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Abstract: Numerous specialists and academics have backed the improved physicochemical charac-
teristics of metal substrate (Ag, Au) based composite nanoparticles for a number of applications,
including pharmaceuticals, optoelectronics, and environmental impact. Insights of Ag and Au
NPs-based nanomaterials will be discussed, as well as important production, physicochemical, and
biotechnological characteristics. The plasmon capacities of Ag and Au NPs, along with their customis-
able form, scale, and surface modification could be described by specified geometries and constituent
contents. It was revealed that interaction dynamics of Ag and Au implanted nanomaterials with
dopants/defects ratios seem to be more effective in stimulating pathogens by interrupting biochemi-
cal reactions. As a result, we focus on defect science in Ag and Au-based nanoscale materials, taking
into account surface morphology, ionic packing, and chemical phase assessment. This chapter will
cover the important optical, geometrical, and physicochemical features of Ag and Au nanomaterials,
and their pharmacological significance.

Keywords: Ag/Au nanoparticles; plasmon; surface engineering; biomedical applications

1. Introduction

Inorganic noble nanomaterials have caught scientist’s interest due to their potential ap-
plications in biology, semiconductors, optoelectronic devices, and pharmacology, resulting
in their extraordinary features at nanoscale [1–4]. Nanocomposites have enabled new novel
applications, particularly in highly combined nanomaterials, because their characteristics
are dependent on quantities, texture, and geometry. Plasmon nanoparticles, especially Au
and Ag NPs, have gained prominence in recent years due to their potential usefulness
in precision medicine. The metal and metal-based hybrid nanostructures are designed
with suitable organic and inorganic hosts or substrates. Such hybrid metamaterials were
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found to be effective and reliable for multifunctional biomedical uses, and thus, nanosys-
tem are used for hybrid nano materials. This includes dendrimers, 2D carbon allotropes,
and other desired supported chemical compositions shown to be chemically stable and
durable nanosystems. The surface modifications and elemental combinations provide
exceptional catalytic actions in a designed nanosystem that could be implemented for
wider purposes. Despite the fact that Ag NPs have powerful antimicrobial and cytotoxic
effects, Au NPs are thought to be more biocompatible for a number of combinatorial
sensors [5,6]. Their advantages complement the well-tunable plasmonic capabilities of
Au-based nanomaterials, which have been extensively studied in medical applications such
as bioimaging, X-ray computed tomography contrast, and photodynamic treatment (PDT).
Physical and chemical reactivity (especially the surface plasmon spectrum) of mixed NPs
can be changed methodically as a function of NP composition. The three major strategies
to manufacture Ag and Au-based nanomaterials are the morphological, chemical, and bio-
logical approaches; nevertheless, the chemical route is the most popular and well-known.
The chemical production of NPs produces nanoparticles that are either less dangerous
or poisonous than bulk compounds. Due to the delayed release of chemicals used in
formulations, chemical-based formulations have limitations in cellular applications [5,7].
Toxicities to cells are also a problem with chemical-based techniques. The development
and usage of effective alternatives, such as nanoparticles manufactured from plant extracts,
may result in a reduction in harmful effects. Plant materials have active pharmacological
components that can act as capping agents for NPs, increasing their therapeutic potency
while also acting as reducing agents. Previous biomedical research that used the photo-
luminescence of Au nanostructures primarily focused on bioimaging. High temperature,
for instance, dramatically increased the near-infrared luminescence of mercaptosuccinic
acid and tiopronin-protected Au NPs by converting transient non-luminescent groups into
stable luminescent units having narrow density [8,9]. In single-cell imaging, PEGylation of
Au NPs enhanced cytoplasmic permeability, and these PEGylated Au NPs can reach within
the nucleus [10]. However, as the diameter of the metallic core shrinks, the surface-to-core
metal atom ratios increase, leading to a significant increase in the quantum yield. The nan-
oclusters’ small size and high emission in the near-infrared spectrum suggested that they
could be helpful diagnostic reagents in fluorescent bioimaging. Furthermore, convenient
techniques for inserting specific probe molecules onto metallic nanocluster surfaces are
provided by rich surface chemistry.

It is possible that decreasing Ag nanoparticles to the sub-nanometer range may greatly
boost Ag’s antibacterial therapeutic capabilities due to the significantly larger surface-
to-volume ratio. Furthermore, these Ag nanoparticles with good structures can provide
additional benefits such as easy post-functionalization, high stability, and excellent and
versatile photoluminescence, not to mention that the conclusive main constituents can
provide an adequate basis for establishing the link between Ag nanostructures and their
antimicrobial frameworks. The studies on Ag NPs supported hydrogel that demonstrated
improved antibacterial activity against both Gram-negative and Gram-positive bacteria
were published by Liu et al. [11]. Because of its Ag species-specific controlled release capa-
bilities, it demonstrated hard bactericidal performance compared to pure Ag nanostructures.
Yuan et al. [12] developed a range of water-soluble thiolate Ag nanostructures with strong
luminescence and tunable emissions, and these NPs have improved antibacterial activ-
ity against the multidrug-resistant bacterium Pseudomonas aeruginosa by producing a
high amount of intracellular ROS. In another study, researchers discovered that different
charge configurations can have a significant impact on antibacterial activities. Antibacterial
testing demonstrated that Ag+ enriched NPs exhibited substantially better antibacterial
activity than pure Ag NPs against Gram-negative (P. aeruginosa and E. coli) and Gram-
positive (B. subtilis and S. aureus) microorganisms [13]. In this chapter, we provide a basic
overview of Ag and Au-based nanostructures, comprising production processes, physical
elements, and their biotechnological uses. The value of Ag and Au-assisted nanosystems
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in nanomedicine and health sciences has been thoroughly studied, with literature that is
extremely helpful in comprehending the significance of these metallic nanoparticles.

2. Engineering of Plasmon Based Ag/Au Nanostructures

Designing and fabrication techniques were found to be more effective to alter the
nanostructures’ shape and size especially for the targeted objects. In recent years, inor-
ganic and organic-based nanoscale materials have been broadly applied in medical tools
devices. Ag and Au-based nanosystems are among the fundamental themes of nanos-
tructured research. Different scientific techniques for designing and developing noble
metal nanoparticles with controllable geometries and electrical configurations have been
investigated [14,15]. However, transmission electron microscopy and surface scanning
microscopy have long been used to investigate the formation of nanoparticles caused by
the breakdown of strong energy or electron beam irradiations. Chemical, physical, and
biological creations are all methods for creating Ag and Au-based nanotechnologies [16].
Currently, breakthroughs in nanoscale materials technologies for producing nanomaterials
with different antimicrobial features are emerging, principally using microbiological and
biochemical raw materials. Such essential strategies are considered here for the purposes of
production and engineering in order to improve antimicrobial and biological implications.

2.1. Morphology and Surface Control of Ag and Au Nanosystems
2.1.1. Chemical Approaches (Sol-Gel, Hydrothermal, and Co-Precipitation Method)

The sol-gel strategy is a modest technology that generates cost-effective things with the
correct molecular structures when using chemical pathways. This approach’s framework
can be used in a range of fields, including semiconductors, lasers, aerospace, and the power
industry. The sol-gel method involves repairing a gel, which eliminates the requirement
for atomic diffusion and improves precision [17]. The resulting gel is submitted to solid-
state estimates after hydrolysis and condensation, and the result is formed as a mixture of
compatible preparations. The alkoxides are frequently mixed under the action of alcohol
to create multi-component oxides. In a few cases, additives like acetates could be utilized
instead of alkoxides. Water for disintegration, ethanol, pH proportion of alkoxides, and
calibrated heat are all required for the sol-gel synthesis.

Ag/Au-based nanostructures have now become economically viable due to the close
relationship between plasmonic properties and controllable size and form. Traditional
methods, such as nanosuspension and thermal destruction, necessitate a lengthy procedure
as well as extreme heat. The particles can be crystallized by a solvothermal procedure at a
required temperature in a covered vessel with a high vapor pressure by combining several
wet chemical treatments. Compared to other methods, the hydrothermal method creates
particles with a crystalline structure. The solvothermal method was also used to produce
the deformation of particular crystalline grains, making it the most dynamic method for
creating ultra-crystalline nanoparticles [18,19].

The simplest and most efficient approach for creating Ag and Au nanoparticles is co-
precipitation. Reaction kinetics, on the other hand, can govern the crystal’s development,
restricting the size of the particles. The shape and surface characteristics of nanopar-
ticles can be modified during the production process to satisfy specific demands. The
co-precipitation approach is another excellent strategy for manufacturing high production
with homogeneous sizes nanostructures [20].

2.1.2. Green Synthesis

However, traditional plasmon-based nanostructure manufacturing strategies have
numerous drawbacks. Moreover, the production of nanomaterials has required the use of
a variety of sustainable resources, including biological beings and plants. Specialists are
becoming increasingly interested in the biosynthesis of nanoparticles from plant sources.
For a short time, a plant infusion reduces metallic ions while simultaneously increasing the
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creation of nanosized particles. The species of plant and phytoconstituents influence the
amount of time it takes for nanocrystals to form [21].

2.2. Ag and Au Doped Metal-Oxides Nanostructures

Metal and metal oxide nanoparticles (NPs) have gained a lot of research attention
due to their exceptional chemical, optoelectronic, and dynamical properties. They may
now be found in a wide range of industrial, medical, agricultural, and biotechnological
uses, with new ones being created all the time [6,22]. Current immaculate metal and metal
oxide NP manufacturing techniques entail reducing and anchoring active components
that are toxic to humans and other animals at several taxonomic levels. Experts are now
looking at alternative “green synthesis” methods to reduce or eliminate toxic chemicals
during the production of NPs. In various research investigations published in the literature,
scientists used a single nanoparticle in biomedical applications. Because there are few
types of study in the field, the nanostructures used by medical researchers are confined
to solid Ag and Au. In the healthcare profession, Ag and Au doped CuO, Al2O3, SiO2,
TiO2, and nanostructures have been used [3,18]. In every previous study, the essential
features of metal-doped semiconductors could be altered by doping metal ions into the host
metal-oxides at varying dosages. Doped materials such as Ag and Au affect the absorbance
bands and the free electron combination action of semiconductors by causing crystal defects
and Vo. These imperfection levels are critical for increasing the physicochemical, refractive,
and antibacterial properties of semiconductor crystal structures. Numerous experiments
have been conducted on Ag, Au, Pt, and anion-doped semiconductor nanomaterials to
alter their crystallographic pattern in order to demonstrate the fundamental stabilities of
electronic crystals [23]. In the pharmaceutical and biomedical sectors, metallic and metal-
doped metal oxides, mainly plasmon-doped nanomaterials, have been actively explored
for therapeutic systems.

2.3. Enhancement in Plasmon of Au and Au for Biomedical Aspects

Whenever nanostructures are triggered with a light noble metal, the surface plas-
mon resonance (SPR) induces strong absorption in the visible light spectrum. Noble
metal nanoparticles absorb photons intensely and, thanks to their plasmonic properties,
may squeeze light into the nanoscale [3,7]. The ability to influence and transmit light
at the nanoscale scale using noble metal nanoparticles has given rise to the new field of
plasmonics. Noble metal nanocrystals have a wide range of applications in fields such
as surface-enhanced Raman spectroscopy, near-field high-resolution optical microscopy,
biodiagnostics, nanophotonics, photonic biosensors, and processing, which has inspired
plasmonics research. A phenomenon known as localized surface plasmon resonance occurs
when light interacts with conductive nanoparticles with wavelengths shorter than the
irradiation wavelength. It is amazing to see how the antibacterial properties of Ag or Au
NPs change as a result of the plasmon resonance phenomena [23,24]. Metal–vapor synthe-
sis (MVS) is employed by Alexander Yu et al. [25] to manufacture silver-based dressings
and their antibacterial effects, according to an SPR-based study. Ag NPs-based dressings
have antibacterial properties against Gram-positive and Gram-negative microorganisms
like (Streptococcus aureus, Streptococcus haemolyticus, Pseudomonas aeruginosa, Klebsiella pneu-
moniae), Escherichia coli, and Moraxella spp.) The colony-forming unit (CFU) reduction %
is found as: Staphylococcus aureus (95%), Staphylococcus haemolyticus (34%), Pseudomonas
aeruginosa (58%), Klebsiella pneumoniae (68%), Escherichia coli (64%), Moraxella spp. (55%),
and Staphylococcus aureus (95%).

Using a chosen aptamer as the recognition element, Bai et al. demonstrated an SPR-
induced biosensor for the sensing of avian influenza virus (AIV) H5N1 (Figure 1). The
detecting sensor was created using streptavidin–biotin-binding to immobilize biotinylated
aptamer across a streptavidin-loaded Au NPs surface. The device has a linear AIV detection
range of 0.128 to 1.28 HAU (R2 = 0.99) and a 1.5 h test time, and it could be used in chicken
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swab specimens. An inhibitory assay using hemagglutinin (HA) protein placed over the
sensor chip to identify entire viruses was used to quantitate AIV H1N1 and H3N2.
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3. Fundamental Characteristics towards Biomedical Applications

In biomedical engineering, Ag and Au at nanoscale ranges were fabricated and applied
along with other 1D, 2D, and 0D substances. In the 1870s, silver and gold compositions be-
came widely used. However, several confirmations of silver compounds’ antiviral, antibac-
terial, and anti-inflammatory properties have been published since then [6]. Antibiotics,
which have more potent antibacterial properties, have greatly diminished interest in sil-
ver’s therapeutic properties. Nonetheless, by the end of the twentieth century, widespread
usage of antibiotics had resulted in a number of faults, and Ag/Au combinations were
still being studied and used extensively. Ag and Au’s nanostructures have a surface and
electronic configuration that makes them attractive candidates for better physicochemical
reactivity and selectivity among metallic nanomaterials. Due to their SPR and controlled
morphologies, several study discoveries have been studied specifically for these two noble
metals and their complex compounds, including biological, electrical, and photovoltaic
claims. The dimensional fluctuations of the excited electrons on the particle surfaces are
moderated by the regulated plasmon-induced light intensity, and thus, the functionalities
of the catalytic activities are controlled. This spectrum notion is particularly useful for
polymeric nanosystems, such as metal oxides, organic complexes, and synthetic polymer
frameworks. By using aqueous Zingiber officinale extract as a reducing agent, Mohapatra
et al. [27] developed a cost-effective synthesis technique for growing Ag NPs at room
temperature. Optical absorption measurements were used to study the SPR spectra of Ag
structures, and sunlight irradiation was used to produce red-shifted intensities. Due to
the involvement of SPR intensity, the biosynthesized Ag NPs had a better antibacterial
impact on the aquatic bacterium Escherichia coli. In the visible range, Au NPs display the
SPR phenomenon which is studied at 520 nm. The metal particle size has an impact on the
SPR band. (Figure 2) [28]. The Au NPs having narrow size (less than 10 nm) are noticeably
damped due to phase changes which possess collective motions of free electrons on the
surface compared to bulk objects. Such changes in particle sizes also affect the catalytic
activities, in particular, biomedical applications like drug delivery, cancer treatments, etc.
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Metallic NPs, on the other hand, have different work functions than metal-oxides
due to their oxidation states. As a result, numerous techniques such as XRD, XPS, EDS,
and others might be used to determine the comprehensive information of the generated
nanoparticles and their complexity. The elemental oxidation phase and their compositions
in planned nanocomposites have been determined using XPS, which has proven to be a
trustworthy approach. After synthesis, the specific binding energy aids in determining
the pure metallic and metal oxide products. The variation in binding energies aids in
identifying the specific elements present in nanomaterials. In general, the binding energy
peaks for Au 4f locate at around 84.1 and 87.8 eV, while the Ag 3d peak locates at around
368.2 and 374.2 eV (Figure 3). The energy differences for the 4f7/2 and 4f5/2 peaks of Au
are determined around 3.7 eV and for the 3d5/2 and 3d3/2 of Ag, 6.0 eV. These binding
energies are found to be identical to the Au and Ag neutral atoms [29]. Thus, this technique
is precisely used to identify the chemical states and atomic ratios of the elements.
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The element percentage or ratios could be well determined by using the XPS in the case
of multicomponent nanostructures. Alternatively, XPS techniques could be used to detect
Au and its oxide phases, which display discrete binding energies for specific structures.
Other techniques, such as Raman, can be used to analyse the nano-based materials that are
connected with Au and Ag and their supported substrates or nanoparticles.

3.1. Bandgap Engineering and Optical Responses for Improved Catalytic Action

The bandgap-change alterations have been determined using techniques such as PL
and UV–VIS spectroscopy. To attain the best bandgap values for ZnO, Ag-doped ZnO
and pure ZnO were created. Optical absorption spectroscopy, shown in Figure 4, is a
fundamental characterization for observing a bandgap energy shift in produced products.
Ag NPs show an absorption band around 420 nm, which shifted in the case of Ag-doped
ZnO showing broadband from the 400–600 nm region. However, the bandgap values were
also found to be changed for doped Ag NPs with the ZnO NPs (ZnO: 3.20 eV and Ag/ZnO:
2.95 eV, respectively. Adjustable bandgap values aid in the control of charge transfer in
semiconductors [30,31].
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Photoluminescence (PL) spectroscopic seems to be another method for estimating
or evaluating the photon energy of plasmon semiconductors. This method also aids in
the identification of communities of a created defect in semiconducting nanostructures
linked to plasmon elements. Figure 5 displays a general idea of the number of defects
inside host materials such as ZnO semiconductors doped by Rb rare ions (at the variable
concentrations of 7, 12, and 17 w%). An increasing or decreasing trend in PL intensity
revealed that imperfections are created in the lattice of the host.
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3.2. Role of Chemical Compositions, Surface, and Defects to Improve the Catalytic Functions

The pure and metal-doped host semiconducting nanomaterials are widely appreciated
to achieve potential applications in the area of medical science and technologies. To change
the surface structures and the electronic band positions, suitable cations such as Au and
Ag are incorporated into the semiconductors (ZnO, CuO, TiO2, etc.), resulting in optimum
bandgap values which make them a much-desired nanosystem for controlled electron-hole
pair mechanism. However, the creation of multiple defects levels is also involved to regulate
the charge transport mechanism into the doped semiconducting nanomaterials. Much
recent research has concentrated on developing nanomaterials for application as potential
antimicrobial substances by integrating nanomaterial science techniques with the natural
antimicrobial effect of inorganic metal oxides [5,6]. Metal oxides are a good alternative to
conventional antibacterial techniques because most metal oxides are non-toxic. Promod
Kumar et al. [32] have altered the surface and band structures of CdO nanostructures by
doping the Zn ions at a certain concentration which created lots of defective centers in the
host lattices. The defects ion effectively participated in the electron-hole recombination, and
the antibacterial/antifungal activities were controlled. The required techniques to identify
the crystalline changes as compared to pure host or metal-oxides were also explained along
with the morphological observations. The dopant oxidation states and their compositional
confirmation are determined by using the X-ray photoelectron technique which is often
used to characterize the nanomaterials. Here, the CdO: Zn catalysts expressed a strong
antibacterial and antifungal movement against Escherichia coli and Staphylococcus aureus, as
well as outstanding antifungal activity against Aspergillus flavus and Fusarium verticilliodes,
for unsupported CdO NPs. This is because of the indirect bandgap engineering in CdO
due to dopant concentrations, as shown in Figure 6 [32].
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Figure 6. (a) Diffuse reflectance profile of CdO and CdO: Zn; (b–f) bandgap values of modified CdO:
Zn and CdO. [32]. (Reprinted with permission from ref. [32]; copyright: 2020, Elsevier Ltd.).

It should be highlighted that Zn works as an effective donor by substituting into Cd
sites after shifting as an interstitial atom. Therefore, an increase in carrier numbers in the
conduction band occurs, and Zn interstitials atoms determine the values of the bandgap.
The high-energy bands in the conduction surfaces are generally filled by oxygen vacancies.
Overall antimicrobial studies are displayed in Figure 7, where the metal-doped CdO are
used as nanocatalysts against certain bacteria and fungi. The role of dopants at different
concentrations plays a key role in cell-damaging processes during antibacterial activity.
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4. Antibacterial Influences of Ag and Au Based Nano-Catalysts

Nanomaterials, which contribute to a variety of biomedical purposes, are typically
found in a few fundamental aspects, such as metal-oxides, metal sulfide, and metal-organic
frameworks (MOFs). The main constituent of metal-based nanomaterials, often known as
metallic nanocrystals, is the prior class of nanocomposites such as Ag, Au, Cu, Pt, and Pd
and their derivatives. Nanocrystals (nanoparticles), such as TiO2, ZnO, AgO/Ag2O, CuO,
etc. [29,30], are a different category of nanomaterials. Among these nanomaterials, doped
metal/metal oxide/metal nanomaterials are another sort of class. These modified materials
have improved electronic features, mechanical strength, thermochemical permanence, and
larger surface area with effective optical activities. Several studies have confirmed that the
defects and imperfections level of the doped ions or metals moderates the electron-hole
pair recombination during the catalytic activities. Therefore, modified nanostructures
or nanosystems are an effective tool in the biomedical and pharmaceutical sectors. A
systematic mechanism for antibacterial activities and their proper cell damage scheme are
explained in the below sections.

4.1. Schematic Antimicrobial Activities: Improved Performance

Nanomedicine, which is based on the nano idea, is gaining traction through improving
diagnosis and is generating new treatment options by incorporating nanoparticles into
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a variety of diagnostic instruments. Owing to their photocatalysis, optical and electrical
properties, plasmon metal nanoparticles (Ag, Cu, Au, and Pt) have also spurred research.
Localized surface plasmon resonance is a type of resonant electron fluctuation seen in
nanomaterials [7,32]. The capacity to safely combine noble metal ions into biological
systems has had a profound influence on medical and biological studies. Au nanocrystals
have received a lot of interest across noble nanostructured materials because of their potent
toxin, ease of synthesis, and advantageous adhesion to cellular components.

The antibacterial action of the produced nanomaterials can be expressed in the form
of microorganisms’ cell physiological disruption or plasma loss following nanoparticle
implantation. At first, both nanomaterial’s attacks on cellular components breakdowns
could influence a microbial cell’s metabolic pathway, resulting in plasma release and
microbial cells apoptosis with the abnormal increase of the inhibitory procedure [33,34].
The higher the metal ion presence, the more impurities, such as oxygen vacancies, were
introduced into the metal-oxides structures, as evidenced by several techniques like XRD,
XPS, and EDX results [35,36]. During the VB to CB transition, metal-oxides NPs with ionic
imperfections creates electron-hole pairs (e− and h+) [37]. Probably, the holes split the H2O
molecules into the OH and H+ ionic species, and the liberated electrons coupled with the
hydrated molecular oxygen. The anionic superoxide (O2) ions created by the molecular
oxygen finally resulted in the creation of hydrogen peroxide anions (HO2) and H2O2. The
H2O2 generated entered the cellular membranes and caused harm to the microorganism
(Figure 8) [30]. As a result, it is worth noting that the rate of H2O2 creation rose as the
quantity of electron-hole pairs was generated [38].
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4.2. Tunable Ag and Au Nanostructures and Their Biomedical Applications

Overuse of antibiotics poses a challenge to the treatment of various ailments, highlight-
ing the significance of developing new pharmaceutical therapies. According to the scientific
community, metallic-based Au and Ag NPs have been fashioned for the effective treatment
of a variety of illnesses. They are thought to be beneficial due to the specific interactions
of substances under or outside of the cell membrane. The increased surface area of these
particles implies that they have improved membrane permeability, which also hints at the
key findings. Biocompatible and durable Au NPs with increasing depth and retention
impact are non-immunogenic and non-toxic, and informal deposition and diffusion for
tumor treatment is a realistic approach. Numerous studies have been conducted on Au
nanocomposites due to their unique medicinal potential [39].
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However, nanoscopic Au and Ag NPs have indeed made a significant contribution to
people’s health, both in diagnosis and in a range of diagnostic applications (Table 1) [40].
Healthcare, bioelectronics, and biomedical applications are just a few of the fields in which
Au and Ag’s nanostructures have been studied intensively. The use of a new approach to
creating Au and Ag monometallic nanostructures makes it simpler to close the significant
reduction voltage differential between Au3+/Au ionic states [41]. Various scholars and
academics have emphasized the significance of Ag NPs in the treatment of a variety
of illnesses, as seen in Table 2. Ag NPs bind with bacteria and release metallic ions,
deactivating biological enzymes and inhibiting barrier permeation [42].

Table 1. Au NPs applications in biomedicine and their advantages [40].

Metallic
Nanoparticles

Particle Size
(nm) Targeted Cancer Cells Methods Method Performance

Au NPs 15 pAb and mAb
anti-CEA antibodies MCF7 cells SERS

immunoassay
Different

immunoassay method

Au NPs 35 anti-EGFR
Oral epithelial

living Cancerous
cell

SPR Valuable molecular
sensors

Au NPs 20 Heparin Epithelial Bioimaging therapeutics and
Imaging

Au NPs 15 Functionalized shiny
carbon electrodes

Lung and liver
cancer

Electrochemical
and contact-based

angle
measurements

Rapid actions and very
sensitive exposure for

cancerous cell

Au NPs 30 ENO1 antibodies Lung cancer Electrochemical
immune device

Measurable tests
protein and cancerous

biomarkers

Au NPs 100
Anticarcinogen-

embryonic
antibodies

Cancer ELISA Premature diagnosis
of cancer

Au NPs 90 EGF-ligand and tag
Raman receptors Flow tumours SERS Unique clinical tool for

managing of patients

Au NPs 20 Aptamer Leukaemia and
lymphoma

Spectroscopic
technique

Primary and precise
exposure of cancer

Table 2. Ag NPs applications for treating many infections [40].

Nanoparticles Nature of Infection Therapeutic Conclusion

Ag NPs

Malaria
Leishmaniasis

Helminth infections
Herpes

Influenza
Influenza

Prevention of growth of P. falciparum
Restriction of proliferation and metabolic actions of

promastigotes.
Better anthelmintic actions in contradiction to worm

Virus duplication was reserved
Active against influenza viruses

Dynamic against influenza A virus

Ag NPs manufacture using biological
methods Bacterial infection Outstanding antibacterial activities

Nanowires of Ag NP Bacterial infection Nanocube Ag NPs indicated the maximum antibacterial
activities.

Hexagonal and nanoplates Ag NP Bacterial infection Hexagonal-shaped Ag NPs against S. aureus and E. coli

Rod-shaped Ag NPs Bacterial infection The triangular shaped revealed high antibacterial activities
against E. coli
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4.3. Biomedical Applications of Ag and Au Nanostructures

Because of the rapid evolution in nanoscale manufacturing, it is critical to understand
nontoxicity and its effects. Nanocomposites have been used in medicine for decades to
reduce hazardous adverse effects; however, nanostructures raise some public health con-
cerns. According to studies, the most serious problems with nanoparticles are neurologic
and pulmonary impairment, cardiac troubles, and other health consequences. Several
nanomaterials tend to be non-toxic, but some have been modified to be less toxic, which
has beneficial medical consequences [43,44].

The effect of particles morphology on antimicrobial activity was investigated by Jo
et al. [45], especially for silver nanostructures. Ag nanoparticles worked against a num-
ber of illnesses, including a soilborne fungus that hardly produces spores. According to
studies, nanocrystals can successfully infiltrate and colonize plant tissue. They discovered
that Ag nanoparticles have a lot of potential for minimizing fungal plant diseases that
produce spores. According to their research findings, these nanomaterials may be less
toxic than synthetic fungicides. In a research study, Mie et al. [46] used the disc diffusion
model to investigate the antibacterial activity of their manufactured Ag NPs against eight
pathogens. According to their findings, the Nanoparticles showed promising antibacterial
activity against Gram-negative bacteria. As a result, the findings suggest that such Ag
nanostructures could be employed for biomedical purposes. Antibacterial activities of Ag
nanoparticles have been demonstrated to be comparable to those of their ionized states.
Antibacterial activities of Ag nanoparticles against drug-resistant microbes have also been
shown. According to the investigations, the antibacterial activity of Ag nanostructures is
due to the disruption of the bacterial surface. Additionally, Jess Mauro Adolfo Villalobos
Moreover, Xinglu Jiang et al. [47] structured Au-Ag NRs by Escherichia coli without sur-
face directing agents which means surfactants and used for biomedical applications. In
compared to pure Au or Ag nanoparticles, bimetallic Au–Ag nanostructures offer more
encouraging development in ultrafast colorimetric detection of H2O2, photothermal ther-
apy, and antibiotic therapy. Without the use of 3,3′,5,5′-tetramethylbenzidine (TMB) or
peroxidase, Au–Ag NPs could sense H2O2. Furthermore, Au–Ag NPs could improve
antibacterial action without increasing lethality, ensuring that Ag and Au can be used in
health context. (Figure 9).
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Figure 9. Thermographic pictures of Au and Ag-Au NPs (A), Temperature graphs of phosphate buffer
(PBS), Au NPs and Au-Ag NPs (B), and Cell viability by Au and Ag-Au NPs (C) [47]. (Reprinted
with permission from ref. [47]; copyright: 2020, ACS.).

Hussein et al. [48] described an ecofriendly functionalization for gold-chitosan nanos-
tructured materials (Au-CS hNPs) that used varying doses of CS as surface directing
agents to investigate the functionalities of the formed Au-CS hNPs and their antibacterial
properties. The proportion of CS utilized in the preparation determines its antibacterial
effect (Figure 10). To make extremely reliable Au-CS hNP with compact design, regular
configuration, and effective antibacterial/antifungal activities, a considerable proportion of
CS is essential. As a result, while pure gold nanostructures antibacterial properties are not
perfect, they can still be useful as functional mediators.
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The antimicrobial activities can be boosted with surface and structural alteration. It
is also revealed that the Antibiotic activity of nanostructures (Au NPs) and states have
been examined, particularly several oxidation states with the Au (I & III) ions showed
antimicrobial properties. Au NPs are antifungal, however, the evidence for their biocidal
efficacy is mixed. It is noted that the Au NPs are either not bactericidal or just slightly
bactericidal at high dosages. Nonetheless, the antibacterial effect of co-existing molecules
not eliminated by Au NPs, such as gold ions, surface coating agents, and compounds used
in the synthesis, could explain why Au NPs seem to be bactericidal. Au NPs can potentially
operate as antibiotic transporters or delivery agents, boosting the antibiotics’ bactericidal
activity [49]. However, in organic peptides and free metallic nanostructures, Bajaj et al.
discovered that nanomaterials were found to be more impactful for the antibacterial and an-
tifungal applications by attaching to the peptide’s active sites [43,44]. They discovered that
cationic peptide (1-His-1-Arg-OMe)-loaded Au NPs had a lethal impact that was superior
to that of conventional antibiotics. Furthermore, hybrid nanostructures are highly used in
multifunctional activities in modern science and technologies by tuning the structural and
surface properties [50,51]. These advanced materials have been applied for the improved
work functionality and durability of the integrated circuits and nanosystems [52–54].

5. Conclusions and Future Prospects

Recently, nanosized Au and Ag NPs have been used in biological imaging and
biomedicine, tumor targeting, and cancer therapy. Due to their narrow size, shape, strong
photoluminescence, surface morphology, and improved biocompatibility, Au and Ag
nanoparticles have a great deal of potential for therapeutic uses. Although Au and Ag NPs
have unique physical and chemical properties, their development for targeted therapy is
challenging. Therefore, the Au and Ag nanostructures have been functionalized to make
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them more effective and stable for medicinal capabilities. Enhancing the durability of Ag
and Au nanocomposites or manufacturing highly stable Ag and Au NPs should be the
next stage in the biomedical regime while designing and developing them as biomarkers or
agents is still an area of interest for many scientists. Therefore, a systematic overview of Ag-
and Au-based synthesis approaches, plasmonic importance, and structural modification
for biomedical applications have been addressed by including suitable examples. The
inorganic and organic-based Ag/Au nanomaterials are highlighted with their extraordi-
nary optical and structural functionalities. We believe that when therapeutic processes and
nanotechnology improve, gold and silver NPs will open great opportunities in the health
science industry and academy.
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