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Abstract: The rapid development of industry keeps increasing the demand for energy. Coal, as the
main energy source, has a huge level of consumption, resulting in the continuous generation of
its combustion byproduct coal fly ash (CFA). The accumulated CFA will occupy a large amount of
land, but also cause serious environmental pollution and personal injury, which makes the resource
utilization of CFA gradually to be attached importance. However, given the variability of the amount
of CFA generation, predicting it in advance is the basis to ensure effective disposal and rational
utilization. In this study, CFA generation was taken as the target variable, three machine learning
(ML) algorithms were used to construct the model, and four evaluation indices were used to evaluate
its performance. The results showed that the DNN model with the R = 0.89, R2 = 0.77 on the testing
set performed better than the traditional multiple linear regression equation and other ML algorithms,
and the feasibility of DNN as the optimal model framework was demonstrated. Applying this model
framework to the engineering field enables managers to identify the next step of the disposal method
in advance, so as to rationally allocate ways of recycling and utilization to maximize the use and sales
benefits of CFA while minimizing its disposal costs. In addition, sensitivity analysis further explains
ML’s internal decisions and verifies that coal consumption is more important than installed capacity,
which provides a certain reference for ensuring the rational utilization of CFA.

Keywords: CFA; generation; machine learning; multiple linear regression; sensitivity analysis;
utilization

1. Introduction

The acceleration of industrial processes has led to the rapid development of the energy
industry as a large player. As the main energy supplier, power stations based on coal
and lignite provide massive amounts of energy, and coal consumption has soared [1].
Although electricity demand and coal emissions experienced a small decline in 2020, as the
COVID-19 outbreak depressed energy demand, the economic stimulus package and the
rollout of vaccines promoted the economic rebound, leading to a 9% increase in coal-fired
power generation in 2021, its highest level ever [2]. In the first half of 2021, coal market
consumption showed an 11% year-on-year growth. Coal consumption in the European
Union is expected to increase by 4% by the end of the year [3], and coal may remain a
mainstay of international energy in the short term.

The huge consumption of coal makes the generation of coal fly ash (CFA), as a byprod-
uct of coal combustion [4], continue to increase [5], particularly in India. Over a 10-year
span (2009–2010 to 2018–2019), CFA in the power sector increased by nearly 76% and is
now producing around 217 million tones [6]. A large amount of deposition of CFA takes up
land resources and directly pollutes the soil [7], in addition to causing serious impacts on
water and air due to inappropriate treatment. On the one hand, a large amount of rainfall
makes CFA landfills a potentially dangerous place, producing toxic leachate that seeps into
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groundwater and pollutes water resources [8]; on the other hand, toxic elements may be
discharged into the air with the flue gas produced, endangering air quality. Li et al. have
pointed out that solid Hg waste produced by fly ash from coal burning is the main source of
Hg in the environment [9]. Moreover, human health is also at risk from long-term exposure
to CFA diffusing into the air or from drinking contaminated groundwater [10]. As a result,
academia and industry are paying increasing attention to the resource utilization of CFA.

In recent years, CFA has gradually been effectively utilized in various fields, among
which the construction industry is the most widely used. CFA is used as the supplementary
cementitious material to partially replace cement in concrete or to prepare geopolymers [11]
and is also used as coarse and fine aggregate in asphalt pavement [12]. Due to its potential
for soil improvement and heavy metal adsorption [13], CFA has a good development
prospect in the agricultural field. Moreover, CFA also has a large presence in the manufac-
turing of ceramic glass [14], metal matrix composites, and metal coatings.

However, the amount of generation of CFA is variable, so predicting the generation of
CFA in advance is the basis for ensuring its effective disposal and rational utilization. Some
scholars used neural networks in MATLAB and linear regression statistical analysis in IBM
SPSS to predict the generation of CFA in power plants in five or ten years [15]. However,
the description of this method is too simple and general, and the accuracy of the prediction
has not been verified. Others predicted the average annual output of hazardous wastes by
multiplying the amount of industrial hazardous wastes generated in the base year by the
average annual growth rate index [16], which is too complicated and time-consuming, and
the accuracy cannot be guaranteed either.

In view of the limitations of the above prediction methods, this paper used advanced
machine learning (ML) algorithm [17] to predict the generation of CFA by constructing
three different regression models, of which installed capacity and coal consumption were
input variables, and the generation of CFA was output variable. The established model
framework can be applied to the engineering site after thorough evaluation and comparison,
which can quickly and accurately predict the amount of CFA generation, thus saving time
for further planning of CFA disposal, and is the basis for reasonable recycling of CFA.

2. Dataset

Data are the basis for the development of machine learning algorithms, and any
ML algorithms need data to evaluate their effects. How to collect a comprehensive and
appropriate dataset and analyze it was key to this research.

2.1. Data Collection

In this study, domestic and foreign databases and related academic websites were
searched, a large number of studies in the literature and academic reports related to CFA
were consulted, the relevant data were sorted out and recorded, and finally, the dataset
used in this paper was obtained through screening. This dataset was extracted from a
report documenting CFA generation and utilization in coal-fired power plants across India
in 2019–2020 and contained data from 183 power plants across 17 states (outliers with a
coal consumption value of 0 were removed) [18], as shown in Figure 1. Chhattisgarh was
the most sampled state, with 27 power plants, accounting for 14.8%, but only one power
plant was sampled in Assam. From a holistic perspective, the distribution of sampling sites
was relatively uniform.

2.2. Data Analysis

The ultimate purpose of the algorithm is to fit the distribution of the data and predict
the trend of change. Different datasets have different feature distributions, so the statistical
distribution and correlation analysis of data serve as sources of reference for establishing
the optimal algorithm model.

In this paper, the dataset with a distribution characteristic presented in the form of a
bubble chart included two features: installed capacity and coal consumption, and the target
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variable was the generation of CFA. As shown in Figure 2, the size of bubbles represents
the CFA generation. Data points were mainly distributed in the lower-left corner, meaning
that when the installed capacity was between 0 and 2000 MW, and the coal consumption
varied from 0 to 5 MT, the amount of generation of CFA was small, less than 2.95 MT. With
the increase in installed capacity and coal consumption, the CFA generation also increased.
The maximum generation of 8.85 MT was realized when the installed capacity was 4760
MW, and the coal consumption was about 25 MT.
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Correlations between features or between features and target variables were measured
by Pearson correlation coefficients (R), which were between −1 and 1, as shown in Figure 3.
The correlation degree between coal consumption and generation of CFA was the highest,
and R was 0.9. Meanwhile, R between installed capacity and target variable was 0.73,
indicating a strong correlation between installed capacity and CFA generation.



Crystals 2022, 12, 556 4 of 15

Crystals 2022, 12, x FOR PEER REVIEW 4 of 16 
 

 

Correlations between features or between features and target variables were meas-
ured by Pearson correlation coefficients (R), which were between −1 and 1, as shown in 
Figure 3. The correlation degree between coal consumption and generation of CFA was 
the highest, and R was 0.9. Meanwhile, R between installed capacity and target variable 
was 0.73, indicating a strong correlation between installed capacity and CFA generation. 

 
Figure 3. Correlation heat map. 

3. Methodology 
To achieve rapid and accurate prediction of CFA generation, Python 3.8 program-

ming language was used in this paper, and three machine learning algorithms were se-
lected to construct the model framework using the scikit-learn library [19]. Four evalua-
tion indices were used to measure the performance of the model [20]. Finally, the optimal 
model was determined according to the evaluation results and compared with traditional 
methods to verify the feasibility and superiority of the prediction framework. The specific 
methodology is shown in Figure 4. 

 
Figure 4. Complete diagram of methodology. 

Figure 3. Correlation heat map.

3. Methodology

To achieve rapid and accurate prediction of CFA generation, Python 3.8 programming
language was used in this paper, and three machine learning algorithms were selected to
construct the model framework using the scikit-learn library [19]. Four evaluation indices
were used to measure the performance of the model [20]. Finally, the optimal model was
determined according to the evaluation results and compared with traditional methods to
verify the feasibility and superiority of the prediction framework. The specific methodology
is shown in Figure 4.
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3.1. Modeling Methods

Machine learning algorithms used in this study had a general modeling process. Firstly,
the original data were preprocessed, including the removal of outliers or normalization (this
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part is explained in detail in Section 3.2). Then, coal consumption and installed capacity
after treatment were taken as input variables, and CFA generation was taken as the output
variable. Then, training, evaluation, and prediction were carried out by random forest,
support vector machine, and neural network. The specific principles and steps of the three
algorithms are as follows:

3.1.1. Random Forest

Random forest (RF) is an integration algorithm that combines the outputs of multiple
decision trees into one result to deal with classification and regression problems [21]. It has
the characteristics of ease of use and flexibility [22]. The construction of RF includes the
following four main steps:

1. Random sampling and training decision tree: The original data population with
sample size N is randomly sampled N times, and each time, the samples need to be
put back [23]. N samples formed at last are used to train a decision tree;

2. Randomly selected attributes as node-splitting attributes: When the nodes of the
decision tree are split, m attributes (m << M) should be randomly selected from the M
attributes of each sample, and then some strategies (such as information gain) should
be adopted to select one attribute as the final split attribute of the node;

3. Step 2 is repeated until the tree cannot be split, noting that no pruning occurs during
the entire decision tree formation process;

4. A large number of decision trees are established according to steps 1~3 to form an RF.

3.1.2. Support Vector Regression

Support vector regression (SVR) is an important branch of support vector machine
(SVM) [24]. SVR has only one type of sample point in the end. The optimal hyperplane it
seeks is to minimize the total deviation of all sample points from the hyperplane.

Different from traditional regression methods, SVR indicates that, as long as the devia-
tion degree of f (x) = ωTΦ(x) + b and y is not too large, the prediction can be considered
correct without calculating the loss. SVR can obtain a regression model in the form of
f (x) = ωTΦ(x) + b by inputting the training sample set X = (xi, yi)i = 1∼N,yi∈R [25],
where Φ(x) is the vector mapped to X, ω = (ω1, ω2, . . . ωn) is the normal vector, and b
is the intercept. Then, an interval band with a distance of ε is created on both sides of the
linear function (tolerance deviation) [26]. The loss is not calculated when all samples fall
into the interval band but is calculated only when the absolute value of the gap between
f (x), and y is greater than ε. Finally, the optimized model is obtained by minimizing the
total loss and maximizing the interval.

3.1.3. Deep Neural Network

A deep neural network (DNN) is an extension based on perceptron. The internal
structure of DNN has only one input layer and one output layer, but there are multiple
hidden layers in the middle [27]. Each layer of the neural network has several neurons.
The neurons between layers are connected to each other but are not within a layer, and the
neurons in the next layer are connected to all the neurons in the previous layer [28,29].

Generally speaking, the steps of constructing a DNN structure include the following
three points: (1) network construction, (2) assignment parameters, and (3) iterative calcu-
lation. The main principles of iterative calculation include forward-propagation (FP) and
back-propagation (BP) algorithms [30].

The FP algorithm uses several weighted coefficient matrices W and bias vector B to
carry out a series of linear operations and activation operations with input vector X. Starting
from the input layer, the output of the previous layer is used to calculate the output of the
next layer, and then one layer after another is calculated until it reaches the output layer,
and the predicted value Y is obtained. In comparison, the BP algorithm uses the gradient
descent method to iteratively optimize the loss function to obtain the minimum value [31].
Additionally, it then seeks the appropriate linear coefficient matrix W and bias vector B
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corresponding to the hidden layer and output layer, so that the output calculated by all the
input of training samples is equal or close to the sample label as far as possible [32].

In short, FP is the recognition process of the predicted value Y, while BP is the reverse
adjustment of parameters W and B according to the difference between the target y and the
predicted Y. After repeated forward- and back-propagation training, the neural network
model with high accuracy is finally formed.

3.2. Dataset Preprocessing and Splitting

The dimensionality and its unit of evaluation index (feature) affect the result of data
analysis. To eliminate the influence of dimension between indicators, standardizing or nor-
malizing data to achieve comparability between data indicators are generally adopted [33].

The variance ratio between features and target variables of the dataset in this paper
was 200:4:2. There are several orders of magnitude differences between the variances,
which leads to features with large variances dominating the algorithm, resulting in poor
modeling performance [34]. Therefore, the “processing” module in the sklearn was used to
standardize data (sklearn.preprocessing.scale) whose outliers has been removed.

The preprocessed dataset was divided into training and testing sets. Among them,
the training set was used to train the model, whereas the testing set was used to verify
the final effect of the model. In view of the impact of the division ratio of the dataset on
model performance, the size of the testing set in this paper varied from 10% to 45% with an
interval of 5%, and R was used as the evaluation index to determine the optimal division
ratio [22].

3.3. Model Evaluation

After the model was constructed, it was necessary to evaluate its effect and then select
the optimal model by comparison. In this paper, four common indicators—namely, R, R
squared (R2), mean-squared error (MSE), and mean absolute error (MAE)—were used to
evaluate the model. The calculation formulas are as follows:

R =

n
∑

i = 1
( f (xi)− f (xi))(yi − y)√

n
∑

i = 1
( f (xi)− f (xi))

2
√

n
∑

i = 1
(yi − y)2

(1)

R2 = 1− ∑n
i = 1 (yi − f (xi))

2

∑n
i = 1 (yi − y)2 (2)

MSE =
1
n

n

∑
i = 1

( f (xi)− yi)
2 (3)

MAE =
1
n

n

∑
i = 1
| f (xi)− yi| (4)

where n represented the number of samples, yi was the real observed value, y represented
the average of the real value, and f (xi) was the predicted value, with a mean value of f (xi).

As introduced in Section 2.2, R is used to reflect the degree of linear correlation between
two variables; in addition, R2 is used to judge the degree of fit between the prediction
model and the real data [35]. The best value of R2 is 1 and can be negative. MSE calculates
the mean of the sum of squares of sample point errors corresponding to the fitting data and
original data, and the smaller the value is, the better the fitting effect is [36]. MAE is used
to evaluate how close the predicted results are to the real dataset, and the smaller the MAE,
the better the model [37].
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4. Result and Discussion
4.1. Determination of Dataset Division Ratio

To avoid the randomness of the evaluation results, in this paper, we evaluated each
division ratio of the dataset 50 times repeatedly and took the mean value of the correlation
coefficient R as the final performance of the model under a specific partition. As shown in
Figure 5, the RF model was taken as an example. For the training set, the influence of the
division ratio on the modeling performance was small, and the R fluctuated, by a small
margin, around 0.98. Focusing on the testing set, when it accounted for 10% of the dataset,
R was 0.84; when the size of the testing set was 15%, the performance of the model reached
the highest, satisfying R = 0.87. After that, R generally decreased, with a further increase
in division ratio up to 45%. In summary, the RF model performed best when the size of
the testing set was 15%, and the analysis results of SVR and DNN were consistent with
it. Therefore, the training set:testing set = 0.85:0.15 ratio was determined as the optimal
division ratio.
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4.2. Parameters of the Model

In this study, RF and SVR, as traditional machine learning regression algorithms,
were trained with corresponding default parameters in the ensemble module of sklearn,
as shown in Table 1. DNN is a deep learning model in which performance is greatly
affected by network structure and parameters [38]. Based on the trial-and-error method
and suggestions in references [39,40], the neural network layer, learning rate, activation
function, and epoch were constantly changed during the model training process, and 10%
of the data were separated for performance verification. As shown in Figure 6, when the
loss on the validation set tends to fluctuate stably with the increase in steps, the DNN
model that included one input layer, five hidden layers, and one output layer was finally
determined. The number of neurons in each layer was 2→8→32→64→16→8→1. To speed
up convergence based on the gradient descent method and prevent overfitting, two “Batch
normalization” layers and one “dropout” layer were also included. The specific network
structure and parameters are shown in Figure 7 and Table 2.
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Table 1. Default hyperparameters for RF and SVR models.

RF SVR

Parameters Default Value Parameters Default Value

n_ estimators 100 kernel ‘rbf’
min_ samples_ split 2 degree 3
min_ samples_ leaf 1 gamma scale

max_ features ‘auto’ C 1
max_ depth None epsilon 0.1
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Table 2. Specific parameters of DNN structure.

Parameters Option or Value Implication

Activation function Relu The output is no longer a linear combination of the inputs and can approximate any function
Optimizer Adam A hybrid of momentum gradient descent and RMSprop.

Learning rate 0.0005 The weight of neural network input is adjusted.
Batch size 128 Number of samples is used for training.

Epoch 500 One epoch is equal to training with all the samples in the training set.

4.3. Comparative Analysis of Model Performance

To obtain a reliable model, fivefold-cross-validation was adopted for RF and SVR
models (cross_val_predict), while DNN used the parameter “validation_split” to perform
simple cross-validation. Moreover, as the result of a simple random partition is accidental, it
cannot represent the actual performance of the model. Therefore, modeling and evaluation
for three ML models were repeated 50 times on the training and testing sets, respectively,
and the evaluation indexes were averaged as the final performance of the model.

As shown in Figure 8, the linear fitting functions between the prediction results of
RF model on the training and testing sets, and the real values were y = 0.878x + 0.134
and y = 0.861x + 0.094, while those of the DNN model were y = 0.790 + 0.375 and
y = 0.837x + 0.316. All data points were relatively concentrated on the two curves, and
the p values were 4.68E-30, 1.30E-27, 8.35E-73, and 0.00000000000109, respectively, which
were less than the significance level of 0.05. In addition, R and R2 were relatively high,
indicating the good performance of the models. Moreover, the linear regression between
actual and SVR-estimated generation of CFA was y = 0.451x + 0.614 and y = 0.861x + 0.094,
respectively, on the training and testing sets. Compared with RF and DNN models, the
SVR model had relatively discrete data distribution on the training set, and its performance
was slightly worse.
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As can be seen from Figure 9, the difference between the actual and estimated genera-
tion of CFA was small in the three models, and the data were mostly concentrated around 0,
indicating the good prediction performance of ML models. The probability of data points
in RF and DNN models appearing in the small interval [−0.1,0.1] was close to 0.9, while
that of SVR was only 0.45. In addition, for the testing set, the data points on the DNN
model were more concentrated in the areas with smaller differences, which implied that
the DNN model had higher prediction accuracy.
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(a) RF model, (b) SVR model, and (c) DNN model.

Figure 10 shows a comparison of the performance of the three models more intuitively
with four evaluation indices. For the training set in Figure 10a, R and R2 values of RF and
DNN models were the same, which were 0.98 and 0.95, respectively, and slightly higher
than those of SVR models, which were 0.92 and 0.83. Meanwhile, the MSE and MAE values
of the RF model were the smallest of the three models. On the contrary, the RF model
had the lowest R and R2 values on the testing set of Figure 10b, which were 0.87 and 0.7.
However, R and R2 values of the DNN model were the highest, which were 0.89 and 0.77,
and MSE and MAE were relatively low. In general, The DNN model was the optimal model
framework suitable for the CFA dataset in this study.
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4.4. Comparison with Multiple Linear Regression

Multiple linear regression is a conventional data analysis method that uses multiple
independent variables to predict or estimate dependent variables [41]. In this method, the
dataset was repeatedly divided 50 times according to the same ratio of 0.85:0.15, and the
multiple linear regression equation Y = Ax1 + Bx2 + C was established. The average results
of statistical analysis are shown in Table 3. After 50 evaluations, the mean R2 and R of
the multiple regression training set were 0.82 and 0.90, which were lower than the results
of the three ML models using fivefold cross-validation. Then, the data of the testing set
were put into the equation for verification, and the mean values of R and p-value were
0.86 and 0.0000643805, respectively, indicating a significant correlation between the results.
However, the mean value of R2 was 0.76, which was higher than the RF and SVR models
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but lower than that of the DNN models, which once again proved that the DNN model
was more suitable for the dataset. The specific results are in the attachment.

Table 3. Statistical parameter analysis of multiple linear regression.

Y = A × 1 + B × 2 + C

Regression Coefficient 95% LCL 95% UCL SE T p-Value

Installed capacity (A) −0.221283602 −4.6257086 −2.89796 2.5330302 −2.4167858 0.05265861
Coal consumption (B) 0.365218825 0.310336 0.404628 0.0228592 15.6097245 3.49436E-29

Constant (C) 0.173085366 0.1951878 0.318641 0.0759174 2.188839 0.041769567

4.5. Feature Analysis

In this section, the analysis of the sensitivities of two features that affect the gener-
ation of CFA is presented using the permutation importance provided by sklearn and
eli5, and “TreeExplainer” and “KernelExplainer” in the Shapley Additive Interpretation
(SHAP) library.

4.5.1. Permutation Importance

The evaluation of the sensitivity of the feature depends on the degree of degradation
of the model performance score after the feature is randomly rearranged [42]. As shown
in Figure 11, after the values of coal consumption were randomly shuffled, the decrease
in MSE of RF, SVR, and DNN algorithms were 1.73, 1.07, and 1.89, respectively, which
were generally higher than those in the case of installed capacity randomly disturbed. This
proved that the three models reached a consensus on the view that coal consumption had a
greater impact on the generation of CFA.
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4.5.2. SHAP

SHAP is a model agnostic interpretation method that can be used for both global and
individual applications. SHAP can judge which feature is more important, as well as reflect
the positive and negative influences of features on the target variable [43]. The model
generates a predictive value for each sample, and the SHAP value is the contribution value
assigned to each feature in the sample [44].

To better understand the overall pattern, Figure 12a shows the results of calculated
SHAP values for each feature of each sample. Among them, features were arranged
from top to bottom in order of importance on the y axis [45], which indicated that coal
consumption had a greater influence on the model, consistent with permutation importance.
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In addition, the color represented the feature value (red was high, blue was low [46]). It
can be seen that, under the three algorithm models, higher coal consumption increased the
predicted generation of CFA. However, for installed capacity, the results were different. In
RF and SVR models, larger installed capacity increased the predicted generation of CFA, but
in DNN, the result was completely opposite. As shown in Figure 12b, the first sample for
which preprocessed feature values were 0.8059 and 1.363 was used as an example to explain
the generation details of a single prediction. In the figure, the red bar represents the range
in which a feature played a positive role in the prediction of the model [47]; the base value
was the mean value of the target variables of all samples, and f (x) was the final predicted
value for this sample, which satisfies f (x) = base value + ∑SHAP value. The analysis
showed that the prediction results of the three algorithm models were slightly different for
the same sample, which may be affected by the algorithm principle and disrupted data.
However, coal consumption and installed capacity both played positive, driving roles in
the prediction of the model, but coal consumption had a greater impact.
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In addition to explaining the model globally and locally, Figure 12c revealed hidden
relationships among features through quick, precise interactions. The analysis showed that
the interaction between coal consumption and installed capacity had positively correlated
influences on CFA generation prediction. Specifically, when both coal consumption and
installed capacity were high, the installed capacity had a great influence on the generation
of CFA, except for some outliers. On the contrary, when the coal consumption and installed
capacity were relatively small, the installed capacity contributed little to the variation in
the model output and even hindered the prediction.

As indicated above, the effect of installed capacity on the CFA generation was not
always positive, compared with that of coal consumed. In real life, the installed capacity is
the designed capacity for one specific powder station. The actual capacity is influenced
by many external factors, such as coal production, the market, policies, etc. Therefore,
the correlation between installed capacity and CFA generation was not as close as the
correlation between coal consumed and CFA generation. Moreover, it is possible that a
power station with a large installed capacity produced a relatively small amount of power,
and thus CFA, due to the influence of the above-mentioned factors. ML models based on
datasets with such special cases might indicate the negative influence of installed capacity
for some data samples.

5. Significance and Outlook

High energy consumption leads to increased generation of solid wastes such as CFA,
posing a potential threat to the environment and human health. Meanwhile, more CFA
byproducts are gradually being recycled and utilized to achieve sustainability [48]. How-
ever, the uncertainty of CFA generation poses difficulties to the rational planning and
design of its disposal and utilization. The optimal model framework constructed in this
study can quickly and accurately predict the generation of CFA only by inputting coal
consumption and installed capacity, which is feasible and efficient. Applying this model
framework to the engineering field enables managers to identify the next step of the dis-
posal method in advance, so as to rationally allocate ways of recycling and utilization to
maximize the use and sales benefits of CFA while minimizing its disposal costs. However,
due to the small size of the dataset and few input variables, the results of this model frame-
work lack further validation, and its general application needs to be improved. Subsequent
studies can expand the search scope and consider various factors affecting CFA generation.

6. Conclusions

DNN was determined as the optimal ML model through comparative evaluation,
which can accurately predict the generation of CFA. In addition, the sensitivity analysis of
the features also provided a certain point of reference for ensuring the rational utilization
of CFA. The specific conclusions are as follows:

(1) Among the three model algorithms, the DNN model had the best performance. R and
R2 on the training set were 0.98 and 0.95, whereas these on the testing set were 0.89
and 0.77, respectively;

(2) The R2 of the traditional multiple linear regression equation on the testing set was
0.76, higher than those of RF and SVR models, but lower than that of the DNN model;

(3) Permutation importance and SHAP both indicated that coal consumption had a
greater positive effect on the generation of CFA. As influenced by other factors, the
influence of installed capacity on CFA generation was as significant as coal consumed
and could be negative for some special data samples.
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