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Abstract: Noble-metal nanoparticles (NMNPs), with their outstanding properties, have been arousing
the interest of scientists for centuries. Although our knowledge of them is much more significant
today, and we can obtain NMNPs in various sizes, shapes, and compositions, our interest in them has
not waned. When talking about noble metals, gold, silver, and platinum come to mind first. Still, we
cannot forget about elements belonging to the so-called platinum group, such as ruthenium, rhodium,
palladium, osmium, and iridium, whose physical and chemical properties are very similar to those of
platinum. It makes them highly demanded and widely used in various applications. This review
presents current knowledge on the preparation of all noble metals in the form of nanoparticles and
their assembling with carbon supports. We focused on the catalytic applications of these materials in
the fuel-cell field. Furthermore, the influence of supporting materials on the electrocatalytic activity,
stability, and selectivity of noble-metal-based catalysts is discussed.

Keywords: noble-metal nanoparticles; carbon-supported nanoparticles; catalysts; fuel cells

1. Introduction

Not without reason, metals such as gold and silver are referred to by the adjective
noble, which means causing admiration for a particular appearance or quality. For centuries,
people have valued and used gold and silver for many purposes. These noble metals,
known since ancient times, have been frequently used as a means of payment, even
before the invention of coins. However, their value was derived from other applications,
particularly those related to esthetic and medicinal purposes. Gold, like all precious metals,
is resistant to corrosion and oxidation, but is also malleable, ductile, has a natural luster that
can be polished to create a shiny appearance, and does not tarnish. These qualities meant
that gold was used for special decorative ornaments, jewelry, and religious artifacts [1].
From antiquity to the middle ages, artisans used a mixture of gold salts with molten glass
to produce gold colloids with a rich ruby color for coloring glass, ceramics, and pottery. An
excellent example of the unique properties of gold nanoparticles dates from the 4th century
AD, the famous Lycurgus cup made from glass that appears red in transmitted light and
green in reflected light [2]. In addition to the decorative use of gold, its use for medical
purposes should be mentioned. All ancient civilizations utilized gold in medicine because
of the belief in its immortal nature as a rejuvenating agent, but also as a cure for diseases
such as heart and venereal problems, dysentery, epilepsy, and tumors [2,3]. Silver was
valued primarily as an antimicrobial and wound-healing agent [4]. Until the Middle Ages,
silver was also used as a cure for diseases such as wound infections, epilepsy, or ulcers. In
addition, ancient Egyptians, Greeks and Romans used silver vessels to keep water, wine,
and food fresh [4]. From the 17th century onwards, systematic research into the chemical
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processing of metal ores has taken place, with many discoveries, as presented in a scheme
in Figure 1 [4,5].
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Figure 1. The history of noble metals and their nanoparticles [4–12].

The modern era of NMNPs synthesis began in 1857, when Michael Faraday presented
the results of his research on gold and other metal colloids, thin films, and transparent
leaves. His research involved gold and other metals, such as silver, platinum, rhodium,
palladium, copper, zinc, aluminium, tin, lead, iron, mercury, and antimony, their film
formation and interaction with light [6,7]. M. Faraday examined most of the noble metals
known at that time.

Noble metals, for centuries, have given immortality to objects made of them, prolonged
human lives, and kept the food stored in them in good condition. Today, we are at a point
in history where we must again reach for the unique properties of precious metals to return
our planet to a good condition. Bearing in mind environmental pollution, global warming,
and the current situation of finite fossil-fuel resources, we need to reduce CO2 emissions
and air pollution due to the emissions of SOx and NOx and focus on renewable energy
sources [13]. We need to find a new way to utilize and store green energy. Many people
believe that hydrogen may be the best option. However, is it a new way? The devices for
obtaining hydrogen and fuel cells utilizing it as fuel have been known for over a century,
and indeed, they seem to be good candidates to replace fossil fuels and internal-combustion
engines. Then why did it not happen that these technologies have been used? In the
early stage of fuel-cell development, at the beginning of the 20th century, the widespread
availability of fossil fuels made the use of fuel cells economically unreasonable.

Nevertheless, fuel cells have many advantages. Above all, they convert chemical en-
ergy directly to electrical energy by electrochemical reactions. Their theoretical conversion
efficiency is very high compared to heat engines [14]. They have no moving parts, so they
are very quiet. It should also be mentioned that fuel cells are zero-emission environmen-
tally friendly technology with water as a waste product. An additional advantage of this
technology is its flexibility, which makes fuel cells suitable for various applications. They
are suitable for both mobile and stationary devices and can power large vehicles as well as
small phones [15]. Despite all the advantages, they are not widely used, mainly for eco-
nomic reasons. One of the most significant barriers for the widespread commercialization
of fuel cells and unitized-regenerative-fuel cells (URFC) is the high cost of their production,
which requires a precious Pt electrocatalyst [16,17]. Intensive research for solutions leading
to reducing their production costs is constantly ongoing. Among the possible solutions to
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reduce the cost of these devices is a reduction in the amount of the noble metal electrocat-
alyst, which can be achieved by reducing the size of the particles, combining them with
other metals into alloys, and modifying the shape of the particles. Another way is using
a high-surface-area support to enhance the dispersion of metal nanoparticles and thus to
increase the utilization and efficiency of the precious metal electrocatalyst [18].

This article reviews the recent progress of research on carbon-supported noble-metal
NPs assembly for catalytic application in fuel-cell technologies. With that in mind, we
will highlight, in this article, the current state of knowledge in the field of fuel cells and
hydrogen-based energy technology in general. We also want to show the progress that has
been made in the area of the synthesis of NMNPs in recent years, which manifests in a
number of synthesis methods as well as a variety of obtained nanoparticles. Finally, the
heterogenization of noble metals on carbon supports will be discussed.

2. Hydrogen-Based Energy Technology

Fuel cells are highly effective electrochemical devices that dynamically convert chem-
ical energy into electrical energy, which have been known for over 180 years. In 1838,
the main concept of the fuel cell was presented by William Robert Grove. He used two
platinum electrodes with one end of each immersed in a solution of sulphuric acid, and the
other ends separately sealed in containers of oxygen and hydrogen, and he observed that
a constant current flowed between the electrodes [19]. It was the first hydrogen fuel cell,
called a “gas battery,” because it was built by combining several sets of these electrodes in
a series circuit. A schematic illustration of Grove’s “gas battery” powering an electrolyser is
shown in Figure 2. Generally, fuel cells work just like batteries, converting chemical energy
directly to electrical energy, but they produce electricity from an external supply of fuel and
an oxidant, so they can work constantly. The inverse process to the one occurring in the
hydrogen fuel cell was observed by Anthony Carlisle and William Nicholson three decades
before Grove’s experiment. It was the first observed electrochemical reaction, which relied
on the decomposition of water into hydrogen and oxygen using electricity [20].

electrolyser

> >platinum
electrode

sulphuric
acid

+ _
+++ _ _ _

H2

O2

Figure 2. Grove’s gas battery powering an electrolyser.

A fuel cell can be combined with an electrolyser, which is a hydrogen generation device,
to constitute a system often called a regenerative fuel cell (RFC) or unitized-regenerative fuel
cell (URFC). This technology enables hydrogen production using green energy to reduce
the effects of intermittency associated with daily and seasonal fluctuations in sunlight and
wind availability [13]. This technology allows for the more efficient and stable operation of
wind and solar power plants, which are strictly dependent on weather conditions.

When writing about the early history of fuel cells, it is important to mention the crucial
role of Friedrich Wilhelm Ostwald, who is considered as the founder of chemistry–physics.
His pioneering work in 1893 concerning the chemistry of fuel cells was the basis for further
research in this field. In this work, he presented an experimental determination of the
proper interconnection of a fuel cell’s components and a theoretical understanding of its
roles [21,22]. The 20th century was a time of intense research on the complete explanation
and optimization of electrodes, electrolyte, oxidizing and reducing agents, anions, and
cations’ roles and properties. In its results, many types of fuel cells were developed. Among
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them, we can distinguish many types according to the operating temperature, electrolyte
type (a polymer–electrolyte membrane, also called a proton-exchange membrane fuel cell
(PEMFC), alkaline fuel cell (AFC), molten-carbonate fuel cell (MCFC), solid-oxide fuel cell
(SOFC) ect.) [14] or type of fuel (hydrogen [23], hydrocarbons [24], alcohols [25], etc.).

Nowadays, one of the most promising fuel cell types is the proton-exchange membrane
fuel cell (PEMFC). This technology currently gives the best chance for a quick reduction in
production costs and, thus, for widespread commercialization [26]. There are numerous
advantages of this technology, such as high power density, low-temperature operation
(under 90 ◦C), a compact system, fast start up, and ease in handling liquid fuel [27]. These
are the reasons why this type of fuel cell has found many applications. PEMFCs are
excellent electrical-power sources for vehicles and portable applications such as phones,
but also for large-scale power generation [15].

The very high production costs of fuel cells and difficulties in reducing them result
directly from fuel-cell construction. Figure 3 shows the essential components in a PEM fuel
cell, with its central component membrane-electrode assembly (MEA), which consists of
an electrolyte sandwiched between electrodes—an anode and a cathode. The electrodes
provide the flow of current by an external circuit and, at the same time, serve as an
electrocatalyst. The anode is the electrode on the fuel side where the hydrogen oxidation
reaction (HOR) occurs, while the cathode is the electrode on the air side where the oxygen-
reduction reaction (ORR) takes place. The electrolyte serves as a barrier to gas diffusion but
allows ions migration across it [28]. The cathode and anode reactions for PEM supplied by
pure hydrogen are the following:

Anode:
H2 → 2H+ + 2e− (1)

Cathode:
1
2

O2 + 2H+ + 2e− → H2O (2)

The simplest and most common fuel for the PEMFC is hydrogen. It can be delivered
to the cell in the form of a pure gas stream or in the form of a reformate produced from
various fuels, such as methane, methanol, or petrol. Among PEMFCs, we can also find cells
supplied directly by alcohols. Examples of these cells are called the direct methanol fuel cell
(DMFC) and the direct ethanol fuel cell (DEFC). In these fuel cells, a methanol-oxidation
reaction (MOR) and an ethanol-oxidation reaction (EOR) occur [29]. For a DMFC, the
cathode and anode reactions can be written as follows [30]:

Anode:
CH3OH + H2O→ CO2 + 6H+ + 6e− (3)

Cathode:
3
2

O2 + 6H+ + 6e− → 3H2O (4)

In both cases, these reactions need catalysts to increase the rate of the particular
reactions occurring on the anode and cathode, which leads to reducing the electrochemical
over-potential and increasing the voltage output [31].

The requirement for precious metals as electrocatalysts is one reason for the high
production costs. The other reasons arise from the specific requirements for individual
membrane-electrode assembly (MEA) components. Intensive work is still underway to
improve power densities and reduce operative costs at the same time. On the one hand,
researchers are focused on reaching a proton-exchange membrane with high proton con-
ductivity, low electronic conductivity, low permeability to fuel, a low electroosmotic drag
coefficient, high chemical and thermal stability, good mechanical properties, and of course,
a low cost [32]. On the other hand, work is underway to develop the optimal electrode,
which must meet three conditions: (i) be able to transport gaseous or liquid species, (ii) be
able to transport ions, and (iii) be able to transport electrons to rapidly catalyze electro-
oxidation (anode) or electroreduction (cathode) [28]. To meet these requirements, the
electrode must be electronically and ionically conducting, electrochemically active, porous,
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and have a high surface area, which is hard to fulfill by one material. Therefore, most
cathodes are made of composite materials and one of the components is an electrocatalyst.
The typical PEMFC needs Pt-based electrocatalysts for both the anodic hydrogen-oxidation
reaction and the cathodic oxygen-reduction reaction [26].

A
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Unused fuel

E
le
c
tr
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ly
te

Oxygen

Water

O2
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e

+H

_
e

H O2

Figure 3. Scheme of hydrogen fuel cell.

Generally, Pt-based electrocatalysts are utilized. The anode requires a low Pt loading
due to its fast hydrogen-oxidation reaction (HOR) kinetics, but the cathode requires a much
more efficient and durable electrocatalyst. The kinetics of the oxygen-reduction reaction
(ORR) that occurs on the cathode is much slower than the HOR. The sluggish kinetics of the
reaction on the cathode, which is around five orders of magnitude lower than for the reac-
tion on the anode, often demand better electrocatalysts than pure platinum [26]. Beermann
et al. point to the necessity to create nanoparticle catalysts based on alloying platinum with
transition metals (e.g., Fe, Co, Ni, Cu) [33]. Especially promising electrocatalysts can be
high-entropy alloys (HEAs) with less than 50 at.% Pt that can maintain high-ORR activity
and stability in various environments [34]. An excellent example of an HEA nanoparticle,
presented by Wu et al., is a nanoparticle that consists of all the platinum group members,
which can be an efficient catalyst for complex or multistep reactions [12]. However, catalytic
activity is not the only challenge. Another challenging task is the durability of the catalysts
used in fuel cells.

Numerous authors point out the difficulties of maintaining a constant high-
electrochemical performance. Among the potential degradation mechanisms, they mention
carbon corrosion, particle detachment, Ostwald ripening, particle migration, which can lead
to agglomeration or coalescence, and platinum dissolution (Figure 4) [35,36]. In Section 4,
the methods that can be implemented to eliminate degradation mechanisms through the
appropriate selection of the carbon supports or the method of immobilizing nanoparticles
on the carbon support will be analyzed.

Another challenge facing researchers is the high cost of platinum, which is the main
reason for very high operating costs. Therefore many efforts have been made to reduce the
costs associated with the use of precious metals as electrocatalysts. Among the different
approaches proposed are a reduction in Pt loadings, the use of less expensive noble metals
such as Pd and Ru, and the development of alternative low-cost electrocatalysts based on
non-noble metals and molecular chemistry [37]. Many studies also indicate the significant
impact of the carbon substrate as a carrier of NMNPs on their catalytic activity. Therefore,
in the following parts of this article, particular types of carbon substrates and their influence
on the catalytic properties of NMNPs will be discussed.
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CO2

Particle migration leading
to agglomeration or coalescence

Carbon corrosion Particle detachment Ostwald ripening

Platinum dissolution

Figure 4. The degradation mechanisms of carbon-supported NMNPs catalysts.

3. Synthesis of Noble-Metal Nanoparticles

Historically, the first method described was that used by Michael Faraday. He prepared
his colloidal dispersions of gold by a process of reducing an aqueous solution of a gold salt,
such as sodium tetrachloroaurate (Na[AuCl4]), with a solution of phosphorus in carbon
disulfide. At room temperature, this reaction proceeds very quickly and the light yellow
colour of the Na[AuCl4] solution changes within a few minutes to the ruby-red colour
typical of colloidal gold [38]. Since then, many various synthesis procedures have been
developed and described in thousands of publications.

Generally, the procedures of obtaining noble-metal nanoparticles can be divided into
two groups: the bottom-up and top-down approaches. The bottom-up method is the
most frequently used approach in the synthesis of nanoparticles because it gives many
advantages, such as the ability to obtain monodispersity and precisely controlled particle
size and structure. This method involves building up material from the bottom: atom by
atom or molecule by molecule. Top-down approaches depend on the partitioning of bulk
materials (milling, sputtering, pyrolysis, laser ablation) or on the miniaturization of pro-
duction processes to produce the desired structure with the appropriate size and properties
(lithography). This method is simpler but has many disadvantages and limitations, one of
which is the inability to control particle size and structure. In addition, this method causes
imperfections in the surface structure, which significantly affects the physical and chemical
properties of the resulting nanoparticles.

Another distinction of noble-metal NPs preparation methods could be the division
between chemical and physical methods. The chemical methods include chemical reduc-
tion using a reducing agent [39,40], the electrochemical method [41,42], the sonochemical
method [43,44] and green synthesis [45,46]. The physical methods comprise of pyroly-
sis [47,48], nanolithography [49,50], thermolysis [51] and radiation-induced methods [52,53].
Physical methods usually require special equipment, so they are infrequently available.
Therefore, in this review, we will describe simple chemical methods that can be repeated in
an averagely equipped laboratory.

The most frequently applied and reliable method of NMNPs synthesis is chemical
reduction [54]. This reaction includes the reduction of a precursor dissolved in a solvent
by reducing agents and stabilization, as presented in Figure 5. As reducing agents, boro-
hydrides, aminoboranes, hydrogen, acetylene, formaldehyde, hydrazine, hydroxylamine,
polyols, citric and oxalic acids, sugars, hydrogen peroxide, carbon monoxide, sulfites can
be used and other electronic reducing agents including electron-rich transition-metal sand-
wich complexes [55]. The choice of reductant is dictated by the conditions in which the
reaction is carried out because the activity of reducing agents is strongly conditioned by
the pH of the solution [56]. Among inorganic reductants, alkali metals borohydrides, such
as sodiumborohydride (NaBH4), are powerful reagents and they represent a historical
cornerstone in the list of such compounds. Sodiumborohydride is one of the most powerful
inorganic reductants, which is suitable to reduce cations of noble metals such as gold [57],
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silver [58,59], platinum [60], palladium [61], rhodium [62], ruthenium [63], osmium [64],
iridium [65], to their nanosized elemental state, according to the equation below [56]:

nBH−4 + 8Men+ + 8nOH− → nBO−2 + 8Me + 6nH2O (5)

Metalic ions

Reduction

Reduced atoms

Nucleation

Nano clusters

Further nucleation
and stabilization

Nanoparticles

Figure 5. Reduction of metal ions in solution.

An example of a simple and efficient method for the synthesis of NMNPs with con-
trolled size and shape is the chemical reduction of the metallic precursor in the presence
of a capping agent. The first shape-controlled colloid–chemical synthesis of Pt nanopar-
ticles used the hydrogen reduction of potassium tetrachloroplatinate(II) (K2PtCl4) in the
presence of sodium polyacrylate (NaPA) [66–68]. Similar reduction techniques have been
used by several other authors to prepare differently shaped noble-metal nanocrystals in
the presence of a number of other capping agents, for example, surfactants (e.g., CTAB,
SDS) [69–72], polymers (e.g., PVP, PVA) [73,74], and ligands (e.g., inorganic ions, thiols,
amines) [75]. These additives, present in the reaction medium, play important roles in
controlling the morphology of particles produced. Capping agents interacting with particle
surfaces can significantly change the growth rate of the NPs, inhibiting the incorporation
rate of growth units onto the particle surfaces and changing the surface free energies of
different facets [71,76,77]. Unfortunately, surfactants, as organic molecules deposited on the
surface of NPs, can block the catalytic active sites and prevent the use of such nanoparticles
in catalytic processes. Therefore, it is necessary to use effective methods of removing
surfactants without disturbing the shape of NPs before their application as catalysts [78,79].

Another frequently used method is the seed-mediated growth method. A popular
example of its use is the synthesis of Au nanorods, but other shapes can also be achieved
using this method [80]. Gold nanorods could be synthesized by adding small Au seeds into
a growth solution containing a gold (III) chloride solution (HAuCl4), silver nitrate (AgNO3),
ascorbic acid (AA) and cetyltrimethylammonium bromide (CTAB). The acid reduces Au3+

to Au+, and the addition of seeds catalyzes the reduction of Au+ to Au0, leading to the
generation of Au nanorods [80–82].

The synthesis of NMNPs with the ability to control size and shape has attracted the
wide attention of researchers because of the strong relation between structure and catalytic
performance [83–85].It is well-known today that size, shape, and morphology determine
the catalytic properties of NMNPs since the catalytic performance directly depends on the
distribution of atoms on the nanoparticle surface [86–88]. A higher NMNPs mass activity,
i.e., the catalytic activity per given mass of nanoparticles, should be achieved. This will
reduce the required consumption of noble metals in fuel cells. To date, the highest specific
activities (normalized by surface area) have generally been achieved on single-crystal
surfaces or well-defined platinum nanoparticles and its alloys with specifically engineered
facet structure [84,88]. One of the first reports on the influence of nanoparticle size on
their catalytic properties was the work of Haruta et al. in 1987 [10]. They claimed that
size plays a crucial role in enhancing gold nanoparticles’ catalytic activity. Gold NPs with
a 5 nm diameter were not only much more active but also were much more stable than
the conventional catalyst. In the same publication, the authors also drew attention to the
proper selection of the support for nanoparticles and their role in the catalytic process,
presenting the results for three different metal oxides as supports for gold nanoparticles.

One of the parameters that depends on the nanoparticle diameter is its specific sur-
face area, which is the key parameter in catalysis. Some research focuses on increasing
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the surface of catalysts not only by decreasing the diameter but also by forming porous
particles [89], stars [90], or frames [91].

Chemical composition is another critical factor that affects the catalytic activity of
nanoparticles. Over the years, methods to create multimetallic nanoparticles such as
bi- [92,93] or three-metallic [94–96] NPs have been developed. Especially, alloy materials
exhibit various mechanical and chemical properties not observed for single-component
NPs. Thus, designing alloy NPs seems to be a promising way for new catalyst preparation.
Among different alloy NPs, high-entropy alloys (HEAs) are attracting much attention. It
should be mentioned that the first HEA nanoparticle containing six platinum group mem-
bers was demonstrated by D. Wu et al. in 2020. One year later, D. Wu et al. presented the
first example of a high-entropy-alloy NP containing all eight noble-metal-group elements.
Designing precisely tailored HEA NPs is the most promising direction for the further
development of catalytic nanomaterials [8,12].

In summary, by using simple chemical methods, numerous researchers have suc-
ceeded in synthesizing a variety of nanoparticles with different shapes for specific applica-
tions (spheres, octahedrons, cubes, cuboids, rods, wires, decahedrons, icosahedrons, and
wafers) [97,98]. Table 1 shows the variety of NMNPs obtained by the simplest reduction
method and summarizes the procedures for the synthesis of noble-metal NPs depending
on the type, size and shape of the nanoparticles obtained.

Table 1. Examples of NMNPs with different shapes and sizes along with reagents used to synthesize them.

Metal Shape Size [nm] Precursor Reductant Stabilizer References

Au

Spherical 20–50 HAuCl4 SC - [99]
Spherical 3.5–4 HAuCl4 NaBH4 SC [100]

Nanoprisms 144 ± 30
(edge length)

HAuCl4 NaBH4 CTAB and AA [101]

Nanostars 37 ± 2 HAuCl4 HEPES PVP [102]

Ag

Cubic 18–32 CF3COOAg DEG PVP [103]
Nanorods 80–100

(diameter)
AgNO3 EG PVP [104]

Nanostars ~300 AgNO3 HA CCA [105]
Flower-like ~450 AgNO3 CCA CTAB [106]
Spherical 10–200

(tunable)
AgNO3 SC and TA - [107]

Pt

Spherical 4.9 H2PtCl6/K2PtCl4 NaBH4 PEI [108]
Cubic Tetrahedral 5.2 H2PtCl6/K2PtCl4 NaBH4 PEI [108]

Spherical Tetrahedral
Octahedral (tunable)

3–30 H2PtCl6 EG PVP [109]

Pd

Spherical 5–15 PdCl2 TEG PVP [110]
Nanodendrites 50 Na2PdCl4 SA Phosphonic acids

with aromatic side chains
[111]

Spherical 1.5–23.3
(tunable)

PdCl2 NaBH4 PVP [112]

Rh

Spherical 1.5–4 Rh(acac)(CO)2 - PVP/PVA [113]
Spherical 2.9–5.6 RhCl3 NaBH4

PEG-tagged
imidazolium salts

[114]

Triangular 10 RhCl3 TREG PVP [115]

Ru
Pompon-like ~148 RuCl3 TREG PVP [116]

Spherical 1.4–7.4 RuCl3 EG/DEG/TEG PVP [117]
Cubic 2.4–5 Ru(acac)3/RuCl3 EG/TEG PVP [118]

Ir
Spherical 2.5 ± 0.5 IrCl3 NaBH4 SC [119]
Spherical ~3 H2IrCl6 EG - [120]
Spherical 3–4 IrCl3 NaBH4 TA [65]

Os
Spherical NPs

forming nanochains
1–1.5

(single NP)
OsCl3 AA AA [121]

Cubic 0.7–1.8 Os(acac)3/OsCl3 EG PVP [122]
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4. Carbon-Supported Noble-Metal Nanoparticles

As presented in the previous sections of this article, the numerous physicochemical
properties of NMNPs, including optical, catalytic, as well as biological properties, have
led to a growing interest in these nanomaterials in laboratories in recent years [97,123,124].
Gold and silver nanoparticles, due to their optical properties which are related to the exis-
tence of localized surface plasmon resonance (LSPR), are used in highly sensitive analytical
methods such as surface enhanced Raman spectroscopy (SERS) [125,126] for biolomedi-
cal applications [127,128]. Biological properties, including the high antibacterial activity
of NMNPs, have made them very attractive in nanotechnology and medicine [129,130].
For years, Pt-based nanostructures have been widely used to obtain various types of
catalysts [131–133]. Among the unique properties used for fuel-cell applications are the
catalytic activity, selectivity and stability of the nanocomposites [134]. The catalytic pro-
cesses are localized on the surface of the particles, so their efficiency is directly related to
their morphology, size and shape, and composition [135,136]. By reducing the particle
size, a greater specific surface area (SSA) is achieved, as well as more active catalytic sites,
resulting in higher electrocatalytic activity [137]. Despite the great progress in the synthesis
of new noble metal nanoparticles, there are still some difficulties in their application in
catalytic processes. Besides the low yield and high cost of the syntheses, issues of their ag-
glomeration under conventional catalytic-reaction conditions remain [138–140]. Therefore,
work has begun on integrating them with other stable and inexpensive materials, which
have helped to optimize their properties and minimize their consumption [141–144]. The
resulting compositions not only possess the combined properties of the individual compo-
nents, but also potentially exhibit new functions and enhanced performance [145–147]. The
support provides NMNPs with a higher surface-area-to-volume ratio, contributing to the
increased catalytically active areas in which reactions occur [148,149].

To date, noble-metal nanoparticles have been successfully incorporated with poly-
mers [150–152], oxides (e.g., SiO2 [153], Al2O3, TiO2 and CeO2 [154] Nb2O5, Ta2O5, and
ZrO2 [155]), metal–organic frameworks (e.g., ZIF-8, MIL-101-NH2) [156,157] and carbon
materials (e.g., carbon black, carbon nanotubes, graphene) [158–161]. Over the past decades,
carbon materials have been recognized as an ideal substrate because of their extraordinary
physical and chemical properties and their universal availability, processibility, environ-
mental friendliness, and relative stability in both acidic and basic media [162]. At this point,
it should be added that carbonaceous materials (CMs) have a large specific surface area,
high porosity, excellent electron conductivity, relative chemical inertness, good thermal
stability under an inert atmosphere, an intrinsic hydrophobic nature, and the presence of
vast functional groups that facilitate metal loading [159,163].

Depending on distinct types of crystal structures, carbon atoms can form a variety
of allotropes with different properties [164]. In particular, carbon nanomaterials, such
as 0D fullerenes, 1D carbon nanotubes, 2D graphene, etc., have dynamized research in
the field of electrocatalysis. Built on them, NMNPs/CMs nanocomposites are an ideal
option for various electrochemical reactions in energy conversion and storage, including
hydrogen evolution and oxygen reduction. These materials withstand various types of
electrochemical oxidation reactions, which reduce the lifetime of electrocatalysts due to
sintering and poisoning effects [165,166].

In conventional systems, carbon black, which is a product produced by the pyrolysis
of petroleum hydrocarbons, is usually used as a carrier for Pt nanoparticles. Due to
its high availability and low cost, it is widely used in electrocatalysis applications [167].
Common carbon blacks include acetylene black, Vulcan XC-72, Ketjen Black, etc. Their
major physicochemical characteristics include specific surface area, electronic conductivity,
large surface-to-volume ratio, stability, and surface functionality [168–172].

4.1. Methods of Obtaining NMNPs/CMs Nanocomposites

Thus far, a lot of work has been devoted to developing new, efficient methods for the
preparation of electrochemically active NMNPs/CMs nanocomposites. It was found that
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the smaller and more homogeneous the immobilized metal particles are, the better the elec-
trocatalytic properties of the nanohybrid [173–175]. Among the chemical-deposition meth-
ods of NMNPs on carbonaceous supports, one can distinguish: surface-functionalization
methods, electrochemical deposition, and electroless deposition [176,177]. In this work,
it has been decided that detailed descriptions of the syntheses of nanocomposites and
their catalytic properties are to be presented for the most frequently described, i.e., widely
understood, mesoporous carbon materials, carbon nanotubes, and graphene (Figure 6).
Examples of other carbon supports along with an indication of the synthesis method are
summarized in Table 2.

Table 2. Examples of carbon-supported nanocomposites categorized by synthesis method.

Synthesis Method Precursors Type of NMNPs NM Particle Size
[nm] References

Surface
functionalization

CNF, NaOH, H2SO4, H2PtCl6 Pt 6 [178]

CNF/TiO2, EG, NaOH, H2PtCl6 Pt 3.8 [179]

Ketjen Black, HNO3, H2PtCl6 Pt 2.5 [180]

N-CNT, HCOOH, H2PtCl6 Pt (nanorods) 3–4 × 10 [181]

Vulcan XC72, HNO3, H2PtCl6 Pt 2.2 ± 0.4 [182]

rGO, HCOOH, H2PtCl6, PdCl2

PtPd
4 × 20–200 [183]Pt nanowires

Pd nanoparticles 5

Ni-N-CNTs, PDDA, PdCl2 Pd 2–5 [184]

MWCNTs, THF, H2PtCl6, SnCl4 PtSn ~4 [185]

CX, HNO3, H2PtCl6, RuCl3 PtRu 3.8–4.4 [186]

BDD, NaOH, SDBS, RuCl3, H2PtCl6 PtRu 2–5 [187]

rGO, KAuCl4, K2PtCl6
Pt 2.34 ± 0.52

[188]
Pt-Au 2.86 ± 1.30

rGO, Vulcan XC-72, H2PtCl6 Pt 0.5–2.5 [189]

G-CNTs, KOH, H2PtCl6 Pt 4.3–6.8 [190]

rGO, EG, HAuCl4, H2PtCl6 Pt-Au [191]

CQD, Vulcan XC-72, H2PtCl6, NaBH4 Pt [192]

N-GQD, Na2CO3, HCl, PdCl2 Pd [193]

N-GN, CoCl2, RuCl3 RuCo 6.2 [194]

C60, H2PtCl6, Pt <5 [195]

C60, NaOH, H2PtCl6 Pt 3.93–4.20 [196]

GO-PyrC60, PdCl2 Pd 10 [197]

CA, Vulcan XC-72R, H2PtCl6, NaBH4 Pt 3.24 [198]

MNC, CCA, NaOH, H2PtCl6, NaBH4 Pt 3.1 [199]

Vulcan XC-72R, NaOH, H2PtCl6, H2IrCl6 PtIr 3.6–3.9 [200]

CNT, H2SO4, IrCl3 Ir ~1 [201]

MWCNT, EG, HNO3, H2SO4, H2PtCl6,
RuCl3, ReCl3

Pt-Ru 2.79 ± 0.58

[202]

Pt-Re 3.53 ± 0.80

Pt-Ru-Re 2.88 ± 0.64

Pt-Ru-Re 2.68 ± 0.55

Pt-Ru-Re 3.19 ± 0.54
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Table 2. Cont.

Synthesis Method Precursors Type of NMNPs NM Particle Size
[nm] References

Electrochemical
deposition

CNT, EG, H2PtCl6, RuCl3 Pt-Ru 3.1–5.6 [203]

GO, H2PtCl6, KH2PO4 Pt 10 [204]

GO, CNF, H2PtCl6, H2SO4 Pt 350–500 [205]

CP, H2PtCl6, RuCl3, HCl, KOH Pt-Ru 52.9 ± 9.2 [206]

GR, ZnO, K2PtCl6, H2SO4 Pt 250 [207]

BDD, NaBH4, NaOH, H2PtCl6 Pt 15 ± 5 [208]

BDD, Ni(NO3)2, HCl, PdCl2 Pd ~13 [209]

Vulcan XC-72, H2PtCl6, H2SO4 Pt 1–4 [210]

Electroless
deposition

CNO, H2PtCl6 Pt 20 [211]

CNT, CoCl2, H2PtCl6 Pt 30–40 [212]

CNT, SDS, EG, Na2PdCl4 Pd 2–5 [213]

MWCNT, HAuCl4 Au 10 [214]

PC, C6H5K3O7, RhCl3, RuCl3, IrCl3

Ir 0.96 ± 0.13

[215]Rh 1.11 ± 0.31

Ru 1.37 ± 0.39

NiO/Ni/CNTs, K2PtCl6 Pt ~2 [216]
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Figure 6. A schematic representation of various carbon supports for NMNPs.

Two types of procedures can be used depending on the requirement. In type 1:
previously synthesized metal nanoparticles are deposited on carbon substrates. In type 2:
the formation of nanoparticles and their deposition on carbon substrates occurs during a
single process. These two processes can be based on the creation of covalent or noncovalent
interactions between individual elements of nanocomponents. Both functionalization
processes serve to enhance the number of active binding sites for the deposition of metal-
nanoparticle catalysts and also to improve the dispersibility of the carbon substrate in
water or solvents. These aspects ultimately enhance the catalytic effect [217,218]. In the
case of noncovalent functionalization, the hybridization of the material in question remains
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unchanged. It also has little effect on its electronic properties, as a result of the weak van
der Waals forces of attraction between the adsorbates and carbon substrates [176,177,219].
In the case of covalent functionalization, different types of binding sites are generated. One
form of covalent functionalization is oxidative means, during which oxygen groups such as
carboxyl, carbonyl and hydroxyl groups, are formed [177,220]. They stabilize the dispersion
of carbonaceous materials in polar solvents and provide active sites for metal adsorption.
Such functionalized carbon materials with noble metal precursors can be further reduced
by the addition of reducing agents (e.g., ethylene glycol (EG), NaBH4, H2, formic acid
(HCOOH), etc.) to form NMNPs/CMs hybrids [221,222]. The synthesis process can be
significantly accelerated by using an irradiation-assisted technique, for example, visible
light or microwave irradiation [223,224]. Particularly noteworthy is the microwave-assisted
polyol method, which has numerous advantages such as ease of procedure, speed and
safety [225,226].

In the electrochemical method, the MNNPs/CMs nanocompounds are obtained via
the reduction of noble metal complexes, such as H[AuCl4], H2[PtCl4], or (NH4)2[PdCl4], by
electrons. It consists of the following steps: deposition of carbon material on the electrode,
immersion of the carbon-coated electrode in an electrolytic solution containing metallic
precursors, and application of an electrochemical potential. Carbonaceous materials act as
molecular conductors to provide support for the deposited NMNPs. It should be noted that,
in this case, CMs do not react with noble metal salts. The nucleation process and subsequent
growth of NPs can be effectively controlled by adjusting electrodeposition parameters such as
nucleation potential, deposition time, metal salt concentration, etc., [176,177,204,206,227,228].

The electrodeless deposition method constitutes a chemical process involving a direct
redox reaction, by electron transfer between metal ions (higher reducing potential), and a
carbon support [229,230]. Due to the fact that such a process does not require any external
reducing agents, electrodeless deposition is considered as a green strategy for producing
metal NPs on carbon substrates [231].

4.1.1. Noble-Metal Nanoparticles on Mesoporous Carbon Materials

Carbon materials with mesoporous characteristics (2 nm < pore sizes < 50 nm) have
received considerable attention in electrocatalytic applications. They can facilitate the
transport of reactants to the electrocatalysts and simultaneously exhibit large surface areas
and low charge-transfer resistance [232–234]. On this basis, numerous examples of the use
of mesoporous carbon materials [186,235,236] have attracted much interest as electrocatalyst
supports for fuel-cell applications. Using ordered and highly ordered mesopoporous
carbon materials as substrates for Pt and PtRu nanoparticles, respectively, it was shown
that the size and distribution of mesopores play an important role in electrochemical
reactions [236,237]. Qi et al. synthesized PtRu nanoparticles with graphitic mesoporous
carbon (GMC) substrates using a chemical reduction process, with H2PtCl6 and RuCl3
as precursor nanoparticles [232]. The study involved the use of GMCs with different
pore sizes, and the results clearly indicated that this parameter affects the performance of
direct methanol fuel cells. Carbon aerogels (CA), which can be synthesized from cellulosic
biomass, are another favorable porous material for fuel-cell-energy-storage and conversion
applications [238–241]. An example is the work of Gu et al., in which the effect of CA pore
size on the deposition of Pt NPs was reported for proton-exchange-membrane-fuel-cell
(PEMFC) applications [198]. In the initial stage, CA was impregnated with Vulcan XC-72R
carbon, and then platinum nanoparticles (from H2PtCl6) were attached to the prepared
system by chemical reduction with NaBH4. In turn, Cheng et al. manipulated the potential
(potentiostatic deposition or square wave potential deposition) produced Au nanostructures
with different sizes and shapes on the surface of carbon fiber paper electrodes [242]. Pt
monolayers were deposited onto the resulting urchin-like nanostructures using a surface-
limited redox replacement method. The resulting systems were tested in a methanol
electrooxidation reaction.
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An important step during the synthesis of nanocomposites is the regulation of the
surface properties of the MC through different surface-modification methods before the
deposition of metal NPs [186,243]. For example, Su et al. deposited uniformly dispersed Pt
NPs on the surface of N-doped porous carbon nanospheres (PCNs) [244]. Pt/PCNs hybrids
were synthesized by the reduction method using EG as a reducing agent and H2PtCl4
as precursor. The process was assisted by microwave irradiation for 3 min. The authors
found that Pt/PCNs exhibited increased activity in the methanol oxidation reaction (MOR)
than the commercial E-TEK catalyst. In turn, in Ott’s group, N-functionalized Ketjen Black
carbon powder was used as a substrate for Pt nanoparticles [180]. Modification of the
carbon support was carried out by pre-oxidizing the pristine carbon in concentrated HNO3
at 70, 200, 400 and 600 ◦C. That modification contributed to the formation of carboxylic,
hydroxylic and NOx groups at the surface and also altered the meso- and microporous
structure of the carbon supports. An increase in nitrogen content and a higher proportion of
mesopores for media subjected to higher temperatures were observed. Following this, the
polyol method was used, in which the carbon and Pt precursor (H2PtCl6) were dispersed
in ethylene glycol and reduced at 120 ◦C for 2 h. As a result, Pt NPs were deposited on the
outer and inner surface of carbon powder particles, and, thus, a high power density in the
fuel-cell catalyst, with high stability under voltage cycling, was obtained.

A parameter that also improves fuel-cell performance is the method of catalyst synthe-
sis [245]. Harzer et al. determined the performance of PEMFC cells depending on the way
platinum nanoparticles were distributed on Ketjen Black. Using a polyol method and reduc-
ing a highly dilute platinum precursor in ethylene glycol, Pt nanoparticles were obtained
on the outer carbon surface and in solution. In contrast, using a prewetting method in
which the carbon support is impregnated with a highly concentrated Pt precursor solution,
nanoparticles were obtained inside the pores of the carbon particles. The catalyst with more
Pt particles deposited on the outer surface of the carbon achieved better results.

4.1.2. Noble-Metal Nanoparticles on Carbon Nanotubes

Discovered by Iijimain in 1991, carbon nanotubes (CNTs) are one of the most widely
used substrates for the formation of NMNPs/CMs complexes. They are defined as the
ordered, hollow graphene-based nanomaterials made up of carbon sp2 - hybridised atoms.
They can be classified into the following two categories: (1) single-walled carbon nanotubes
(SWCNTs), consisting of a single sheet of carbon that has been rotated into a tubular
form, and (2) multi-walled carbon nanotubes (MWCNTs), which are comprised of several
concentric SWCNTs having a mutual longitudinal axis [159,246]. The diameter of CNTs is
in the nanometer scale, while their length can reach several microns. Numerous examples of
NMNPs/CNTs nanohybrids have been reported in the literature for catalytic applications.
The first application of NMNPs/CNTs nanocomposites in heterogeneous catalysis dates
back to 1994 [247]. This kind of composite material advantageously integrates the unique
properties of individual materials and exhibits some innovative features resulting from the
interactions between CNTs and NMNPs. These features directly translate into numerous
attractive applications in many fields, especially in catalysis, fuel cells, and environmental-
contaminant sensing [159,248–251].

Obtaining small size, dispersed particles of noble-metal NPs on CNTs is desirable
due to high catalytic activity and also for economic reasons. Despite the fact that CNTs
exhibit excellent electrical, mechanical, and thermal properties, however, they are chemi-
cally inactive and hydrophobic. As a consequence of this, they often do not have enough
binding sites for anchoring guest molecules, which results in low dispersion and a large
particle size of nanoparticles. Therefore, functionalization of the external surfaces of CNTs
is generally carried out [252]. Preformed NMNPs can be deposited on functionalized CNTs
or functionalization and synthesis can be carried out in a single process of the formation
of NMNPs/CNTs complexes (Figure 7). The surface modification of carbon nanotubes
can be performed either covalently or noncovalently [253]. Such CNTs functionalization
methods serve both to increase the number of active binding sites for NMNP deposi-
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tion and to improve the dispersibility of CNTs in solvents, which enhances the catalytic
effects [217,218].

Covalent functionalization of CNTs is often carried out via an aggressive oxidation
treatment with a HNO3 or HNO3/H2SO4 mixture [253]. This process contributes to the
formation of several functional groups, such as carboxylic, carbonyl, and hydroxyl groups,
on the surface of nanotubes. It can also be carried out by pretreatment of CNTs in HCl, HF,
KMnO4 or H2O2 [254]. Then, covalently functionalized CNTs often undergo subsequent
functionalization processes to control the size and dispersion of the NMNPs deposited on
them. That approach was used by Wang’s group [255]. In the first step, they functionalized
the nanotubes with COOH groups. They then attached amine-terminated ionic liquids
(NH2-IL) to the functionalized nanotubes. The gold salt [AuCl4]- was adsorbed to the
thus-formed amide bond between MWCNTs-COOH and NH2-IL through electrostatic
interaction and ion exchange. As a result of this process, well dispersed 1–2 nm Au NPs
were obtained.

Noncovalent functionalization involves the attraction of the hydrophobic end of an
adsorbed molecule to the walls of CNTs via van der Waals forces or π– π interactions [176].
This is carried out without disturbing the electron structure of the CNTs, as the covalent
bonds are not affected. In this case, the following may be used aromatic organic compounds
such as derivatives of pyrene, thionine, or triphenylphosphine, and they contribute to the
formation of several functional groups such as thiol, amine, or carboxyl groups, which can
be used as the linkers to anchor NMNPs onto CNTs surfaces. In paper [256], it was shown
that, by using the in situ polymerization method, it was possible to obtain a homogeneous
polymer coating on the surface of MWCNTs, which allows for better dispersion of the
nanotubes. An example of such noncovalent functionalization is the modification of carbon
nanotubes presented by Zheng [257]. The synthesis of Pd/MWCNTs nanocomposites
with particle sizes of 3 nm was achieved by π– π stacking interactions of MWCNTs and
naphthalen-1-ylmethylphosphonic acid (NYPA).On such functionalized carbon nanotubes,
Pd nanoparticles were deposited by means of a homogeneous precipitation–reduction
reaction method by using PdCl2 as a noble metal precursor and NaBH4 as a reduction agent.

carbon nanotubes mixed
with noble metal salts (impregnation)

carbon nanotubes mixed
with colloidal noble metal NPs

NMNP/CNT hybrid

Anchoring Reduction

Figure 7. Scheme of the deposition of NMNPs on carbon nanotubes.
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Using the same method, it is also possible to form bimetallic-based composites. For
example, by reduction with H2PtCl6, the addition of ruthenium and molybdenum precur-
sors (Ru3(CO)12, Mo(CO)6), followed by annealing for 2 h at 400 ◦C in a N2 atmosphere,
bilemetallic Pt-Ru/SWCNTs and Pt-Mo/SWCNTs composites were obtained. Moreover,
the as-synthesized Pt-Ru/SWCNTs composite showed better current and power densities
than Pt/SWCNTs catalysts [258]. Another bimetallic electrocatalyst that plays an important
role in the development of direct-methanol-fuel-cell applications is the PtIr/MWCNTs
composite [259].

Another way to improve physical and catalytic properties is doping, realized by
replacing the carbon atoms in carbon nanotubes with other elements such as nitrogen,
phosphorus or boron. For example, Yu et al. [260] reported doping of MWCNTs with
phosphorus (P) and nitrogen (N), which improves their durability and increases their
electrocatalytic activity. In turn, Jin et al. reported that Pt/CNTs doped with selenium
atoms show long-term stability and good activity in comparison with a commercial Pt/C
catalyst [261]. Nitrogen can be used both as a dopant and a surfactant in the growth of
CNTs [262]. Nitrogen-functionalized CNTs (N-CNTs) have a high number of surface nucle-
ation sites, which allow the anchorage and high dispersion of the noble metal particles [263].
N-CNTs, as substrate material, possess high resistance to surface oxide corrosion, which is
an attractive feature, e.g., in oxygen reduction reactions (ORR) [184]. Noteworthy is also
paper [264], which shows that boron doping increases the binding energies of transition
metals to CNTs supports more than nitrogen. In turn, Rajala and co-workers fabricated
platinum nanowires on SWCNTs (Pt NWs/SWCNTs) then pretreated with ozone, which
resulted in the formation of polar surface groups on the carbon nanotubes. The fabricated
Pt NWs/SWCNTs-O3 composites were more hydrophilic in nature and outperformed in
the hydrogen evolution reaction (HER) than non-ozonized compounds [265].

The current trend is the replacement of noble metal nanoparticles in NMNPs/CNTs
complexes with cost-effective alternatives, including, for example, nickel. Nickel-doped
materials have relatively high electrochemical activity (e.g., ORR, CO2 reduction) and
are low-cost [184]. Zhang et al. developed Pd nanoparticles assembled on Ni- and N-
doped carbon nanotubes. The resulting CNTs-based composite with homogeneous and
monodispersed Pd and Ni particles (2–5 nm and <1 nm, respectively) achieved much better
hydrogen evolution reaction (HER) activity compared with the commercial Pd/C sample.

By using an electrochemical method, a very high purity of nanoparticles and their
good adhesion to CNTs substrate can be ensured. However, the NMNPs/CNTs nanocom-
posites prepared by this method usually receive particles with big particles size (between
10 and 100 nm), as shown in He’s work [228]. Pt or bimetallic Pt–Ru nanoparticles were
electrodeposited on the CNTs by the potentiostatic method from H2SO4 aqueous solu-
tion with ruthenium chloride and chloroplatinic acid. The nanoparticles obtained by this
method, although characterized by high purity, also had a grain diameter larger than 60 nm.
In order to decrease the size of the metal NPs on the CNTs, Tsai et al. [266] synthesized
a Pt and a Pt–Ru/CNTs by potentiostatic electrodeposition in mixed sulfuric acid and
ethylene glycol containing aqueous electrolytes. It was found that the addition of EG
led to the formation of uniformly dispersed and non-agglomerating Pt and Ru NPs with
small sizes, ranging from approximately 4.5–9.5 nm and 4.8–5.2 nm for Pt and Pt–Ru,
respectively. Grain size reduction can also be achieved by using methods such as cyclic
potential scanning [267], pulsed electrodeposition [268], ultrasonic-electrodeposition [269]
and a co-electrodeposition/stripping protocol [270].

The formation of NMNPs/CNTs complexes is also possible by using electroless depo-
sition. An example is the use of the one-pot method, which uses a redox reaction between
metal ions and reduced CNTs [271]. Using this procedure, Au and Pd NPs were successfully
anchored to the surface of MWCNTs and SWCNTs. Another method that overcomes the
limitations of classical electroless deposition is substrate-enhanced electroless deposition
(SEED). In the SEED method, CNTs are supported with metal substrates whose redox
potential is suitably lower than that of the metal species being reduced. In this case, CNTs
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are no longer a reducing agent and act only as cathodes and templates for metal deposition
from the corresponding noble-metal salts [214].

4.1.3. Noble-Metal Nanoparticles on Graphene

In addition to carbon nanotubes, graphene (GR) as carbon support also improves the
catalytic activity and stability of supported Pt catalysts compared to mesoporous coun-
terparts through enhanced electrical conductivity and metal–substrate interaction [181].
Graphene is a single-atom-thick two-dimensional carbon nanosheet of sp2 bonded carbon
atoms packed into a honeycomb lattice that was first synthesized in 2004 by Geim and
Novoselov [272]. In 2010, this discovery was awarded the Nobel Prize in Physics for its
significant contributions to the development of graphene-based catalysts [273]. Over the
years, graphene, as well as its derivatives, including graphene oxide (GO) and reduced
graphene oxide (rGO), have become promising candidates for many applications such as
batteries, photovoltaic devices, biosensors, supercapacitors and fuel cells. This wide range
of applicability is influenced by its unique properties such as large surface area, thermal
conductivity, high electron mobility and good stability [159,177,274,275]. Significantly, the
numerous oxygen-containing groups present in GO and rGO provide many opportunities
for further functionalization and modification [276–279]. Graphene is an excellent building
block in the fabrication of various nanocomposites representing the most recent advance
in many fields of chemistry, physics, and electronics [219,274,275,280,281]. Combining
GR with noble-metal nanoparticles improves electrochemical performance and provides
perfect thermal stability, which is important in electrocatalytic applications (e.g., oxygen
reduction and hydrogen/oxygen evolution reactions) [282,283].

The preparation of GR-based noble-metal nanocomposites by using wet-chemical
synthesis methods has many advantages, such as an economic cost of production, high
yield, mass production and commonness. The most popular strategy is the direct chemical
reduction of a noble metal precursor (e.g., HAuCl4, AgNO3, H2PdCl4 or K2PtCl4) in the
presence of graphene and its derivative sheets using a reducing agent such as amines,
NaBH4, and ascorbic acid [284–286]. For example, Iqbal’s group prepared 34 nm meso-
porous Pd nanoparticles on rGO sheets modified by the block copolymer F127 [287]. This
block copolymer has served as a template for better dispersion of Pd nanoparticles. As a
precursor to palladium particles, H2PdCl4 was used , which was reduced by ascorbic acid.
By using direct chemical reduction, it is also possible to synthesize GR-based multimetallic
noble-metal nanocomposites. For example, Pt-Pd supported on rGO were obtained by the
reduction of a noble-metal precursor (H2PtCl6 and PdCl2) by ascorbic acid and octylphe-
noxypolyethoxyethanol (NP-40) as a soft template [288]. Vilian et al. reported the synthesis
of Pt-Au/rGO nanohybrids by a direct chemical-reduction methodology. The reported
methanol oxidation is found to exhibit excellent electrocatalytic performance, reliability,
and stability, surpassing that of several reported modified electrodes that can also be used
for platinum-based catalysts in fuel-cell applications [289].

The chemical reduction process can also be assisted by microwave irradiation for
the synthesis of chemically converted graphene sheets and metal nanoparticles dispersed
on them [290]. In turn, the sonochemical method has been used, for example, in the
development of Au/GR nanocomposite [291]. In this study, by using an ultrasonication
probe of 20 kHz on the surface of exfoliated few-layer graphene sheets, the in situ growth of
gold nanoparticles (Au NPs) after the reduction of gold chloride took place . Alternatively,
Huang et al. synthesized Pd/rGO nanohybrids with ~3 nm nanoparticles using a one-
pot photoassisted citrate reduction. In the process shown, the mixture of GO solution,
Na2PdCl4, sodium citrate, and deionized water was irradiated by a 500 W high-pressure
mercury lamp for 12 h. This synthetic approach allows for the formation onto the rGO
surface of Pd nanoparticles with the desired size with excellent activity and stability of
complexes in oxygen reduction and ethanol oxidation reactions. The prepared Pd/rGO
nanocomposite exhibited 5.2 times higher mass activity for ethanol oxidation reaction than
the commercial Pt/C catalyst [292].
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By analogy with other carbonaceous supports, it is possible to use an electroless
method to prepare NMNPs/GR composites. In this case, graphene derivatives (GO or rGO)
themselves can donate electrons to reduce the noble-metal precursors in an aqueous phase
without any additional reductant. In accordance with this, metal precursors (e.g., HAuCl4,
H2PdCl4, or AgNO3) can be reduced to form metallic Au, Pd, and Ag nanoparticles,
respectively, solely by GO or rGO [284,293,294]. An example would be the work of [295],
in the synthesis of the redox reaction between Au, Ag or Pd precursors and the partially
reduced graphene oxide (prGO) in an aqueous solution. The as-obtained Au, Ag and
Pd/prGO nanocomposites display excellent catalytic activities, and the size distributions
of the Au, Ag, and Pd particles were 1–20 nm, 3–10 nm and 0.5–3 nm, respectively.

Interesting conclusions presented by Qin et al. claim that a heating treatment and
strong alkaline conditions enhance the reducing ability of the hydroxyl groups on GO. In
their work, Au/rGO nanocomposites were prepared through a one-pot strategy, conducted
by heating a mixture of HAuCl4, NaOH and graphene oxide solution at 90 ◦C [294]. It is
also possible to obtain NMNPs/GR nanocomposites by using pure graphene without any
additional groups. This strategy was proposed in a paper by Jeong et al., in which graphene
was covered onto a reducing substrate (e.g., Si or Al) [286]. As a result, Au/GR or Pt/GR
nanocomposites could be prepared because electrons were transferred from the substrate,
via graphene, to the precursors (HAuCl4 or KPtCl4). In Zou et al.’s paper, using a two-step
electrochemical deposition method, spherical Au nanoparticles and a 3D flower-like struc-
ture graphene were obtained on a glassy carbon electrode (Au/rGE/GCE) [296]. Another
example was presented by Liu et al.: an electrochemically seed-mediated method by which
sub-10 nm tetrahexahedral (THH) Pt NCs supported on graphene were synthesized. The
obtained nanohybrids exhibited a higher mass activity than a commercial Pt/C catalyst for
ethanol electrooxidation [297].

All of the GR-based nanohybrid examples presented above focus on graphene and its
derivatives’ 2D morphology. However, the practical application of graphene is associated
with difficulties in the form of the stacking and folding of its sheets. In particular, it is
hindered by 2D GR wrinkles that wrap around MNNPs. This limits electron and mass
transport and makes its application in electrocatalysis much more difficult [298]. Therefore,
the focus has been on designing various 3D GR nanostructures (e.g., framework, network,
foam, etc.). These treatments aim to minimize wrinkles as well as reduce agglomeration of
nanoparticles [299–302]. Qiu et al., by using a layer-by-layer assembly method, presented
a versatile synthesis strategy based on sacrificial templates to obtain three-dimensional
graphene-assisted PtM (M = Fe, Co, Ni) nanospheres [303]. In the first step, electrostatic at-
traction was used to wind 2D GO sheets on positively charged SiO2 nanospheres. Next, PtM
(M = Fe, Co, Ni) alloy nanoparticles were deposited on the surface of 3D rGO nanospheres.
Finally, after etching SiO2, the 3D rGO-supported PtM hollow nanospheres were formed.
These nanocomposites exhibit enhanced electrocatalytic activity, durability, and stability for
methanol oxidation reactions (MOR), compared with commercial Pt/C. On the other hand,
Yao et al. showed that Pd nanoparticles encapsulated in hollow microspheres of N-doped
graphene, exhibited higher EOR activity in an alkaline medium than Pd/rGO [304]. Addi-
tionally, it should be noted that the structure of N-doped GR hollow microspheres greatly
facilitates the diffusion of reactants, which, in turn, improves the catalytic reactions [305].

Reducing the particle size of noble metals positively affects the activity of the catalysts
constructed on their basis, by significantly increasing the specific activity per metal atom.
Therefore, single-atom catalysts (SACs) containing single-metal atoms anchored on sup-
ports are sought. The surface of pristine graphene and metal atoms are not firmly fixed,
and they easily diffuse together to form nanoparticles [306]. Therefore, obtaining dispersed
metal atoms on pure GR is difficult. Accordingly, the surfaces of an ultrathin thickness and
large specific surface area of 2D GR nanosheets have been doped with heteroatoms such as
N, O, or S, which provide anchors for SAC (Figure 8) [307].
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metal atom

doped non-metal atom

carbon atom

Figure 8. Scheme of doped graphene nanosheets with single-atom catalysts.

The atomic layer deposition (ALD) technique has become a promising method to
obtain monoatomic catalysts on graphene derivatives [306,308,309]. This cyclic process
was based on sequential self-terminating reactions between a solid surface and gas-phase
precursor molecules [310]. For example, Sun et al. described the practical construction of
isolated Pt atoms anchored in graphene nanosheets (GNSs) using the ALD method [311].
In the construction process, oxygen and (methylcyclopentadienyl)-trimethyl platinum
(MeCpPtMe3) were used as precursors. In the first step, the number of oxygen-functional
groups on the rGO surface was selected to form a thin Pt monolayer. Subsequently, oxygen
exposure formed new surface oxygen on the pre-existing Pt layer. This process completed
one cycle of a complete reaction. The morphology, size and loading density of platinum
over graphene were controlled by simply tuning the cycles of the ALD (i.e., 50, 100, and
150 cycles). Finally, the best results, i.e., single Pt atoms, were obtained after 50 ALD cycles.
All the discussed ALDPt/GNSs catalysts show several-times-higher activity for MOR than
the Pt/C catalyst. Among them, ALD50Pt/GNS is more than 9.5 times more active than
the Pt/C catalyst. Another example of using the ALD method was presented by Yan et
al. They described the growth of single Pd atoms anchored to phenyl groups on rGO
substrates [309]. Using the same method, they also presented the deposition of Pt2 dimers
on graphene [312].

Wet impregnation is another method for the synthesis of single noble-metal atoms
supported on graphene [313–315]. For example, Zhang et al. synthesized single Ru atoms
on N-doped GD [314]. For example, Zhang et al. synthesized single Ru atoms on N-doped
GO by using the Ru(NH3)6Cl3 as a precursor. The mixture thus formed was lyophilized to
prevent the restacking of GO sheets. The resulting GO impregnated with Ru atoms was
annealed in NH3 gas at 750 ◦C. This process led to the reduction of GO to form GR. Finally,
nitrogen atoms were doped into the graphene plane as anchor sites for ruthenium atoms.

5. Conclusions

The history of noble-metal nanoparticles presented in this article dates back to the
antiquity and extends to recent years, in which thousands of scientists, still, have been
looking for the perfect nanoparticle. This research has been carried out by examining their
various shapes, sizes, and elemental compositions, including the possibility of combining
them with carbon substrates allowing for the enhancement of the expected and so much
desired catalytic properties.

The research concerning carbon-supported NMNPs and their electrocatalytic activity
has been rapidly developing in the previous years. Various forms of carbon, such as MCs,
CNTs, fullerenes, GRs, etc., have been successfully used as promising substrate candidates
for noble-metal nanoparticles for fuel-cell catalysts. Until now, much effort has gone into



Crystals 2022, 12, 584 19 of 33

low-cost, simple, and controlled methods for producing NMNPs/carbon hybrids in order
to obtain a specific surface area and uniform nanoparticle dispersions. Special attention
is given to the fact that reducing the Pt loading can decrease the fuel-cell cost, while the
suitable supporting materials can enhance the long-term durability and thus can achieve
excellent catalytic performance. Moreover, numerous reports indicate that the use of
multimetallic electrocatalysts can improve performance stability.

Among the vast literature on carbon-supported nanoparticles, there is no universal
type that would be suitable for all applications. Every year, many papers are published
showing more and more perfect solutions for specific applications. However, there are still
no catalysts efficient enough to fully meet the needs of fuel-cell manufacturers and enable
the commercialization of such devices.

The development of high-performance and inexpensive catalysts based on metallic
nanoparticles would allow the widespread commercialization of hydrogen technology.
However, bearing in mind the growing demand for energy, if only because of the ever-
increasing population of our globe, this technology is essential for the further development
of humanity. Introducing it into common use would allow the implementation of many
climate-protection procedures without the need to introduce major changes in human
behavior, because hydrogen technology allows almost unlimited access to renewable
energy sources in an ecological and emission-free manner.
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AA Ascorbic Acid
AFC Alkaline Fuel Cells
ALD Atomic Layer Deposition
BDD Boron-Doped Diamond
C Carbon
CA Carbon Aerogel
CB Carbon Black
CCA Citric Acid
CM Carbonaceous Material
CNF Carbon Nanofiber
CNO Carbon Nanoonion
CNT Carbon Nanotube
CP Carbon paper
CTAB Cetyltrimethylammonium Bromide
CQD Carbon Quantum Dot
CX Carbon Xerogels
DEFC Direct Ethanol Fuel Cell
DEG Diethylene Glycol
DMFC Direct Methanol Fuel Cell
EG Ethylene Glycol
EOR Ethanol Oxidation Reaction
G Graphene
GCE Glassy Carbon Electrode
GMC Graphitic Mesoporous Carbon
GNS Graphene Nanosheet
GO Graphene Oxide
HA Hydroxylamine
HEA High-Entropy Alloy
HEPES 4-(2-hydroxyethyl)-1- piperazineethanesulfonic Acid
HER Hydrogen Evolution Reaction
HOR Hydrogen Oxidation Reaction
MCFC Molten Carbonate Fuel Cells
MEA Membrane-Electrode Assembly
MeCpPtMe3 Methylcyclopentadienyl)-trimethyl platinum
MNC Marimo Nanocarbon
MOR Methanol Oxidation Reaction
MWCNT Multiwalled Carbon Nanotube
N-GN Nitrogen-doped Graphite Nanosheet
NMNP Noble Metal Nanoparticle
NP Nanoparticle
NW Nanowire
NYPA Naphthalen-1-ylmethylphosphonic Acid
ORR Oxygen Reduction Reaction
PC Porous Carbon
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PCN Porous Carbon Nanosphere
PDDA poly(diallyldimethyl ammonium) chloride
PEG Polyethylene Glycol
PEI Polyethyleneimine
PEMFC Proton-Exchange Membrane Fuel Cell
POLE Polyoxyethylene Lauryl Ether
prGO Partially Reduced Graphene Oxide
PSD Potentiostatic Deposition
PSWD Potential Square Wave Deposition
PVA Polyvinyl Alcohol
PVP Polyvinyl Pyrrolidone
PyrC60 Fullerene-pyrolidine
RFC Regenerative Fuel Cells
rGO Reduced Graphene Oxide
SA Sodium Ascorbate
SAC Single-Atom Catalyst
SC Sodium Citrate
SDBS Sodium Dodecyl Benzene Sulfonate
SDS Sodium Dodecyl Sulfate
SEED Substrate Enhanced Electroless Deposition
SOFC Solid-Oxide Fuel Cells
SWCNT Single-Walled Carbon Nanotube
TA Tannic Acid
TEG Tetraethylene Glycol
THF tetrahydrofuran
TREG Triethylene Glycol
URFC Unitized Regenerative Fuel Cells
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