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Abstract: CsCl-type cubic compound CeZn exhibits a paramagnetic (PM) to antiferromagnetic (AFM)
first-order transition at TN ~ 30 K accompanied by a simultaneous structural transition from cubic
to tetragonal structure as temperature decreases. Applying the pressure, the coupled magnetic and
crystal structural transition becomes separated above 1.0 GPa and then the AFM order changes
to ferromagnetic (FM). The FM ordering temperature decreases with further applying pressure
and changes to a nonmagnetic state above ~3.0 GPa. In the nonmagnetic state, we discovered
superconductivity below Tsc ~ 1.3 K over 5.5 GPa, which survives even up to 9.5 GPa. Investigation
of single crystal X-ray diffraction at room temperature reveals that CeZn undergoes a sequential
crystal structural change with increasing pressure from cubic at ambient pressure to the monoclinic
structure at 8.2 GPa via tetragonal and orthorhombic structure. The detailed analysis of crystal
structure in CeZn single crystal evidenced that the emergence of superconductivity is related to the
orthorhombic-to-monoclinic transition implying a nonmagnetic origin of the Cooper pair formation.

Keywords: CeZn; superconductor; high pressure; crystal structure

1. Introduction

The CsCl-type compound crystallizing in cubic structure with chemical formula ReTm
(where Re = rare earth elements such as La, Ce, Pr . . . etc., and Tm = transition metal
elements such as Ag, Zn, Cd, . . . etc.) have been known for last three decades due to
their strong correlation between charge, spin, and lattice degrees of freedom [1–6]. These
compounds undergo a cubic-to-tetragonal structural transition on cooling, followed by a
magnetically ordered state at a lower temperature, like CeAg [1], PrAg [5]. The cubic-to-
tetragonal structural transition in these compounds is known to originate from the band
Jahn-Teller distortion [7,8]. Usually, the band Jahn-Teller effect in these compounds removes
the degeneracy of 5d-orbitals of Re elements by a lattice deformation. As a result, the density
of states near the Fermi level is expected to spread out in the tetragonal structure, thus
repopulating the various sub-bands and effectively lowering the total energy. Remarkably,
these transitions are very sensitive to external perturbation, thus revealing other emergent
structures with varying tuning parameters such as chemical doping or pressure.

Among these, CeZn is distinct because the magnetic and crystal structural transitions
are coupled, revealing a first-order nature of the transition [9–12]. CeZn exhibits AFM order
below the Néel temperature, TN ~ 30 K, and a concurrent crystal structural change from
cubic to tetragonal structure [12]. So far, the electrical, magnetic, and structural properties
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of CeZn have been investigated by substituting Cu in place of Zn, CeZn1−xCux, [13,14] and
applying pressure up to 2.9 GPa [9]. The magnetic and structural transition temperature
decreases with Cu substitution and stays coupled up to x = 0.3. With further Cu substitution,
magnetic order changes from AFM to FM at x = 0.6 via a coexisting AFM and FM order
region. For x > 0.3, CeZn1−xCux reveals multiple structural changes with decreasing
temperature [14]. On the other hand, the hydrostatic pressure studies on CeZn have shown
that the magnetic and crystal structural transitions become separated above 1.0 GPa. The
AFM order changes to FM, though, the neutron diffraction study pointed that the structure
altered from cubic to rhombohedral structure in the FM state [12], different from the Cu
substitution [14]. Moreover, the Curie temperature, TC, of the FM state was found to
decrease with pressure, while the crystal structural transition temperature increases and
reaches to room temperature around 3.0 GPa [9,15]. Further investigation of the electronic
and magnetic properties of CeZn at higher pressure is still unexplored.

In this study, we have extended the investigation of the electrical and structural properties
of CeZn single crystal up to 9.5 GPa and down to 30 mK. Single crystal X-ray diffraction of
CeZn under pressure revealed that the previously assumed rhombohedral structure above
1.0 GPa to be the tetragonal structure. In addition, we detect two more crystal structural
transitions: one to an orthorhombic structure at 4.2 GPa and another to a monoclinic structure
at 8.2 GPa. Interestingly, in the vicinity of the latter crystal structural transition, we also
discovered that CeZn becomes superconductor below Tsc ~ 1.3 K persisting up to 9.5 GPa.

2. Single Crystal Growth and Experimental Technique

CeZn single crystals were synthesized by melting Ce and Zn with a 1:1 ratio as starting
materials in a tungsten crucible sealed inside a quartz tube under vacuum. The mixture
was heated to 1000 ◦C in 10 h and cooled down to 900 ◦C in 3 h. Then the mixture was
slowly cooled to 820 ◦C in 10 days and subsequently quenched to room temperature. Silver
color CeZn single crystals were collected mechanically from the tungsten crucible. The
residual resistivity ratio (RRR ~ 20) of the obtained sample reflects the high quality of the
single crystals.

Resistivity under high pressure was measured using a clamp type piston cylinder cell
and a palm cubic anvil cell (PCAC). For pressure up to 2.5 GPa, we used Daphne 7373
as pressure transmitting medium in clamp-type piston cylinder cell, whereas Fluorinert
FC70:FC77 (1:1) was used as the pressure transmitting medium for measurements above
2.5 GPa in PCAC. Note that, the PCAC is well known for generating hydrostatic pressure
due to the multiple anvil geometry [16,17] pressure up to 15 GPa, though the Fluorinert
FC70:FC77 (1:1) is solidified at about 2.3 GPa [18,19]. The electrical resistivity down to 30 mK
was measured in a Bluefors-LD400 cryogen-free dilution refrigerator system. High pressure
single crystal X-ray diffraction experiments at room temperature were performed by using a
diamond anvil cell (DAC). The sample was compressed inside the Rhenium gaskets, which
had a 160-µm diameter hole, placed in the DAC. The mixture of methanol and ethanol
alcohol (4:1) was used as pressure transmitting medium. The pressure was determined
by the ruby fluorescence technique at room temperature [20]. The single crystal X-ray
diffraction was carried out by using Rigaku XtaLab HyPix-6000 diffractometer with Mo-Kα
radiation (λ = 0.71073 Å). The single-crystal X-ray diffraction data have been processed
using empirical absorption correction using the CrysAlis Pro program. The structure was
solved by direct methods with the ShelXT [21] and refined using the SheLXL [22] programs
as a part of the Olex2 software package [23].

3. Results and Discussion
3.1. Electrical Resistivity under Pressure

Figure 1a shows the temperature dependence of the electrical resistivity ρ of a CeZn
single crystal at some selected pressures from 300 K down to 30 mK. At ambient pressure,
ρ(T) monotonically decreases with temperature and drops suddenly below TN = 29.0 K. It is
clear from Figure 1a that the coupled structural and magnetic transition become separated
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on increasing pressure above 1.0 GPa, in agreement with the earlier report [9,12]. At 1.3 GPa,
the bend at the lower temperature side is assigned to the pressure-induced FM state, while
the thermal hysteresis appearing at the high temperature side is attributed to the crystal
structural transition. On increasing pressure to 2.0 GPa, FM state shifts towards lower
temperature and the crystal structural transition temperature almost reaches to 280 K. Here,
it is worthy to note that, in contrast to earlier result [9], in the present case, the crystal struc-
tural transition exceeds room temperature at lower pressure. This is clear by the absence
of hysteretic behavior in ρ(T) below 300 K even at 2.9 GPa. This difference is attributed
to the higher quality of sample used in the present study than the earlier polycrystalline
samples [9]. Moreover, at 2.9 GPa, the signature of TC disappears, and another big hump
appears around 100 K, implying the pronounced Kondo effect. Up to 5.0 GPa, ρ(T) shows
a normal metallic behavior in the measured temperature range. Surprisingly, on slightly
increasing the pressure to 5.5 GPa as shown in Figure 1b, ρ(T) displays a pronounced drop
below ~1.3 K and reaches zero around 0.8 K, signaling the occurrence of a superconducting
state. At higher pressure, the transition into the superconducting state becomes sharper.
We also confirmed the signature of bulk superconductivity above 5.5 GPa using the ac
magnetic susceptibility.
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Figure 1. (a) Temperature dependence of electrical resistivity ρ, of CeZn single crystal at some selected
pressures. Black and red arrows show the magnetic transition temperatures, TN and TC, respectively.
Blue arrow indicates Kondo temperature (TK), and green arrows indicate superconductivity transition
temperature (Tsc); (b) A zoomed-in view of the low temperature ρ(T) for pressure above 4.5 GPa
displaying the superconducting transitions. (c) ρ(T) near the superconducting transition under
different applied magnetic fields at 7.9 GPa. (d) Temperature dependence of upper critical field µ0Hc2

estimated from the Tmid
sc as described in the main text.

To extract further insights into the nature of the superconducting state, we measured
the temperature dependence of ρ near the superconducting region at the different fixed
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magnetic fields as shown in Figure 1c for 7.9 GPa. With increasing magnetic field, the
superconducting transition shifts towards lower temperature and the superconducting
state is completely suppressed at 0.125 T. In Figure 1d, we plot the temperature dependence
of the upper critical field µ0Hc2(T) estimated from the mid-point of the superconducting
transition, Tmid

sc , at different magnetic fields. At a particular field, Tmid
sc is defined as the

temperature where the resistivity drops to the half of normal state resistivity value. µ0Hc2(T)
is described by a linear fitting, which yields a µ0Hc2(0) = 0.095 T. We estimate the coherence
length ξ = 579 Å, using the Ginzburg-Landau relationship: µ0Hc2(0) = Φ0/2πξ2, where
Φ0 = 2.067 × 10−15 Wb is the magnetic flux quantum. The small µ0Hc2(0) points that
the superconducting state in CeZn does not arise from the unconventional mechanism of
cooper pairing like in typical heavy fermion superconductors [24,25].

3.2. Crystal Structural Transition under Pressure

Earlier crystal structure investigation of CeZn under pressure [15], detected a structural
transition around 2.6 GPa at room temperature. The signature of this structural transition is
also reflected in the ρ(T) curves measured at different pressure points as shown in Figure 1a.
Therefore, to obtain preliminary information regarding the critical pressure, close to where
the structural transitions may occur, we measured the resistivity of CeZn single crystal
with varying pressure at T = 300 K, as shown in Figure 2. The ρ(P) reveals a nonmonotonic
behavior as a function of pressure. At 2.1 GPa, ρ(P) rises rapidly suggesting the crystal
structural transition, in agreement with a previous report [15]. The resistivity attains a
maximum value of 4.0 GPa followed by a sudden drop around 5.2 GPa. Besides, a shoulder
like feature can be seen at 7.9 GPa, which becomes clearer from the pressure dependence of
dρ/dP.
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dρ/dP (red line).

To find the microscopic origin of these anomalies, we performed single crystal X-ray
diffraction of CeZn at selected pressures very close to the anomalies seen in dρ/dP. The
details of the crystallographic parameters obtained from the analysis of single crystal X-ray
diffraction results at 0, 2.8 GPa, 4.2 GPa and 8.2 GPa are presented in Table 1. From the X-ray
diffraction analysis, we deduce that the crystal structure of CeZn sequentially evolves with
increasing pressure from a cubic structure (at ambient pressure) to tetragonal (at 2.8 GPa),
orthorhombic (at 4.2 GPa) and finally to monoclinic (at 8.2 GPa). The crystallographic unit
cell parameters were determined from 1143 measured reflections at ambient pressure. The
estimated a-axis lattice parameter, 3.7034 (10) Å with space group Pm3m is consistent with
earlier results [10]. Moreover, in this cubic structure, each Ce atom is surrounded by eight
Zn atoms, forming a body-centered cube as shown in Figure 3a.
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Table 1. Crystallographic parameters of CeZn single crystal at some selected pressures.

Pressure (GPa) 0 2.8 4.2 8.2

Crystal System Cubic Tetragonal Orthorhombic Monoclinic
Space Group Pm3m P4/nmm Pma2 P21/m

a/Å 3.7034(10) 5.113(2) 4.966(13) 6.190(3)
b/Å 3.7034(10) 5.113(2) 5.157(6) 4.659(7)
c/Å 3.7034(10) 3.623(12) 3.548(19) 6.200(5)
α/◦ 90 90 90 90
β/◦ 90 90 90 113.66(8)
γ/◦ 90 90 90 90

V/Å3 50.793(4) 94.7(3) 90.8(3) 163.8(3)
D (g·cm−3) 6.718 7.207 7.512 8.334

Z 1 2 2 4
Measured Refl. 1143 398 311 559

Independent Refl. 33 37 103 143
Reflections with I > 2(I) 33 35 88 116

Rint (%) 5.51 9.64 4.49 7.36
GooF 1.107 1.312 1.285 1.330
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Figure 3. The crystal structure of the CeZn at some selected pressures. (a) Cubic structure at ambient
pressure; (b) tetragonal structure at 2.8 GPa; (c) orthorhombic structure at 4.2 GPa; (d) monoclinic
structure at 8.2 GPa. The pink outline shows the gradual distortion of the cube consisting of a Ce
atom at the body-centered position surrounded by eight Zn atoms with increasing pressure.

At 2.8 GPa, the present X-ray diffraction results indicate that cubic structure changes
to the tetragonal structure (space group: P4/nmm) as shown in Figure 3b, rather than
the rhombohedral structure obtained by neutron diffraction [12]. We attribute these dif-
ferent results to the high precision measurement of single crystal X-ray diffraction in the
present experiment as well as analysis of the data by considering 398 measured reflections
compared to the analysis of a single peak in neutron diffraction study. In this tetragonal
structure, the lattice parameter in the ab plane expands by

√
2 times the lattice constant

at ambient pressure, doubling the chemical formula unit, Z, per unit cell. The estimated
lattice parameters are a = b = 5.113(2) Å and c = 3.623(12) Å. This newly assigned tetrago-
nal structure in the FM phase of CeZn, put CeZn in the same class with other CsCl-type
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rare earth compounds like CeAg [1], CeCd [4], and PrAg [5], which undergo a cubic to
tetragonal structural transition under pressure.

At 4.2 GPa, from analysis of 311 measured reflections, we identify that CeZn transition
into an orthorhombic structure with space group Pma2 as shown in Figure 3c. Surprisingly,
near this crystal structural transition, ρ(P) does not display any anomaly. In orthorhombic
structure, the b-axis unit cell parameter elongates while the a-axis, as well as the c-axis shrink,
compared to the tetragonal unit cell. With further compression to 8.2 GPa, the orthorhombic
structure changes to the monoclinic structure (space group P21/m) as shown in Figure 3d,
accompanied by an increase in the number of chemical formula units Z, from 2 to 4. In
Figure 2, the sudden drop in ρ around 5.2 GPa indicates that near this pressure possibly the
crystal structure started to change from orthorhombic to monoclinic structure. Moreover,
very close to this pressure the nonmagnetic state of CeZn changes to a superconducting
state at low temperature. COD numbers 3000358 (cubic structure), 3000359 (tetragonal
structure), 3000360 (orthorhombic structure), 3000361 (monoclinic structure) contain the
supplementary crystallographic data for this paper. These data can be obtained free of charge
via http://www.crystallography.net/cod/search.html (accessed on 1 March 2022).

From the analysis of the single crystal XRD pattern of CeZn, we obtained crucial
insights into the local atomic arrangements of CeZn. At ambient pressure, each Ce atom
is surrounded by eight Zn atoms, forming a body-centered cube. At higher pressure, the
periodic arrangement of Ce and Zn atoms in the tetragonal, orthorhombic, and monoclinic
structure can be represented by a distorted body centered cubic lattice. With increasing
pressure, the cube becomes more distorted and lowers the overall crystal structural symme-
try of CeZn. Remarkably, after releasing the pressure slowly, the structure reverts to the
parent cubic structure at ambient pressure.

3.3. Pressure-Temperature Phase Diagram

From the structural study at room temperature, it is clear that CeZn undergoes mul-
tiple crystal structural transitions with pressure variation. To find a correlation between
the crystal structure and the underlying electronic properties with increasing pressure, we
have constructed a temperature (T)—pressure (P) phase diagram of CeZn, as shown in
Figure 4. At room temperature, CeZn undergoes multiple crystal structural transitions with
increasing pressure from cubic at ambient pressure to the monoclinic structure at 8.2 GPa
via tetragonal (at 2.8 GPa) and orthorhombic structure (at 4.2 GPa). The coupled magnetic
transition, PM to AFM state, and the structural transition, cubic to tetragonal structure due
to the magnetic striction, at TN decreases hardly up to 1.0 GPa [9,10,12]. Above 1.0 GPa, the
pressure induced an another cubic-to-tetragonal structural transition caused by the band
Jahn-Teller effect [7,8]. The crystal structural transition temperature systematically increases
with applying pressure, as evidenced by the hysteresis in ρ(T) moving towards room tem-
perature [9]. However, whether the other two crystal structural transition temperatures
vary with applied pressure is not clear. The T-P phase diagram reveals that the electronic
properties of CeZn also change simultaneously across the structural transitions. First, the
ground state changes AFM to FM due to the cubic-to-tetragonal structural transition with
pressure. TC decreases rapidly to 1.1 K in the tetragonal structure as pressure increases to
2.0 GPa, implying a possible existence of a quantum critical point, different from the results
in Ref. [9]. Secondly, at the tetragonal-to-orthorhombic structural transition, CeZn trans-
forms into a nonmagnetic simple metallic state. Finally, superconductivity emerges below
Tsc ~ 1.3 K around 5.5 GPa possibly when the crystal structure changes from orthorhombic
to monoclinic. The superconducting states survive up to 9.5 GPa in the monoclinic crystal
structure. Here, it is worth noting that the T-P diagram of CeZn is different from that of
the other Ce-based superconductors, such as CePd2Si2 [26,27], CeIn3 [28,29], CeRhIn5 [30]
and CeCu2Si2 [31]. In these cases, superconductivity appears very close to the magnetic
quantum critical point, whereas superconductivity in CeZn appears far away from the
magnetic state. These results may suggest that the emergence of superconductivity in CeZn
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under pressure is related to the change in crystal structure implying a nonmagnetic origin
of the Cooper pair formation, which is well supported by a rather small Hc2(0) ~ 0.095 T.
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Figure 4. Temperature-pressure phase diagram of CeZn. TN, TC, and Tsc are the Néel temperature, the
Curie temperature and the superconducting transition temperature determined from the resistivity
data, respectively. For clarity, Tsc has been multiplied by a factor of 10. The stars indicate the pressure
value at which the single crystal X-ray diffraction measurements are performed. The tetragonal
structure in the AFM region is obtained from Refs. [10,12]. The cubic to the tetragonal structure
boundary line has been used from Ref. [9].

In summary, we have performed systematic electrical resistivity and single crystal
X-ray diffraction measurement of CeZn under high pressure up to 9.5 GPa. We find that
CeZn exhibits multiple crystal structural transitions under pressure. Simultaneously, across
these crystal structural transitions, the signature of modification of the underlying electronic
properties of CeZn is also detected. The pressure induced cubic-to-tetragonal transition re-
sults in the AFM-to-FM change. With further pressure increases, the orthorhombic structure
appears in nonmagnetic phase. In addition, we observed a superconducting state near the
orthorhombic-to-monoclinic structural change of CeZn with a small Hc2(0) ~ 0.095 T suggest-
ing that nonmagnetic nature of the cooper pair formation. Also, we would like to add that
further investigation of how crystal structural change with decreasing temperature at a fixed
pressure is required for detailed understanding about the relationship between the crystal
structure and electronic properties.
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