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Abstract: The microstructure of low-angle boundaries (LABs) of thethird-generation single-crystal
superalloy DD9 and its effect on the tensile properties at 1100 ◦C were investigated. Double seed
crystals techniques were used to obtain the specimens of DD9 alloy with LABs. The results show
thatthe as-cast LABs of DD9 alloy are composed of strip-like and bulk γ′ phases with γ matrix, while
no γ′ phases were foundat the LABs after the heat treatment. The LABs had little effect on the tensile
strength of DD9 alloy, but hadan obvious effect on the tensile plasticity, and the fracture surfaces
of tensile-ruptured DD9 alloy with LABs of 3.7◦~11.4◦ exhibited intergranular fracture features
at 1100 ◦C.
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1. Introduction

Nickel-based single-crystal superalloys are widely used as turbine-bladematerials
in advanced aero engines because of their excellent comprehensive properties [1–4]. Bei-
jing Institute of Aeronautical Materials has developed a third-generation single-crystal
superalloy, DD9, for applications of advanced aero-engine blades [5–7]. The tensile and
stress-rupture properties of DD9 alloy are equivalent to those of other third-generation
single-crystal superalloys, such as CMSX-10, René N6, and TMS-75 [6].

To meet the demands of advanced aero engines, theaero engines’ thrust–weight ratios
increase; thus, the geometries of the turbine blade become more complex, such as the
dual-wall cooling structure. Meanwhile, there are more refractory elements added to the
third-generation single-crystal superalloys. As a result, during the directional solidification
process of the single-crystal blades, grain defects are easy to form, for example, low-angle
boundaries (LABs). However, it is almost impossible for single-crystal superalloy castings
to keep their exact [1] orientation during the single-crystal growth process. Turbine blades
of advanced aero engines usually operate at high service stresses and temperatures. LAB
defects may influence the mechanical properties of single-crystal superalloys, which may
harm the single-crystal turbine blade’s quality.

It has been reported that the effect of LABs on the tensile properties of single-crystal
superalloy relates to the LABs’ misorientation angle, and some levels of LABs can be
accepted [8–14]. Tamaki has found that there is no significant decrease in ultimate tensile
strength of YH61 alloy with the increase in the misorientation angle of LABs below 800 ◦C,
while the ultimate tensile strength clearly decreases with the increase in themisorientation
angle of LABs above 800 ◦C [8]. Patel reported that the tensile property of CMSX-10K alloy
at 900 ◦C decreases significantly when the misorientation angle of LABs is higher than
10◦ [9]. Zhao and Shi have studied the effect of LABs on the tensile properties of DD6
alloy; it was found that the tensile strength of DD6 alloy decreases with the increase in
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themisorientation angle of LABs, and the ultimate tensile strength of DD6 alloy clearly
decreases when the misorientation angle of LABs is higher than 9◦ [10–12]. Li found that
the LABs begin to influence the tensile properties of SRR99 alloy at room temperature when
the misorientation angle of the LAB reaches 10◦, while the LABs with misorientation angles
of 16◦ and 18◦ have a great effect on the tensile properties and the fracture shows obvious
interdendritic characteristics [13]. Qin reported that the LABs with misorientation angles
of 0◦~18◦ have little effect on the tensile strength of DD5 alloy at 870 ◦C, while elongation
decreases quickly when the misorientation angle is above 11.4◦ [14].

The effects of LABs on the tensile properties of single-crystal superalloys are of great
importance, which is one of the critical bases for establishing acceptance criteria for single-
crystal turbine blades. The main purpose of our paper is to report on the microstructure
of LABs of DD9 alloy and its effects on the tensile properties and fracture behavior of the
alloy at 1100 ◦C.

2. Materials and Methods

Commercially pure raw materials were used to prepare DD9 master alloy heat in a
vacuum-induction furnace [6]. The DD9 alloy’s chemical compositions are (weight percent)
3.5% Cr, 7% Co, 2% Mo, 6.5% W, 5.6% Al, 7.5% Ta, 4.5% Re, 0.1% Hf, 0.5% Nb, 0.008% C,
0.001% Y, Ni balance. We used double seed crystals techniques to obtain bicrystal slabs
with tilt low-angle boundaries in a directional-solidification vacuum furnace [11,15]. The
orientations of DD9 alloy slabs with LABs were determined byX-ray technology, and the
slabs with [1] orientation deviating from the longitudinal direction within 10◦ were chosen.
Figure 1 shows the schematic of the bicrystal slab and the transverse specimen with LABs.
A total of 5bicrystalslabs with dimensions of 15 mm × 80 mm × 120 mm were prepared
and the LABs’ misorientation angles of themare 3.7◦, 4.8◦, 6.0◦, 8.9◦, and 11.4◦, respectively.
When the misorientation angle of the LAB is 0◦, the transverse specimens were taken from
a single-crystal slab.
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Figure 1. Schematic diagram of the preparation of the specimen with LABs.

The specimens were all then heat-treated with a three-step process, which includes
the solution heat treatment (preheat treatment +1340 ◦C/6 h/AC), primary-aging heat
treatment (1120 ◦C/4 h/AC) and secondary-aging heat treatment (870 ◦C/32 h/AC). After
the heat treatment, the specimens were machined into test specimens with a 25 mm gauge
distance and a 5 mm gauge diameter according to the requirements of the testing standard
(HB 5195). The tensile test was conducted at atemperature of 1100 ◦C, and two specimens
were used for each kind of LAB.

The microstructures of the LABs and fracture surfaces of tensile-ruptured specimens were
observed with Leica DM4000M optical microscopy (OM), Zeiss Supra 55 field-emission scan-
ning electron microscopy (SEM) and JEOL JEM-2100F transmission electron microscopy (TEM).
After rupture, the specimens were cut along the stress direction, and the microstructures of the
sections were also studied. Samples for OM and SEM observations were firstly polished and
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then etched with a chemical etchant (80 mL HCl + 100 mL H2O + 5 mL H2SO4 + 25 g CuSO4)
for 5~10 s. Samples for TEM analysis were cut about 5 mm away from the fracture surface
with 0.4 mm thickness. They were mechanically ground to 50 µm and the nelectropolished
at −30 ◦C in a solution of 90% ethyl alcohol + 10% perchloric acid, and they were observed
with TEM operating at 200 kV.

3. Results
3.1. Microstructures of LABs

Figure 2 illustratesthe microstructures of LABs of 3.7◦ in the as-cast DD9 alloy. It can
be seen that the LABs are curved in the transverse morphologies, as indicated by a black
line in Figure 2a, while the LABs are in a parallel relationship with the primary dendrite
arms and they are almost straight along the longitudinal direction, as indicated by an arrow
in Figure 2b. From Figure 2c,d, it is also found that the LABs connect with eutectic γ-γ′

and are composed of strip-like and bulk γ′ phases with γ matrix adjacent to them.
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Figure 2. Microstructures of LABs of 3.7◦ in the as-cast DD9 alloy: (a) transverse dendrite morpholo-
gies; (b) longitudinal dendrite morphologies; (c,d) γ′ phases morphologies.

Figure 3 shows the microstructures of LABs of 3.7◦ in DD9 alloy after the heat treat-
ment. Compared to the as-cast LABs, the heat-treated LABs become straighter, and there
are no γ′ phases at the LABs. This indicates that the massive γ′ phases and eutectic γ-γ′ at
the grain boundaries are all dissolved during the process of heat treatment. Meanwhile, it
can be seen that orientations of the γ′ phases on both sides of the LABs are different, and
the cuboidal forms of the γ′ phases are well-developed.
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Figure 3. Microstructuresof LABs of 3.7◦ in DD9 alloy after heat treatment: (a,b) SEM morphologies;
(c) TEM morphologies.

3.2. Tensile Properties

Table 1 shows the tensile properties of DD9 alloy with LABsat 1100 ◦C. Figure 4
illustrates the relationships between the yield strength (YS), ultimate tensile strength (UTS)
and elongation of DD9 alloy, and the misorientation angles of the LABs at 1100 ◦C. It can
be seen that at 1100 ◦C, the YS and UTS of DD9 alloy with LABs decrease a little as the
misorientation angle of the LABs increases from 0◦ to 11.4◦. When the misorientation angle
of the LABs reaches 11.4◦, the YS of the DD9 alloy is equivalent tothat withLABs of 0◦,
while the UTS of the DD9 alloy decreases only 16 MPa compared to that with LABs of
0◦.However, the elongationsof DD9 alloy with LABs decrease almost monotonically as the
misorientation angle of the LABs increases. The elongation of the DD9 alloy with LABs of
11.4◦ decreases by 94.6% compared to that with LABs of 0◦.

Table 1. Tensile properties of DD9 alloy with LABs at 1100 ◦C.

LABs’ Misorientation
Angle/◦ Yield Strength/MPa Ultimate Tensile

Strength/MPa Elongation/%

0 471 ± 1.0 531 ± 0.7 28.0 ± 1.8
3.7 491 ± 5.5 550 ± 5.5 26.9 ± 2.3
4.8 494 ± 1.6 559 ± 5.0 27.5 ± 2.3
6.0 446 ± 2.0 514 ± 1.0 21.3 ± 2.4
8.9 461 ± 0.7 530 ± 1.6 20.8 ± 2.2

11.4 478 ± 1.6 515 ± 5.5 1.5 ± 0.4

Figure 5 illustrates the tensile stress–strain curves of DD9 alloy with LABs at 1100 ◦C.
As shown in Figure 5,the flow stress of DD9 alloy with LABs of 0◦~11.4◦ all show a double-
stage feature. During the second stage of the curve, the stress first increases steeply to the
peak point and then gradually drops until rupture. It can be seen that in Figures 4 and 5,
the LABs mainly affect the tensile elongation of DD9 alloy, and the the elongations drop
obviously when the misorientation angle of the LABs is greater than 8.9◦.
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3.3. Fracture Surface

Figure 6 shows the tensile fracture surfaces and longitudinal morphologies of DD9
alloy with LABs at 1100 ◦C. The higher magenification of the fracture surfaces are also
given in Figure 6. As can be seen, all the tensile fracture surfaces of DD9 alloy with LABs
are almost circular, and no obvious neck-downare observed near the fracture surfaces
of the specimens with LABs of 3.7◦~11.4◦, which is similiar in the other single-crystal
superalloy with LABs [11,12]. The fracture surfaces of DD9 alloy of LABs of 3.7◦~11.4◦ all
display dendrites morphology and this feature can be seen throughout almost the whole
fracture surfaces, which indicates that the intergranular fracture occurs. Meanwhile, dimple
characteristics can be foundon the fracture surface of DD9 alloy with LABs, as seen in
Figure 6b,d,f,h,j. There are small pores in the center of the dimples, which usually originate
from pores growing and coalescencing at high temperatures [16]. However, it can be seen
that fewerdimples are formed as the misorientation angles of the LABs increase from 3.7◦

to 11.4◦. This may imply that as the misorientation angles of the LABs become larger, the
plastic deformation before fracture of the alloys with LABsbecomes smaller, and thus the
elongation of the alloy is lower.
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Figure 6. Tensile-fracture surfaces and longitudinal morphologies of DD9 alloy with LABs at 1100 ◦C:
(a,b), 3.7◦; (c,d), 4.8◦; (e,f), 6.0◦; (g,h), 8.9◦; (i,j), 11.4◦.
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3.4. Microstructures after Tensile Rupture

Figure 7 illustrates the morphologies of the longitudinal section and microstructures
near the fracture surface of tensile-ruptured DD9 alloy with LABs at 1100 ◦C. It can be seen
that the numberof microcracks on the sections of tensile-ruptured specimens decreases
as the misorientation angles of the LABs increase from 3.7◦ to 11.4◦. There is almost no
microcrack on the section of the DD9 alloy with LABs of 11.4◦. Because the intergranular
fracture occurs for all the specimens with LABs in our study, therefore no LABs are found on
the section of ruptured alloy. As for the γ′ phases’ morphologies near the fracture surfaces,
the γ′ phases’ cuboidal forms are still well-maintained comparedto the heat-treated state in
Figure 3. Moreover, there are slip bands near the fracture surfaces, which are indicated by
arrows in Figure 7b,d,f.
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Slip bands 
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Figure 7. Morphologies of the longitudinal section and microstructures near the fracture surface of
tensile-ruptured DD9 alloy with LABs at 1100 ◦C: (a,b), 3.7◦; (c,d), 6.0◦; (e,f), 11.4◦.

Figure 8 shows the dislocation configurations near fracture surfaces of tensile-ruptured
DD9 alloy with LABs of 3.7◦ at 1100 ◦C. It is shown that the γ′ phases’ morphologies are
similar to those of the heat-treated state in Figure 3c. However, it is obvious that a lotof
dislocations appear, and the dislocation tangle and dislocation networks are formed, which
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have also been found in the tensile-ruptured transverse DD9 alloy (corresponding to the
misorientation angle of the LABs is 0◦) [17]. These dislocation configurations are the result
of multiple slips at high temperatures, of which higher temperatures benefit the activation
of multiple slip systems, then the dislocations interact with each other from different
slip systems and the dislocation tangles and networks appear. This phenomenon is also
common in other single-crystal superalloys [18,19].
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4. Discussion

The DD9 alloy with LABs is actually a transverse specimen, of which the stress axis is
perpendicular to the solidification direction. The dendritic-growth feature of directional
solidification of single-crystal superalloys determines that there are microstructure differ-
ences andcomposition segregation between the dendritic cores and interdendritic regions.
Thus, the interdendritic regions’strength is lower than the dendrite cores’ strength at high
temperatures [17]. However, the yield strength and ultimate tensile strength of DD9 alloy
with LABs of 0◦ to 11.4◦ exceed 440 MPa and 510 MPa at 1100 ◦C, respectively, which can
satisfy the technical requirements of DD9 alloy with [1] orientation. These demonstrate that
the DD9 alloy with LABs possess excellent tensile-strength properties. As for the tensile-
plasticity properties, the elongations of DD9 alloy with LABs of 0◦ to 8.9◦ are all greater
than 20% at 1100 ◦C, while the elongation clearly drops only when the misorientation angle
of the LABs increases to 11.4◦. This shows that the LABs have little effect on the tensile
strength of DD9 alloy at 1100 ◦C, but have an obvious effect on the tensile plasticity.

It has been reported that microcracks are easy to nucleate and propagate at grain
boundaries at high temperatures [10]. As in our study, the yield strength and ultimate
tensile strength of DD9 alloy with LABs of 11.4◦ are almost equivalent to those of DD9
alloy with LABs of 0◦. This implys that the strength of LABs of DD9 alloy with relatively
small misorientation angles are comparable to that of the single grains next to the grain
boundaries during the tensile-deformation process. However, the abilities of LABs to
withstand plastic deformation are sensitive to the misorientation angles. When the mis-
orientation angle of LABs is higher than 8.9◦, the plastic deformation before fracture is
limited and fewer dimples are formed, as shown in Figure 6; thus, the elongation of DD9
alloy with LABs of 11.4◦ is less than 2% and almost no microcracksare found on the section
of the ruptured specimen. The change law of the tensile plastic is similar to the results of
othersingle-crystal superalloys [9,11–14].

5. Conclusions

The microstructure of low-angle boundaries of a third-generationsingle-crystal su-
peralloy, DD9, and its effect on the tensile properties and fracture behavior of the alloy
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at the temperature of 1100 ◦C were investigated. The mainconclusions are summarized
as follows:

(1) The as-cast LABs of DD9 alloy are composed of strip-like and bulk γ′ phases with γ

matrix. After heat treatment, no γ′ phases are found at the LABs.
(2) The LABs have little effect on the tensile strength of DD9 alloy at 1100 ◦C, but have

an obvious effect on the tensile plasticity. The elongation of DD9 alloy with LABs
declines rapidly when the misorientation angle of the LABs exceeds 8.9◦ at 1100 ◦C.

(3) The fracture surfaces of tensile-ruptured DD9 alloy with LABs of 3.7◦~11.4◦ exhibit
intergranular fracture features at 1100 ◦C.
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