi(111) on
SiO2(300nm)/Si Crystal P-type

[19] Bi 150 Hot-pressing 2~10 Metal Bi Crystal N/A

[20] Bi 300 Squeeze transfer 0.75 α-Bi2O3 Crystal N-type
semiconductor

[11] Bi N/A MBE Bilayer Metal Bi on Bi2Te3 Crystal N/A
[16] Bi N/A MBE Monolayer Metal Bi(111) on SiC Crystal N/A

[21] Sn 300 Squeeze transfer ~0.6 SnO and SnO2 Polycrystal P-type
semiconductor

[37] Sn N/A MBE 1~3 layers Metal Sn on
Bi2Te3(111) α-Sn(111) N/A

[22] Ga 50, 800
PDMS-printing

strategy and heat
treatment

~6 β-Ga2O3 Polycrystal Insulator

[23] Ga 50 Solid-melt
exfoliation ~4 Metal Ga Crystal Conductor

[12]
Ga

700~800
Confinement
heteroepitaxy

Trilayer Metal
graphene/Ga/SiC Single crystal SC b

In Bilayer Metal
graphene/In/SiC Single crystal N/A

Sn monolayer Metal
graphene/Sn/SiC Single crystal N/A

[13] Ga 650 MBE 0.552 Metal
Ga/GaN(0001) Single crystal SC b

[24] Galinstan,
EGaIn RT a Gas-injection

method 5.2 Ga2O3, AI2O3,
Hf2O3, Gd2O3

Amorphous N/A

This work

Ga 50
PDMS-hot-

pressing

~3.1 Coexistence of metal
Ga and Ga2O3

Amorphous
Conductor,

(Mott’s 2D VRH
model)

In 180 ~3.2 Coexistence of metal
In and In2O3

N/A
Conductor,

(Mott’s 2D VRH
model)

Sn 260 ~1.1 Coexistence of SnO
and SnO2

N/A N/A

Ga0.87Ag0.13 300 ~5 Coexistence of metal
Ga, Ag and Ga2O3

N/A N/A

a Room temperature. b Superconductivity.

3. Methods
3.1. Fabrication of Metal Films in Glovebox

At first, SiO2 substrate was treated with O2 plasma under 150 W for 30 min. Then,
low-melting-point metal pellets (Ga, In, Sn, and Ga0.87Ag0.13) were placed on substrate and
heated to temperatures above their melting point (50, 180, 260, and 300 °C, respectively) in
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glovebox until they were completely melted. By pressing metal drops with PDMS under
the pressure of 100 kPa, we obtained metal films on SiO2 (300 nm)/Si substrate. The PDMS
was prepared using SYLGARD 184 (Dow Corning Corporation), two-part kit consisting
of prepolymer (base), and cross-linker (curing agent). We mixed the prepolymer and
cross-linker at a 10:1 weight ratio and cured PDMS films on glass slide at 80 ◦C for 2 h.
During the hot-pressing process, the use of soft PDMS was beneficial for offering uniform
pressure exerted on the sample. In addition, the weak adhesion between metal films and
PDMS made it easy to detach PDMS from metal films after the hot-pressing process.

3.2. Characterizations

AFM topography was measured by ScanAsyst mode using a Bruker Multimode
8 system. SEM images were acquired using JEM-IT500 InTouchScope scanning electron mi-
croscope. XPS spectra were measured with a Thermo Fisher ESCALAB XI+ with Monochro-
matic Al Kα X-ray (photon energy of 1480.6 eV). The emitted photoelectrons were collected
to the analyzer at 90◦ to the surface of the sample. The Raman spectra were acquired from
a Horiba Jobin Yvon Lab RAM HR-Evolution Raman system with a 532 nm He–Ne laser
(spot size ≈ 2 µm, power 1 mW, and accumulation time 120 s). XRD spectra were acquired
with an X-ray diffractometer (Empyrean) using grazing incidence XRD.

For TEM characterizations, the samples were picked up by h-BN on PPC and then
transferred onto TEM microgrid. SAED was performed with a TEM (JEOL JEM-F200) oper-
ating at 200 kV, whereas high-resolution STEM was performed with a spherical aberration
corrected TEM (JEM-ARM200F) operating at 200 kV.

3.3. Device Fabrication and Electronic Measurements

The fabrication of three-terminal devices consisted of two procedures: First there was
the preparation of h-BN-encapsulated electrodes and transferring inside a glovebox. Second
was the patterning of electrode pads and etching of extra metal film outside channel regions.
The h-BN flake of a thickness between 25 and 35 nm was exfoliated on clean SiO2 substrate
and patterned using EBL lithography and RIE etching to form contact voids. Then we used
E-beam evaporator to evaporate 40 nm thick Au electrodes to cover the aforementioned
h-BN voids. We used PPC supported by PDMS on a glass slide to pick up the as-prepared
structure and transfer it onto metal film in glovebox. Last, the device was wired out by Ti
(2 nm)/Au (40 nm) electrodes, and extra metal film outside channel regions was etched
using EBL and argon plasma etching. The transfer characteristic measurements were carried
out with an Agilent 4156C semiconductor parameter analyzer under 3 × 10−6 mbar high
vacuum four-probe station system. The four-probe R–T measurements were performed
in cryostat with a base temperature of 1.5 K, an Agilent B1500 semiconductor parameter
analyzer, and a Keithley 2000 source meter.

4. Conclusions

In summary, we proposed a PDMS-assisted hot-pressing method to synthesize ul-
trathin amorphous films of low-melting-point metals and alloys, such as Ga, In, Sn, and
Ga0.87Ag0.13. The R–T behavior of three-terminal devices based on In film fits with Mott’s
2D VRH model. It is worth mentioning that during the device fabrication process, transfer
via contact method in glovebox was used to avoid oxidation or degradation of metal films,
and this transfer method can be applied to other 2D materials. Our film producing method
and device fabricating technology provide a novel approach for the study of intrinsic
properties of 2D metals or metal oxides.

Supplementary Materials: The following supplementary materials can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12050616/s1, Figure S1: Contact angles between Bi drops
and substrate before and after O2 plasma treatment; Figure S2: XPS spectra of 2D films made of Ga,
Sn, and Ga0.87Ag0.13 alloy synthesized in air and glovebox; Figure S3: Optical images of 2D films
made of Ga, Sn, and Ga0.87Ag0.13 alloy; Figure S4: SEM images of 2D films made of Ga, Sn, and
Ga0.87Ag0.13 alloy; Figure S5: The variation of XPS spectrum of films made in glovebox and then
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stored in air and in glovebox for 12 days; Figure S6: AFM images of 2D films made of Ga, Sn, and
Ga0.87Ag0.13 alloy; Figure S7: Raman spectrum of 2D films made of Ga, Sn, and Ga0.87Ag0.13 alloy;
Figure S8: XRD spectra of 2D films made of Ga, Sn, and Ga0.87Ag0.13 alloy; Figure S9: Fabrication
process of h-BN-encapsulated electrode; Figure S10: Electronic properties of Ga film.
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