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Abstract: In order to decrease the difficulty of cold workability and study the recrystallization
behavior of high-grade non-oriented silicon steel, Si content and normalization temperature were
optimized simultaneously. The microstructure and texture of both hot-rolled sheet and normalized
annealing sheet presented a gradient distribution. With the decrease in Si content from 3.02% to 2.54%
and increase in normalization temperature from 850 ◦C to 920 ◦C, Goss texture ({110}<001>) intensity
at surface layer and α-fiber (<110>//RD) texture intensity were strengthened, and α-fiber texture
gradually turned to α*-fiber ({1 1 h}<1/h 1 2>) in the normalized annealing sheet. Recrystallization
ratio and recrystallization grain size were increased both in the hot-rolled sheet and the normalized
annealing sheet. The tensile strength and yield strength of normalized annealing sheet were reduced
by 65 Mpa, which decreased the cold workability difficulty and improved cold rolling yield. The
cold rolled microstructure had wider shear bands which nucleated earlier but recrystallized velocity
was slower because of lower cold rolled energy storage during interval recrystallization annealing,
resulting in a more heterogeneous grain size distribution in the final annealing sheet.

Keywords: high-grade non-oriented silicon steel; Si content; normalization temperature; workability;
recrystallization behavior

1. Introduction

With the continuous upgrading of energy efficiency of high-efficiency compressor
motors and electric motors, people have higher requirements for the magnetic properties
of silicon steel [1,2]. Except for iron loss, there is a gradual increase in demanding mag-
netic induction properties. Conventional high-grade non-oriented silicon steel is mainly
designed to reduce iron loss by increasing the content of Si and Al, especially by increasing
the content of Si to meet the performance requirements of electric iron core motors [3,4].
However, the increase in Si content leads to a decrease in magnetic induction strength,
and when the Si content increases to a certain degree, the cold working is difficult, and
the yield is low [3,4]. The magnetic induction properties of high magnetic susceptibility
non-oriented silicon steel are improved by increasing the normalization temperature, and
at the same time, the iron loss is improved [5–8]. However, considering the difficulty of
cold rolling, its Si content is lower than that of high-grade non-oriented silicon steel, and
the iron loss cannot meet the needs of high efficiency motor applications. In this paper, the
Si content and normalization temperature of high-grade non-oriented silicon steel were
optimized. Designed and developed a high-grade non-oriented silicon steel product with
low cost, good cold workability, and excellent iron loss.
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2. Materials and Methods

The chemical composition of two different high-grade non-oriented silicon steel is
shown in Table 1. The Si content of the 1# hot-rolled sheet is 3.02%, and the Si content
of the 2# hot-rolled sheet is 2.54%. Using the same heating and hot rolling process, two
different high-grade non-oriented silicon steels with different Si content were hot-rolled
from 220 mm to 2.30 mm coil, and then normalized, cold-rolled, and annealed. The heating
temperature of the cast slab was 1150 ◦C, the normalization temperature of sample 1 was
850 ◦C and sample 2 was 920 ◦C, and the normalization time of both samples was 3 min;
finally, the cold-rolled sheets were annealed at 980 ◦C with a different interval of 3 s, 7 s,
15 s, 19 s, 23 s and 25 s, respectively, and the annealing atmosphere was 75% N2 and 25% H2.
The detailed production process routes are shown in Figure 1.

Table 1. Chemical composition of two high grade non-oriented silicon steel.

Number C Si Al Mn Ti N S Note

1# ≤0.0045 3.02 0.32 0.17 ≤0.0045 ≤0.0045 ≤0.0030 High silicon

2# ≤0.0045 2.54 0.35 0.15 ≤0.0045 ≤0.0045 ≤0.0030 Low silicon
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Figure 1. Schematic diagram of processing routes for the experimental steels.

After the test, microstructure, texture, and mechanical strength were observed and
tested, respectively. The microstructure of the hot rolled sheet, normalized sheet, and
interval annealing sheet were observed with the optical metallographic microscope (DMR,
Leica, Germany), and the grain size was counted with image processing software. The
etching solution was 4% HNO3 in ethanol. The texture test was conducted on PANalytical’s
X-ray diffractometer, the sample size was 20 mm × 30 mm, the sampling surface was the RD-
TD surface, and a cobalt target was used to obtain the ODF cross-sectional view according
to the Bunge system. Finally, an electronic tensile tester (Zwick/Roell, Ulm, Germany) was
used to conduct tensile tests of the two-component hot-rolled sheet specimens (sampling
along the RD direction).

3. Results
3.1. Microstructure and Macro-Texture of High-Grade Non-Oriented Silicon Steel Initial Hot
Rolled Sheet with Different Si Content

Figure 2 shows the microstructure and macro-texture of hot rolled sheets with 3.02% Si
and 2.54% Si, respectively. The hot-rolled sheets with different Si content all presented a sig-
nificant difference in microstructure and macro-texture along the thickness direction, which
was consistent with the previous results on high-grade non-oriented silicon steel [1,2]. It
can be found that the surface layer was mainly characterized by small recrystallized grains,
while the center layer was elongated deformed grains, as shown in Figure 2a,c. Correspond-
ingly, the macro-texture was dominated by Goss texture and randomly distributed α-fiber
texture at surface layer with lower intensity, while very strong and relatively complete
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α-fiber texture had a peak intensity at center layer {100}<110>, as shown in Figure 2e–h. The
microstructure and macro-texture difference across thickness was related to deformation
mode and temperature in hot rolling [3,4]. In contrast, when the Si content increased, the
recrystallized ratio and grain size at the surface layer reduced, while Goss texture intensity
weakened at the surface layer, but α-fiber texture at the center layer strengthened. However,
it should be noted that the microstructure had a more inhomogeneous distribution when
the Si content increased.
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region (e,g) and center region (f,h) of hot-rolled sheets with 3.02% Si content (upper) and 2.54% Si
content (lower).

3.2. Microstructure and Macro-Texture and Mechanical Properties of High-Grade Non-Oriented
Silicon Steel Normalized Sheets with Different Si Content at Different Normalization Temperature

Figures 3 and 4 show the microstructure, macro-texture, and grain size of normalized
sheets with 3.02% Si and 2.54% Si, respectively. The normalized temperature was 850 ◦C
and 920 ◦C, respectively. The microstructure of hot-rolled sheets with different Si content
all completely recrystallized after normalization at different normalization temperatures,
as shown in Figure 3a,c. In addition, the microstructure and macro-texture of normalized
sheets were different between the surface layer and center layer which were consistent
with hot rolled sheets. However, the texture intensity of normalized sheets decreased
sharply, as shown in Figure 3e–h. According to Figure 3a,c, the average grain size at the
surface layer was smaller than the center layer. Lower Si content with higher normalized
temperature normalized sheet had a larger grain size and stronger {100}<110> and Goss
texture. Additionally, {113}<332> was developed at the same time, as shown in Figure 3g.
When Si content decreased and normalized temperature increased, α-fiber texture gradually
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turned to α*-fiber ({1 1 h}<1/h 1 2>), and the intensity was strengthened. When the Si
content decreased, tensile strength and yield strength of the normalization sheet were
reduced by 65 MPa simultaneously, as shown in Figure 5. Per the results summarized in
Figure 4, this method was able to decrease the workability of high-grade non-oriented
silicon steel.
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Figure 5. Recrystallization microstructure evolution of the cold rolled sheets of 3.02% Si content (left)
and 2.54% Si content (right) for different intervals: (a1,a2) 3 s; (b1,b2) 7 s; (c1,c2) 15 s; (d1,d2) 19 s;
(e1,e2) 23 s; (f1,f2) 25 s.

4. Discussion
4.1. Role of Silicon Content on Hot-Rolled Microstructure and Texture of High-Grade
Non-Oriented Silicon Steel

Silicon is one of the most important elements of non-oriented silicon steel, which
can effectively reduce iron loss [5–8]. However, the increase in Si content leads to an
increase in lattice distortion and ordered phase, which, in turn, hinders the dislocation
motion [9–12]. Therefore, when the Si content increases, the dynamic recrystallization of
high-grade non-oriented silicon steel is hindered, the recrystallization ratio of the surface
layer of the hot-rolled sheet decreases, the recrystallization size decreases, and the Gaussian
texture strength also decreases, as shown in Figure 3a,c,e,g. Additionally, with the increase
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in Si content, the hot deformation activation energy of the hot-rolled sheet increases [13,14],
and, under surface stress, the α-fiber texture strength of the central layer of the hot-rolled
sheet increases [15,16], as shown in Figure 3f,h.

4.2. Role of Silicon Content and Normalization Temperature on Recrystallization Kinetics of
High-Grade Non-Oriented Silicon Steel

Previous studies have reported the effects of typical alloying elements and normaliza-
tion temperature on crystallization kinetics and texture [17–20], but the combined effects
of these two factors have not been clearly elucidated. To understand the combined effect
of Si content and normalization temperature on the recrystallization behavior, the recrys-
tallization process was tracked by intermittent annealing at 980 ◦C on 3.02% Si and 2.54%
Si cold plates. The microstructures at different annealing times are shown in Figure 5.
After annealing for 3 s, recrystallization occurred in both cold-rolled sheets, and the initial
nucleation point was on the shear band. The number of recrystallized grains in the 2.54%
Si (normalization at 920 ◦C) cold-rolled sheet was larger. After annealing for 7 s, the recrys-
tallized grains of the 3.02% Si (normalization at 850 ◦C) cold-rolled sheet increased, and
the uniform distribution of nucleation points was not limited to the shear band. However,
the nucleation point and recrystallization ratio of the 2.54% Si cold plate are basically
unchanged, as shown in Figure 5(a2,b2). After annealing for 15 s, the recrystallization ratio
of the 3.02% Si cold plate increased dramatically and far exceeded that of the 2.54% Si cold
plate, but the grains in the center layer of the 2.54% Si cold-rolled plate were still in a state
of slight tensile deformation, as shown in Figure 5(c1,c2). Finally, the 3.02% Si and 2.54% Si
cold plates with different normalization temperatures undergo complete recrystallization
at 23 s and 25 s, respectively, as shown in Figure 5(e1,f2).

As presented in Figure 6, compared with the finished annealed sheet of high-grade
non-oriented 3.02% Si steel with a normalization temperature of 850 ◦C, the annealed 2.54%
Si sheet with a normalization temperature of 920 ◦C had a stronger λ-fiber (<001>//ND)
texture and weaker γ-fiber (<111>//ND) texture. However, the latter cold-rolled sheet had
low and uneven recrystallization energy storage and early nucleation during intermittent
annealing. However, the recrystallization rate was slow, and the grain size of the finished
plate was extremely uneven.
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When the Si content decreased from 3.02% to 2.54% and the normalization temperature
increased from 850 °C to 920 °C, the grain size of the normalized annealing sheet became
larger, and the time required for complete recrystallization of the cold plate increased
slightly. However, because of the high annealing temperature of cold-rolled sheets, the
annealed average grain size of high-silicon and low-silicon products was basically the
same. Therefore, both the iron loss and the magnetic polarization of the annealed sheet
were improved. The iron loss P1.5/50 was reduced from 2.73 W/kg to 2.62 W/kg, and the
magnetic polarization J5000 was increased from 1.681 to 1.704 T.

5. Conclusions

(1) Si hindered recrystallization and increased deformation resistance. When Si content
decreased, recrystallization ratio, recrystallized grain size and Goss texture intensity
at the surface layer of high-grade non-oriented silicon steel hot rolled sheet increased,
but α-fiber texture intensity at the center layer reduced.

(2) When the Si content decreased, tensile strength and yield strength of the normalized
sheet were reduced by 65 MPa simultaneously; this method was able to decrease the
cold rolling workability evidently of high-grade non-oriented silicon steel.

(3) Lower Si content and higher normalization temperature cold-rolled sheet had more
shear bands that nucleated earlier but the process of recrystallization was slower,
resulting in a more heterogeneous grain size distribution in the final annealing sheet.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12050593/s1, Table S1: Grain size of normalized sheets with
different Si content and normalization temperature; Table S2: Mechanical properties of normalized
sheets with different Si content and normalization temperature; Table S3: Recrystallization fraction of
the cold rolled sheet of 3.02% Si and normalized at 850 ◦C; Table S4: Recrystallization fraction of the
cold rolled sheet of 2.54% Si and normalized at 920 ◦C.
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