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Abstract: Quasicrystals have attracted a growing interest in material science because of their unique
properties and applications. Proper determination of the atomic structure is important in designing
a useful application of these materials, for which a difficult phase problem of the structure factor
must be solved. Diffraction patterns of quasicrystals consist of a periodic series of peaks, which can
be reduced to a single envelope. Knowing the distribution of the diffraction image into series, it is
possible to recover information about the phase of the structure factor without using time-consuming
iterative methods. By the inverse Fourier transform, the structure factor can be obtained (enclosed
in the shape of the average unit cell, or atomic surface) directly from the diffraction patterns. The
method based on envelope function analysis was discussed in detail for a model 1D (Fibonacci
chain) and 2D (Penrose tiling) quasicrystal. First attempts to apply this technique to a real Al-Cu-Rh
decagonal quasicrystal were also made.

Keywords: quasicrystals; average unit cell; statistical method; decagonal Al-Cu-Rh quasicrystal;
phase problem; envelope function

1. Introduction

Phase retrieval is a long-term problem in the diffraction and structure analysis of not
only aperiodic but also periodic crystals. Over the years, many numerical methods have
been developed to retrieve phases of the structure factor for quasicrystals, including the
low-density-elimination method [1] or the charge flipping algorithm [2,3], implemented
in available software for structure solution [4,5], or other iterative approaches [6]. We
present an original technique, which does not require iterative Fourier transformations, as
an interesting alternative to the problem of phase retrieval.

Quasicrystals first observed by Shechtman in 1982 [7] are aperiodic systems with
symmetry elements (like 5-, 10-fold rotational axes) of the diffraction pattern that are
incompatible with translational symmetry [8]. Aperiodic symmetry also occurs locally in
the atomic structure, making the structural and diffraction description of these materials
much harder compared to periodic crystals [9]. However, the high quality of the samples
and the diffraction data is possible at the level of the best periodic crystals, which allows for
a detailed study of quasicrystals. Due to their unique atomic structure, quasicrystals also
have very interesting physical-chemical properties [10]. Among them, applications such
as heat insulating or non-friction coatings [11], hydrogen storage materials [12], photonic
and phononic materials (such as light or sound insulators) [13]. To find an interesting and
useful application of quasicrystalline materials, an atomic structure must be known. X-ray
structure refinement is currently the best tool for discussing a detailed atomic structure
of materials.

The diffraction pattern of the quasicrystals is, as mentioned, aperiodic with the distri-
bution of diffraction peaks following the aperiodic ordering. However, it is known that
the diffraction pattern of quasicrystals can be considered as a periodic series of peaks
grouped within envelopes, which are periodically distributed in reciprocal space [14,15].
The period of occurrence of the envelopes is incommensurate with the period of peaks
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within the envelopes. The situation is similar to that observed in the diffraction patterns of
commensurately/incommensurately modulated crystals, with the incommensurateness
factor being a golden mean τ (for most of the known quasicrystals). If, in addition, the
centrosymmetricity of the diffraction image is observed, it can be shown that the phases of
the structure factor of a quasicrystal are 0 or π. Whenever the envelope function reaches
(crosses) zero, the phase of all peaks grouped within this envelope changes. Assuming this,
the phase retrieval procedure can be moved to the reciprocal space and the phases can be
obtained directly from the diffraction patterns. The preliminary results of the first attempts
to apply this method to the Al-Ni-Co decagonal quasicrystal were presented in [16]. This
method does not require the iterative methods mentioned above. Its fundamentals and
promising application will be discussed in the paper and tested against the real decagonal
system of the Al-Cu-Rh quasicrystal. The technical details of this approach have not been
presented in the literature to date.

2. Method of Envelope Function Analysis
2.1. Model 1D Quasicrystal

In this section, we present the idea of an envelope function analysis based on a simple
1D case, a Fibonacci chain. The Fibonacci chain (or Fibonacci sequence) is often considered
as a model 1D quasicrystal. It can be derived as a sequence of atoms spaced by large (L)
and small (S) distances (we assume the size ratio L:S = τ = 1.618 . . . ). The positions of
each diffraction peak (k) for the Fibonacci chain can be described by two incommensurate
vectors: k0 and q0 (again, k0:q0 = τ), namely k = nk0 + mq0. The intensities of the diffraction
peaks can be calculated as follows:

I(k) = I(n, m) =

(
sin K

K

)2
, (1)

where = k0(n−mτ)
2τ (n, m ∈ Z).

Equation (1) is derived as the squared module of the structure factor (k), which for the
Fibonacci chain reads:

F(k) = F(n, m) =
sin K

K
eimπ . (2)

The phase factor in Equation (2) depends only on the integer parameter m.
The diffraction diagram of the Fibonacci chain is presented in Figure 1a. It has been

shown [14,15] that the diffraction pattern is composed as follows (see Figure 1b): peaks of
the same parameter m (which are periodic) are grouped into series (connected by envelopes
of different colors), which are then periodically distributed in k-space. The two periods
are incommensurate.
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Figure 1. (a) Diffraction pattern of the Fibonacci chain (𝑘 = 2𝜋𝜏/(𝜏 + 1) = 2.81 …, indexes 𝑛, 𝑚 ∈(0,10), distances L = 𝜏, S = 1.). (b) Diffraction pattern of the Fibonacci chain with the first five en-
velopes marked by different colors. 

Introducing a reduced scattering vector: 𝑤 = 𝑘 − 2𝜋𝑚𝜏, we obtain a diffraction pattern 
reduced to a single envelope. From Equation (2) we know that the structure factor can 
only have the phase factor 𝜑 = 0 or 𝜑 = 𝜋 (which means even or odd 𝑚-values). Figure 
2 presents the reduced diffraction pattern, as well as the real part of the structure factor 
for the Fibonacci chain. The reduced diffraction pattern can be described by an envelope 
function with analytical definition 𝐼(𝑤), similar to Equation (1), which is known as the 
cardinal sine (sinc) function in mathematics. It is also an expected shape of the Fourier 
transform of a uniform window. 

  
(a) (b) 

Figure 2. (a) Real part of the structure factor for the Fibonacci chain with distinction for even/odd m 
values (phase factor 0/π). (b) Reduced diffraction pattern 𝐼(𝑤). 

The structure and diffraction description of the aperiodic crystals is possible within 
the statistical method (also called the average unit cell—AUC approach). The atomic 
structure is represented within this method as a probability distribution of projections of 
atomic positions onto a periodic reference lattice. We denote this distribution as P(u) and 
call it the AUC. For a Fibonacci chain, it is uniform and rectangular. All of the structural 
information of a quasicrystal is stored in P(u). The key result of the AUC approach is that 
the structure factor can be obtained directly from P(u) by the Fourier transform. It is pos-
sible, assuming centrosymmetricity (phase factor 0/π), to obtain the distribution P(u) di-
rectly from a diffraction pattern. The mutual relation holds [17]: 

𝐹(𝑤) = 𝑃(𝑢)e d𝑢    ⇔    𝑃(𝑢) = e 𝐼(𝑤) e d𝑤 (3) 

Figure 1. (a) Diffraction pattern of the Fibonacci chain (k0 = 2πτ/
(
τ2 + 1

)
= 2.81 . . ., indexes

n, m ∈ (0, 10), distances L = τ, S = 1). (b) Diffraction pattern of the Fibonacci chain with the first five
envelopes marked by different colors.
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Introducing a reduced scattering vector: w = k − 2πmτ, we obtain a diffraction pattern
reduced to a single envelope. From Equation (2) we know that the structure factor can
only have the phase factor ϕ = 0 or ϕ = π (which means even or odd m-values). Figure 2
presents the reduced diffraction pattern, as well as the real part of the structure factor
for the Fibonacci chain. The reduced diffraction pattern can be described by an envelope
function with analytical definition I(w), similar to Equation (1), which is known as the
cardinal sine (sinc) function in mathematics. It is also an expected shape of the Fourier
transform of a uniform window.
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Figure 2. (a) Real part of the structure factor for the Fibonacci chain with distinction for even/odd m
values (phase factor 0/π). (b) Reduced diffraction pattern I(w).

The structure and diffraction description of the aperiodic crystals is possible within
the statistical method (also called the average unit cell—AUC approach). The atomic
structure is represented within this method as a probability distribution of projections of
atomic positions onto a periodic reference lattice. We denote this distribution as P(u) and
call it the AUC. For a Fibonacci chain, it is uniform and rectangular. All of the structural
information of a quasicrystal is stored in P(u). The key result of the AUC approach is
that the structure factor can be obtained directly from P(u) by the Fourier transform. It is
possible, assuming centrosymmetricity (phase factor 0/π), to obtain the distribution P(u)
directly from a diffraction pattern. The mutual relation holds [17]:

F(w) =
∫

AUC

P(u)eiwudu ⇔ P(u) =
∫

e−imπ
√

I(w) e−iwudw (3)

The numerically obtained P(u) from the theoretically obtained reduced diffraction
pattern I(w) is presented in Figure 3.

2.2. Penrose Tiling

Penrose tilings are often proposed to model a 2-dimensional quasicrystalline lattice
with a local 10-fold symmetry (and a decagonal symmetry of the diffraction pattern).
We consider a rhombic Penrose tiling with two rhombs (thick and thin) representing the
structural units (see Figure 4a) [18,19]. Penrose tiling was successfully used to describe
the atomic structure of many decagonal systems, using multidimensional and statistical
methods [20–22]. In the AUC approach, we attribute the Penrose tiling with the 2D
distribution function P

(
ux, uy

)
with coordinates ux and uy representing atomic positions in

the AUC along the x and y physical-space axes. P
(
ux, uy

)
is composed of four pentagons,

whose exact shape strongly depends on the choice of the reference lattice [10,16]. The
exemplar shape of the AUC for the Penrose tiling is shown in Figure 4b. The pentagons
are of uniform height. Within the higher-dimensional method, the counterpart of the
distribution P

(
ux, uy

)
is called an atomic surface. It is a 3D object spanned in the so-called
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perpendicular space (an orthogonal subspace to physical space, both together form a 5D
superspace) with coordinates denoted as x⊥, y⊥, z⊥. Four plane pentagons in (x⊥, y⊥)
of the atomic surface are spanned along z⊥. The same 5D approach can be applied to
describe a reciprocal space, where the multidimensional diffraction pattern consists of
the 2D “physical” subspace

(
kx, ky

)
and 3D “perpendicular” subspace

(
k⊥x, k⊥y, k⊥z

)
(for

details, see [18,23–27]).
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2.3. Envelope Function Analysis of the Vertex-Decoration Rhombic Penrose Tiling

In this section, we discuss an application of the envelope function analysis to rhombic
Penrose tiling with monoatomic decoration in the vertices of the rhombi. The diffraction
pattern is now two-dimensional with four integer indices (denoted as nx, mx, ny, my). The
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formula for a reduced scattering vector is now more complex compared to the Fibonacci
chain. It is given by [28]:

wx =
k0

2τ

(
nx −

mx

τ

)
, wy =

k0
√

τ + 2
2

(
ny −

my

τ

)
, (4)

where k0 = 4πτ
5 .

In Figure 5 a full diffraction pattern of the Penrose tiling with vertex decoration
is presented, as well as the reduced diffraction pattern in the reduced scattering vector
(wx, wy)-space. We clearly see a decagonal distribution of peaks in the reduced pattern,
which is, however, distorted with respect to the original diffraction pattern, possessing
10-fold rotational symmetry. Peaks are grouped into several aggregations; the shape of an
envelope function is difficult to determine.

1 

 

 
 

(a)  (b) 

 

  
(a)  (b) 

 

Figure 5. (a) Diffraction pattern of the Penrose tiling with monoatomic vertex decoration (all reflec-
tions with nx–my indices in a range −12 . . . 12, 2300 atoms). (b) Reduced diffraction pattern of the
Penrose tiling.

The significant difference compared to the Fibonacci chain is now that the AUC
consists of four pentagonal shapes (sum over j in Equation (5)) labeled by component
z⊥. The structure factor in the statistical method can be calculated as a sum of Fourier
transforms of consecutive distributions Pj

(
ux, uy

)
with the phase factor φj different for

different AUCs and dependent on extra components [28]:

F
(
wx, wy

)
= ∑4

j=1 eiφj
x

AUCj

Pj
(
ux, uy

)
ei(wxux+wyuy)duxduy, (5)

where φj=z⊥(nxk⊥z + mxq⊥z). Parameters z⊥ can be taken 1, 2, 3, 4 for consecutive pentag-
onal shapes, and k⊥z = q⊥z/τ are additional components to the scattering vector in the 5D
reciprocal space used to describe a diffraction pattern for decagonal quasicrystals within a
higher-dimensional method (see the discussion in Section 2.2).

The form of Equation (4) makes the inverse Fourier transform much more difficult.
Thus, obtaining the shape of the probability distributions directly from the diffraction image
is not as straightforward as in the case of the Fibonacci chain. The solution to this problem
is in progress. Resigning from obtaining the exact shape of each of the pentagons separately,
for an averaged single shape of the projection of all pentagons onto one region (along z⊥ in
perpendicular space—see Equation (5)) is one possibility we studied. However, it gives only
an approximated structure factor, which cannot be used for a detailed structure refinement.
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3. Application of the Envelope Function Method to Real Decagonal Quasicrystal
3.1. Decagonal Quasicrystal Al-Cu-Rh

The existence of a decagonal structure in the Al-Cu-Rh system was first noticed in
1989. In 2012, Kuczera et al. performed extensive research to obtain a diffraction pattern
and refine the atomic structure of this system [22]. The mixture of Al, Cu, and Rh elements
was arc melted at a high temperature of 1273 K and slowly cooled to 1173 K at a speed
of 1 K/min. After reaching this temperature, the sample was annealed for two weeks
and finally quenched in water. The whole process was carried out in an ampoule made
of argon-filled tantalum. After EDX measurement, the chemical composition was found
to be Al61.9Cu18.5Rh19.6. The diffraction pattern was collected with a KUMA KM6-CH
single crystal diffractometer with X-rays of wavelength λ = 0.698 Å. Data collection and
processing was performed using CrysAlis Pro software. Two datasets were collected using
a short exposure time to avoid saturation for large reflections and a long exposure time to
find the largest possible number of small reflections. Finally, a data set of 162,939 peaks with
2370 unique ones was collected [22]. In this paper, the full dataset collected by Kuczera et al.
was used for the envelope function analysis.

The Al-Cu-Rh decagonal phase is considered one of the best-order quasicrystalline
phases reported in the literature [29]. Its high atomic ordering is reflected in the diffraction
pattern, which consists of sharp peaks with no diffuse scattering observed between peaks
within or between the reciprocal space layers. It is often considered a reference decagonal
system in structural disorder analysis [30–32]. The good quality data available also make
testing the envelope approach to structure solution promising in our research.

3.2. Envelope Function Analysis of Al-Cu-Rh

In this section, we discuss the application of the envelope function analysis to the real
decagonal system. For this research, we used data obtained by Kuczera et al. in 2012 [22].
The complete diffraction pattern of 73,831 unique reflections (with intensities >1% of the
strongest reflection) is presented in a contour plot in Figure 6a. Applying Equation (4) to
the peak positions resulted in the reduced diffraction pattern shown in Figure 6b. Similarly
to Figure 5, we observe a 10-fold symmetry of the diffraction pattern. The reduced pattern
is composed of peaks grouped in several aggregates. The shape of the envelope is much
more complex than in the case of the vertex decoration of the Penrose tiling. Further studies
on the inverse Fourier transformation of the reduced pattern (as depicted in Section 2.1)
are in progress. The goal of the study is to obtain a pentagon-shaped AUC for the real
decagonal quasicrystal, which will provide full structural information about the system.
However, at this stage, we can confirm that the full diffraction patterns can be successfully
reduced to a single envelope.

1 

 

 
 

(a)  (b) 

 

  
(a)  (b) 

 
Figure 6. (a) Diffraction pattern of the AlCuRh decagonal quasicrystal (synchrotron data after [22]).
(b) Reduced diffraction pattern of the AlCuRh decagonal quasicrystal. Values on axes shown in a.u.
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4. Conclusions

In the paper we presented in details a fundamental information on the envelope
function analysis of the diffraction pattern of quasicrystals in terms of the phase-retrieval
problem. The diffraction patterns of quasicrystals consist of a periodic series of peaks.
Periodically distributed peaks belong to a single envelope, and consecutive envelopes are
also distributed periodically. However, the two periodicities are incommensurate. The full
diffraction pattern can be reduced further to a single envelope. Knowing the decomposition
of the diffraction pattern into series, information about the phase of the structural factor can
be recovered without exploiting time-consuming iterative methods. For a model Fibonacci
chain (1D quasicrystal) with monoatomic vertex decoration, the reduced envelope has a
shape of the sinc function. By an inverse Fourier transform, it is possible to obtain the
shape of the AUC(s) directly from the diffraction patterns. This easily reproduces a uniform
(flat) P(u) distribution for the Fibonacci chain. For the Penrose tiling (and a real decagonal
quasicrystal), the AUC is composed of four pentagons. The structure factor depends on
each of them, but there is also mixing (represented by the phase factor in Equation (5)),
which excludes a straightforward inverse Fourier transformation. However, the important
conclusion of our hitherto studies is that the diffraction pattern (of a model, as well as real
decagonal structures) can be successfully reduced to a single envelope function, although
not analytically grasped. The results presented in this paper are a great starting point for a
more detailed analysis in the future.
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