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Abstract: The goal of this study was to synthesize a UV-light-active ZnO photocatalyst by modifying
it with nitrogen and graphene, then applying it to the degradation of carmine dye utilizing two
promising technologies: photocatalysis and electrochemical oxidation (E.O.). Different techniques
were used to analyze the prepared photocatalysts, such as Fourier transform infrared (FTIR), scanning
electron microscopy (SEM), and X-ray diffraction (XRD). According to XRD measurements, the
produced nanocomposite possesses a hexagonal wurtzite structure, indicating ZnO and markedly
crystalline. For photocatalytic applications, the results revealed that the 0.001 g of G/N-doped
ZnO catalyst achieved 66.76% degradation of carmine and kinetic degradation rates of 0.007 min−1

within 185 min by photocatalysis under UV light irradiation. In comparison, the same sample
reached 100% degradation of carmine and kinetic degradation rates of 0.202 min−1 within 15 min
using the electrochemical oxidation method. The improved photocatalytic activity of as-produced
nanocomposites can be attributed to intermediate levels in the prohibited bandgap energy and the
enhanced oxygen vacancies caused by nitrogen doping. The electrolyte (NaCl) on the degradation of
the carmine dye was tested, and the findings indicated that the dye molecules were photodegraded by
the 0.001 g of G/N-doped ZnO nanocomposite after a 15 min time interval. The data presented in this
work for the carmine breakdown in water give intriguing contrasts between photocatalytic, indirect
electrochemical oxidation, and photoelectrochemical oxidation. The action of chlorinated oxidative
species, predominantly HClO, which were electrogenerated at the electrode surface due to the chloride
ion’s oxidation in solution, induced indirect electrochemical oxidation degradation. This study also
revealed that the modifications made to ZnO were beneficial by improving its photocatalytic activities
under UV light, as well as a comparison of photocatalysis and electrochemical oxidation processes to
determine which technique is best for treating carmine in effluents with high chloride ions.
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1. Introduction

Wastewater from the textile industry often contains considerable volumes of non-
biodegradable dyes [1]. Removing these dyes from industrial effluents is a severe environ-
mental apprehension because most of these dyes are poisonous and carcinogenic [2]. Used
in textile manufacturing, carmine is a popular dye. It is a blend of aluminum and the natu-
ral dye cochineal (carminic acid). As a red pigment, it’s one of the more fascinating and less
expensive dyes on the market [3]. One of the Coccidia plants is used to produce carmine
dye (E120). Carminic acid (7-α-D-glucopyra–nosyl–9,10-dihydro–3,5,6,8-tetrahydroxy–1-
methyl–9,10-dioxo anthracene-carboxylic acid) is a hydroxyl anthraquinone compound
with an aside-chain of a glucose sugar unit attached (Scheme 1). Carmine is a reddish dye
used in textiles, food, and medicine as an antiviral and anticancer agent. To eliminate dyes
from wastewater, various technologies have been used. Physical treatments are one of
these approaches, but they are expensive since they move contaminants from a liquid to a
solid phase, necessitating additional treatment. Other methods, such as incineration, are
costly and, in most cases, result in the emission of pollutants and greenhouse gases into
the atmosphere [4]. As a result, more cost-efficient and practical solutions to replace tradi-
tional water treatment processes are urgently needed. The development of photocatalytic
oxidation [5,6] and electrochemical oxidation [7,8] technologies, which are considered to be
more effective in the adaptation of organic pollutants to carbon dioxide and water [9], has
resulted from efforts to solve the difficulties mentioned above.
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These methods, on the other hand, come with some inherent limits. The photocatalytic
oxidation approach, for example, is plagued by the rapid recombination of the photogen-
erated electrons and holes, which are responsible for the pollutant degradation process’s
initiation [10]. Furthermore, because most of the photocatalysts utilized in this process have
a large bandgap, the photocatalytic degradation of the pollutants occurs under ultraviolet
(UV) light rather than the more abundant visible light [11,12]. As for the electrochemical
oxidation method, the degradation of dye molecules requires the application of high current
densities [13].

Due to applications in electrochemically assisted photocatalytic systems, semicon-
ductor oxide has received attention as a catalyst in Advanced Oxidation Process (A.O.P.)
technology [14,15]. Among several semiconductors investigated as catalysts in the litera-
ture, zinc oxide gained interest owing to its higher load carrier mobility, low toxicity, and
thermal stability in various environments other than semiconductors such as titanium diox-
ide [16,17]. ZnO is an n-type semiconductor with gap energy between 3.2 and 3.4 eV [18,19]
and is commonly defined as cubic or hexagonal in structure (wurtzite). The doping of ZnO
with nitrogen, which has been examined since the radii of the N and O atoms are identical, is
one of the probable methods to reduce electron and hole recombination rates [20] in general.
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Introducing nitrogen into the structure of ZnO results in the highest valence band elevation
due to the formation of levels related to the hybridization of the 2p N orbital with the 2p O
orbital, resulting in increased electron transport efficiency, the more significant response
of spectrum, and enhanced photocatalytic activities. Moreover, nitrogen-doping provides
ZnO’s more excellent chemical stability and decreases the recombination process [21].

If C- and N- are added to the ZnO structure, they can replace oxygen atoms because
they are close together. This changes the Fermi level in energy gab, improving electronic
characteristics and photocatalytic results, according to Yu et al. [22]. Gionco et al. [23]
observed that nitrogen-doping ZnO enhanced photocatalytic performance for solutions
containing phenol and 2,4-dichlorophenol due to changes in sample absorption at different
N concentrations and the presence of localized states between the restricted band energy.

Graphene, a hexagonal lattice carbon material, has gained considerable interest in
the industry and fundamental research [24]. Graphene is a zero Eg semiconductor with a
high specific surface area, good interfacial contact with adsorbents, and increased mobility
for electric electron-hole pairs [25]. As a result, the inclusion of graphene could signif-
icantly increase the specific surface area of N-doped ZnO nanoparticles, improving the
photodegradation effectiveness of N-doped ZnO catalysts [26].

This study synthesized N-doped ZnO nanoparticles by adding glycine as a nitrogen
agent. Additionally, graphene was added with different proportions to N-doped ZnO
sample (0.001, 0.01, 0.1, 0.25, 0.5, 1 g). Using new G/N-doped ZnO nanocomposites as
photocatalysts and electro and photoelectrochemical oxidation, the photocatalytic degra-
dation of carmine, a water-based synthetic dye, was examined from 0 to 185 min. The
comparison between the two methods was made to detect the most efficient method for
dye degradation.

2. Experimental Details
2.1. Synthesis of Nanostructured G/N-Doped ZnO

The combustion approach makes G/N-doped ZnO nanoparticles form in a porcelain
crucible of capacity 100 mL. According to the Scheme 2, an 8 g zinc nitrate (Sigma-Aldrich
company, Burlington, MA, USA) was dissolved in 30 mL of distilled water. Then, 10 g
of glycine (capping agent) was added to the solution as mentioned above and stirred for
15 min at room temperature. After that, the same procedures were repeated with several
graphene weights (0.001, 0.01, 0.1, 0.25, 0.5, 1) g to the above solution. The above mixed
two soluble materials with/without graphene (i.e. The graphene was prepared in KKU
campus under Code No.: IFP-KKU-2020/10) are subject to a dryer heat furnace working at
120 ◦C for 48 h to have the pure foamed gel of zinc hydroxide. Finally, the final dried gel
was fired and calcined for 2 h at 550 ◦C to remove any residuals and convert the hydroxide
form into oxide form. No further purification was performed after the calcination process.
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2.2. Characterization Techniques and Devices

A Fourier transform infrared spectrometer (FT-IR) (Perkin Elmer/Germany) investi-
gated functional groups on the synthesized photocatalyst. The Philips X-ray diffractometer
PAN analytical X’Pert PRO, (Philips, Eindhoven, Netherlands) was used to examine the
structural information of nanocomposites using CuKα monochromatic radiation (40 kV
and 40 mA). The surface structure of G/N-doped ZnO nanocomposites has been studied by
scanning electron microscopy (SEM), QUANTA FEG 250, USA (FEI, Hillsboro, OR, USA).

2.3. Degradation Studies

All prepared samples were subjected to photocatalytic degradation, electrocatalytic
degradation, and photoelectrocatalytic degradation of carmine dye as follows:

2.3.1. In Situ Photocatalytic Degradation Studies

An in situ photocatalytic reactor was used to perform the carmine photocatalytic
degradation reaction. The reactor contains one UV lamp (254 nm, 18 W). It was placed in a
quartz cylindrical tube. There is air circulation to maintain the temperature constant during
the reaction. The quartz cylindrical glass tube was immersed in a glass container containing
0.1 g of G/N-doped ZnO catalyst and 200 mL carmine (2.5 × 10−4 mol). Then, the mixture
was stirred for 30 min in the dark before initiating photocatalysis under UV irradiation.

2.3.2. Electro- and Photoelectrochemical Degradation Experiment

The electrochemical anodization was performed in a two-electrode electrochemical
cell with two electrodes composed of graphene and 0.01 g of G/N-doped ZnO catalyst
added to 200 mL of an aqueous solution carmine (2.5 × 10−4 M) dye, followed by 10 mL of
NaCl 1 M. The working electrode is made from 2 graphite rods. Each graphite rod of length
25 cm and a diameter of 1 cm was purchased from Germany. The distance between the two
electrodes is 5 cm immersed in the dye solution, and the applied D.C. voltage = 10 V from
the 6 A power supply (Phywe company, Göttingen, Germany).

For the photoelectrocatalytic experiment, the reaction vessel was subjected to UV
irradiation of a Hyundai white L.E.D. Flood Light and its power equaled 50 W at a distance
of 15 cm from the reactor in ambient conditions. As illustrated in Scheme 3, the spacing
between electrodes was 2 cm. A UV–Vis spectrophotometer (LISCO-GmbH, Bargteheide,
Germany) was used to evaluate 3 mL of photoelectrolysis response solution for maximum
absorption peak spectra of carmine at a specific time interval.
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2.4. Kinetic Studies

Samples were withdrawn at 10 min intervals. The carmine peak absorption was
measured at 518 nm, and the photocatalytic degradation efficiency (%) was calculated
using the equation below [27]:

% degradation =
Ao − A

Ao
× 100 (1)

where Ao represents the initial absorbance degradation, and A means the absorbance at
any point during the degradation process. Then, the kinetic constant can be calculated as
follows Equation (2):

ln(
A
Ao

) = −Kt (2)

where K represents the kinetic constant (min−1).

3. Results and Discussion
3.1. FT-IR Characterization

The information about a compound’s functional groups, molecular shape, and in-
ter/intramolecular interactions is displayed in the FT-IR spectrum. Figure 1 shows the
FT-IR spectra of as-prepared N-doped ZnO and G/N-doped ZnO nanocomposite, which
were performed in the range of 400–4000 cm−1 wave number at room temperature. The
stretching vibrations of carboxylic and acetate groups (asymmetrical and symmetrical)
bonded to the ZnO are linked to the peaks found about 1390 cm−1 in the nanocompos-
ite [28]. C–O, C=O, and C–H stretching vibrations in the atmospheric CO2 captivated by
the nanocomposite substance resulted in smaller bands at 2980 cm−1 and 1070 cm−1, which
is because of the presence of C–O, C=O, and C–H stretching vibrations [29].
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Figure 1. FT-IR spectra of the N-doped ZnO and G/N-doped ZnO nanoparticles with different
concentrations of graphene.

3.2. X-ray Diffraction Characterization

X-ray diffraction was used to examine the lattice structure and crystalline nature of the
produced G/N-doped ZnO nanocomposite, as shown in Figure 2a. The strong diffraction
peaks of the standard hexagonal wurtzite structure ZnO (JCPDS 00-001-1136) are coded as
31.69◦ (100), 34.35◦ (002), 36.24◦ (101), 47.54◦ (102), 56.65◦ (110), 62.77◦ (103), 67.95◦ (112),
and 69.05◦ (201) [29,30]. As a result of the addition of nitrogen into ZnO, no new peaks
were found, indicating that nitrogen doping did not modify the crystal structure of ZnO.
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Due to the integration of graphene into N-doped ZnO, no new peaks were iden-
tified. M. Suresh et al. [29] investigated the XRD of G/N-doped ZnO and discovered
hexagonal wurtzite ZnO structures with good crystallinity in the produced nanocomposite.
N-ZnO nanoparticles’ diffraction peaks resemble those of hexagonal ZnO, according to
Rowshon Kabir [31], indicating that the ZnO crystal has not undergone a phase transition
due to the N atoms being doped. The following equations were used to compute the
structural and microstructural parameters, and the results are shown in Table 1. Scherrer’s
equation was used for estimations of crystallite size [32]:

D =
0.9λ

β cosθ
=

0.9λ

4ε sinθ
(3)

where D is the crystallite size, the X-ray wavelength is λ, and the full width at half maximum
(F.W.H.M.) is β. The average crystalline size for the prepared nanocomposite materials
was 31.51–66.53 nm. After adding 0.001 G to N-doped ZnO, the crystalline diameters were
reduced considerably, from 66.53 to 31.51 nm. This indicates that graphene significantly
reduces the development of ZnO crystallites in G/N-doped ZnO nanocomposites. M.
Suresh et al. [29] found that the D value of the RGO-N ZnO was 54 nm. The Stokes–Wilson
equation was used to calculate the lattice strain generated by crystal imperfection and
distortion in N-doped ZnO and G/N-doped ZnO.

ε =
βcotθ

4
(4)

Table 1. The computed mean values of the grain size (D), dislocation (δ), and strain (ε) from the XRD
spectra for all prepared G/N-doped ZnO nanocomposites.

Samples Mean Values of the
Grain Size (nm)

Mean Values of Dislocation
Density, (nm)2

Mean Values of
Lattice Strain

G/N-doped ZnO 66.53 2.259 × 10−4 5.210 × 10−4

0.001 g of G/N-doped ZnO 31.51 1.007 × 10−3 1.100 × 10−3

0.01 g of G/N-doped ZnO 58.33 3.181 × 10−4 6.105 × 10−4

0.1 g of G/N-doped ZnO 45.54 5.450 × 10−4 7.938 × 10−4

0.25 g of G/N-doped ZnO 43.13 6.613 × 10−4 8.580 × 10−4

0.5 g of G/N-doped ZnO 44.03 5.518 × 10−4 8.058 × 10−4

1 g of G/N-doped ZnO 38.90 8.986 × 10−4 9.876 × 10−4

The dislocation density refers to the amount of crystallographic defects or irregularity
present in the crystal, significantly impacting the synthesized materials’ properties. The
Williamson–Smallman relation was used to compute the dislocation density [33].

δ =
1

D2 (5)

3.3. Optical Characterization

The optical property is one of the prime criteria for assessing the catalytic activity
of the G/N-doped ZnO N.P.s. Figure 2b depicts the UV–vis diffuse reflectance spectra
of N-doped ZnO and 0.001 G/N-doped ZnO nanocomposites. Obviously, both N-doped
ZnO and 0.001 G/N-doped ZnO nanocomposites have the same absorption cutoff edge
at 344 nm. The energy required for the electron transfer from the valance band to the
conduction band is calculated from its bandgap energy which EBG = 1240/λmax calculates,
and according to the direct bandgap rule [Tauc’s equation, (6)], the curve of (αhυ)ˆ2 vs. hυ
was plotted and then extrapolated to the x-axis [29].

αhυ = A(hυ− Eg)
m (6)
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where EBG is bandgap energy, λmax is maximum absorption wavelength, α is absorption
coefficient, A is the constant related to the effective mass of the electrons, m = 1/2 (Di-
rect allowed transition), m = 2 (Indirect allowed transition), h is Plank’s constant, and υ
is Frequency.

Figure 2c depicts the variations of (αhυ)ˆ2 with hυ of N-doped ZnO and 0.001 G/N-
doped ZnO nanocomposites. The optical energy band gap (EBG) was estimated from the
straight-line fit extrapolation of the plot to the intercept with axis at (αhυ)ˆ2 = 0. The direct
bandgap energy of N-doped ZnO is 3.499 eV, which decreases to 3.448 eV for 0.001 G/N-
doped ZnO. Suresh et al. [29] found that the bandgap energy is 3.16 eV and 3.03 eV of N
ZnO and 0.001 G/N-doped ZnO nanocomposites, respectively.

3.4. Morphology and Compositional Analysis

The surface morphology of the obtained G/N-doped ZnO nanocomposite material
was examined using a scanning electron microscope (SEM) Figure 3a depicts a scanning
electron microscopy image of graphene, suggested layered structure, and crumpled surface
morphology. Meanwhile, the images in Figure 3b shows a scanning electron microscopy
image of N-doped ZnO, exhibiting a high degree of N-doped ZnO nanoparticles [34].
Figure 3c–g shows images of G/N-doped ZnO, indicating the photocatalysts are decorated
with graphene layers. The existence of graphene may enhance the surface area and thereby
the photocatalytic efficiency of the synthesized nanocomposite. Graphene’s interaction
with photocatalyst particles allows for dispersion and adherence of graphene layers to
photocatalyst particles. It is reasonable to believe that such a structure would simplify
moving excited electrons from the conduction band between photocatalyst particles and G
layers [35]. Figure 3c 0.001 G/N-doped ZnO has the most significant contact surface with
G, so this sample is the optimum photocatalyst.
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3.5. Degradation of Carmine Dye Methods

The photocatalytic and electrochemical methods are considered more effective in alter-
ing organic pollutants to carbon dioxide and water. In this study, both the photocatalytic
and indirect electrochemical oxidation methods were investigated and compared.
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3.5.1. Photocatalytic Degradation of Carmine

Figure 4 depicts absorbance spectra of photocatalytic degradation of carmine dye
(2.5 × 10−4 M) under U.V.C. light irradiation in situ by N-doped ZnO and G/N-doped
ZnO with different concentrations of graphene. The plots showed zero-time irradiation
produced the highest absorbance peak for the carmine solution at 518 nm, 1.255. It was
evident that as the irradiation duration increases, the intensity of all samples decreases,
resulting in more significant carmine dye degradation.
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After a time interval of 185 min, the nanocomposite containing 0.001 g of G/N-
doped ZnO showed the best photodegradation effectiveness for degrading carmine, with a
photodegradation efficiency of 66.76%. This result was attributed to 0.001 g of the G/N-
doped ZnO morphology in the S.E.M. image. The presence of graphene layers leads to
increased catalyst surface area, so the photocatalytic efficiency is enhanced. Additionally,
it was discovered that increasing the amount of G beyond this inhibited photocatalytic
activity. Due to excess G in the system, which causes increased light irradiation absorption
and scattering, similar results have been seen [36]. Because only a tiny amount of light
irradiation goes through the reaction mixture, only a small number of active catalyst
sites are activated for photodegradation due to the scattering effect. Figure 5 illustrates
constant rate values (K) of the carmine dye photodegradation reaction in the presence of
N-doped ZnO and N-doped ZnO with varying concentrations of G. It is clear that 0.001 g
of G/N-doped ZnO is the optimum sample for carmine degradation with a rate constant of
0.007 min−1 (as shown in Table 2).
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Table 2. Rate constants (min−1) and degradation (%) for all photodegradation reactions under
various conditions.

Samples

Carmine Dye (185 min)
Photocatalysis

In Situ

Carmine Dye (15 min)
Electrocatalysis

K min−1 Degradation (%) K min−1 Degradation (%)

G/N-doped ZnO 0.00486 50.60 0.16593 74.96
0.001 g of G/N-doped ZnO 0.00739 66.76 0.20292 100
0.01 g of G/N-doped ZnO 0.00678 62.52 0.09904 71.99
0.1 g of G/N-doped ZnO 0.00489 53.23 0.07786 70.20

0.25 g of G/N-doped ZnO 0.00514 54.41 0.11703 83.40
0.5 g of G/N-doped ZnO 0.00469 50.11 0.11085 96.92
1 g of G/N-doped ZnO 0.00488 51.74 0.15532 98.27

Photocatalytic activity of G/N-doped ZnO nanostructures incomparable with the previous work.
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The photocatalytic effectiveness of the obtained G/N-doped ZnO for the breakdown
of dye molecules is exceptional compared to photocatalysts composed of the nanomaterials
already reported (Table 3). For the RGO-N-ZnO catalyst irradiated with visible light, M.
Suresh et al. [29] recorded a 98.5% degradation for M.B. dye (10 ppm) at 120 min. Nitrogen
doping increased the photocatalytic activity of pure ZnO. According to H. Sudrajat et al. [37],
10 mg/L M.B. could be degraded in 2 h under 11.3 Klux visible light irradiation at pH = 7 by
2 g/L N-ZnO. Eswaran et al. [27] used a hydrothermal approach to make nitrogen-doped
zinc oxide nanoparticles with a cabbage-like morphology (N-ZnONCBs). The N-ZnONCB
catalyst showed improved photodegradation efficiency (98.6% and 96.2%) using UV and
visible light sources.

Table 3. Comparison of photocatalytic degradation of carmine and different dyes in the presence of
N-doped ZnO with other previous work samples.

Photocatalyst Method of
Preparation

Organic
Solution

Irradiation
Time, (min) Source Type of

Treatment
%

Degradation
K,

(min−1) Refs.

G/N-doped ZnO Combustion method Carmine dye 185 UV light Photocatalysis 66.76% 0.0022 Present
work

G/N-doped ZnO Combustion method Carmine dye 15 - EO 100% ——- Present
work

RGO-N-ZnO
nanocomposite

Hydrothermal
method MB 120 Visible light Photocatalysis 98.5% ——- [29]

N-ZnO NPs Mechanochemical
method M.B. - Visible light Photocatalysis 98% ——- [38]

N-ZnO N.C.B.s Hydrothermal
method M.B. - UV light

–visible light Photocatalysis 99.6% 0.0579–
0.0585 [27]

N-ZnO NPs Microemulsion
method MG 90 visible light Photocatalysis 100% ——- [39]

7 wt% of N-ZnO NPs Mechanochemical
method M.B. - sunlight Photocatalysis 98.11% ——- [31]

N-ZnO-GO Wet chemical method B.G. 90 Visible light Photocatalysis ——- ——- [40]

N-ZnO
Solvent-free

mechanochemical
method

M.B. - Visible light Photocatalysis 100% ——- [41]

N-ZnO Simple vacuum
atmosphere method MO 100 Visible light Photocatalysis 100% ——- [30]

GO-ZnO Simple one-pot
method MB 90 Sunlight photocatalysis 84% ——- [34]

GO-ZnO-Ag Simple one-pot
method MB 40 Sun

light Photocatalysis 100% 0.1112 [34]

Atul B et al. [38] prepared N-doped ZnO nanoparticles using the microemulsion meth,
and the sample showed complete degradation of M.G. solution in 90 min. According to
Rowshon Kabir et al. [31], photocatalytic degradation percentages for 5 and 10 mg/L M.B.
dye solution with 7 wt% N/ZnO are 93.70% and 98.11%, respectively. N-ZnO immobilized
G.O. nanosheets with various G.O. weight percentages, C.N. Peter et al. [39]. The improved
photocatalytic performance of the N-ZnO-GO composites in the visible range can be
attributed to the combined actions of nitrogen and G.O. on ZnO nanoparticles. K. Huang
et al. [36] synthesized N-doped ZnO photocatalyst using the mechanochemical technique
and demonstrated excellent photocatalytic activity for the degradation of M.B. when
exposed to visible light. Under visible light, the MO dye was degraded by the N–ZnO N.P.s
after about 100 min, according to Shibin Sun [30]. Nathir A et al. [34] noticed that catalytic
activity of 84% was achieved in the presence of 3.125% GO-ZnO as a catalyst under sunlight
irradiation after an irradiation time of 90 min. Moreover, adding Ag into GO−ZnO leads
to complete degradation of M.B. after sunlight irradiation for 40 min.

Reusability and Stability

In practical applications, the photostability of a photocatalyst is an essential feature.
The synthesized G/N-doped ZnO photocatalyst was exposed to five photocatalytic trial
runs to determine its photostability by adding the reused photocatalyst to new carmine
solutions under the same experimental conditions. The photocatalyst was reused after
centrifugation without regeneration. Figure 6 depicts the recycling of 0.001 G/N-doped
ZnO nanostructures. It was found that, in five successive experimental runs, photocatalyst
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activity reached 60% of carmine degradation, which promotes the prepared samples for its
photocatalytic performance in environmental treatment.
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Influence of Radicals Scavengers on the Photocatalytic Activity

The reactive species trapping experiments are required to identify the mechanism of
high photocatalytic activity of the G/N-doped ZnO catalyst. Figure 6 depicts the influence
of radicals’ scavengers on the percentage of degradation of carmine dye in the presence
of 0.001 g of G/N-doped ZnO under UV light irradiation. The scavengers applied such
as NaCl for h+, NaNO3 for e−, I.P.A. for OH• [40], and ascorbic acid for O−•2 . The results
in Figure 7 show carmine contaminant destruction of about 34.8, 32.8, 35.5, and 22.70%,
applying NaCl, NaNO3, I.P.A., and ascorbic acid scavengers. The O−•2 is most effective in
removing pollutants.
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Mechanism of the Photocatalyst of Carmine Dye Degradation

The produced photocatalyst’s mechanism has been clarified and is depicted in Scheme 4.
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When photons are exposed to light, electrons in the valance band are driven to the
conduction band (C.B.), having left holes with a positive charge in the valance band
(V.B.) [41]. The bandgap energy of the prepared G/N-doped ZnO is lowered due to the
existence of mid-band gap levels produced by the 2p orbitals of N. Because the bandgap
energy is lower, the excited electrons in the C.B. could recombine with the holes in the V.B.
However, in the current system, the C.B. excited electrons are easily transported to the G
due to G. This inhibits electron-hole recombination and ensures effective charge separation.
As a result, the V.B. holes are now permitted to react with water molecules, constantly
generating O.H. radicals in the reaction system. When photoexcited electrons combine
with oxygen, superoxide radical anions occur in the reaction media, producing hydroxyl
radicals. The hydroxyl radicals had are tremendously powerful oxidizing agents that can
oxidize and degrade organic compounds in the solution. The presence of organic moieties
is steadily degraded due to the continual generation of radicals in the reaction media. The
dye molecules are first split into smaller molecules, subsequently fully oxidized, yielding
carbon dioxide and water as the final products. Equations (7)–(12) represent the reactions
included in the degradation process:

N− ZnO nanocomposites + hυ→ e−CB + h+VB (7)

e−CB + Graphene→ Graphene
(
e−CB

)
(8)

Graphene
(
e−CB

)
+ O2 → O−•2 (9)

O−•2 + H+ → OOH• + OH• (10)

h+VB + H2O→ OH• + H+ (11)

carmine dye + OH• → CO2 + H2O (12)

3.5.2. Indirect Electrochemical Degradation of Carmine Dye

Electrochemical treatment has garnered greater attention in recent years because
of its unique qualities, such as adaptability, energy efficiency, automation, and cost-
effectiveness [41]. The main reagent in electrochemical procedures is the electron, some-
times known as the “Clean Reagent”, which degrades all organics in the effluent without
producing any secondary pollutants or by-products/sludge. The type of electrochemical
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oxidation is applied in this study was indirect electro-oxidation. In the presence of N-
doped ZnO and G/N-doped ZnO with varying concentrations of graphene, the absorbance
spectra of indirect electrochemical degradation of carmine dye are shown in Figure 8. It
can be seen in Figure 8 that the peak intensity of carmine dye progressively drops as time
passes, eventually reaching near zero for all samples at different times. This means that no
by-products were formed during the degradation of the carmine dye.
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Figure 9 illustrates the rate constant values (K) of the carmine dye indirect electro-
chemical degradation reaction in the presence of N-doped ZnO and N-doped ZnO with 
varying concentrations of G after 15 min. It is clear that 0.001 g of G/N-doped ZnO is the 
optimum sample for carmine degradation with degradation efficiency (100%) and rate 
constant (0.2029 min−1), then electro degradation decreases (as shown in Table 2). 

Figure 8. UV–Vis absorbance spectra of indirect electrochemical degradation of carmine dye in the
presence of N-doped ZnO and G/N-doped ZnO with different concentrations of graphene.



Crystals 2022, 12, 535 15 of 20

Figure 9 illustrates the rate constant values (K) of the carmine dye indirect electro-
chemical degradation reaction in the presence of N-doped ZnO and N-doped ZnO with
varying concentrations of G after 15 min. It is clear that 0.001 g of G/N-doped ZnO is
the optimum sample for carmine degradation with degradation efficiency (100%) and rate
constant (0.2029 min−1), then electro degradation decreases (as shown in Table 2).
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Mechanism of Indirect Electrochemical Oxidation of Carmine Dye Degradation

In the electrochemical oxidation of wastewater, a sophisticated process, the electron
transfer reaction is linked with a dissociative chemisorption stage. On anodes with high
electrocatalytic activity, oxidation occurs directly on the electrode surface; on metal oxide
electrodes, oxidation occurs via a surface mediator on the anodic surface, where prod-
ucts are continuously generated (indirect electrolysis). Indirect electro-oxidation uses
sodium or potassium chloride salts to increase the conductivity of wastewater and generate
hypochlorite ions [42]. The anodic oxidation of chloride ions to produce chlorine has the
following formula:

2Cl− → Cl2 + 2e− (13)

The liberated chlorine forms hypochlorous acid

Cl2 + H2O→ H+ + Cl− + HOCl (14)

and further dissociates to give the hypochlorite ion.

HOCl→ H+ + OCl− (15)
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The generated hypochlorite ions act as the main oxidizing agent in the pollutant
degradation, where the role of hypochlorite in the electrochemical treatment of dye effluent
via chlorine generation is:

dye + OCl− → Cl− + CO2 + H2O (16)

3.5.3. Photoelectrochemical Degradation (P.E.C.) of Carmine Dye

Organic dyes can be effectively degraded by photoelectrochemical degradation. The
efficiency of the photoelectrochemical degradation process is determined by the electrode
potential and preparation conditions of the semiconductors involved and the choice of
appropriate supporting electrolyte and pH values [43]. Figure 10 depicts the electrocatalytic
performance (a) in the absence of a catalyst, (b) in the presence of a catalyst (0.001 g of
G/N-doped ZnO nanocomposite), and (c) the photoelectrocatalytic performance in the
presence of 0.001 g of G/N-doped ZnO of carmine dye under an irradiating 50-watt UV
lamp at a constant voltage of 10 V. From Figure 10c, it was evaluated that the carmine
dye was completely degraded with irradiation time at 12 min. This result revealed that
electrons generated by the excitation of 0.001 of G/N-doped ZnO with a faster flow rate;
thus, the photodegradation of carmine occurred.
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Figure 10. UV–Vis absorbance spectra of (a) indirect electrochemical without catalysts; (b) indirect
electrochemical in the presence of the catalyst (0.001 g of G/N-doped ZnO); (c) photoelectrochemical
degradation of carmine dye in the presence of a catalyst (0.001 g of G/N-doped ZnO).

According to the experimental data, the presence of electrolytes does not affect the
photocatalytic efficiency of the G/N-doped ZnO nanocomposite for the degradation of the
dye. As a result, even if industrial effluents contain significant levels of electrolytes, the
produced nanocomposite photocatalyst might be used to treat them.

Figure 11 reveals (a) kinetic plots and (b) the rate constants (K) of the electrochemical
degradation reaction of carmine in the absence of the catalyst, in the presence of 0.001
g of G/N-doped ZnO, and the photoelectrochemical degradation reaction of carmine in
the presence of 0.001 g of G/N-doped ZnO nanocomposite. The results showed that the
photoelectrochemical degradation of carmine by the 0.001 g of G/N-doped ZnO was the
fastest kinetics with a rate constant of 0.3547 min−1, which is more than three times the
rate constant for the electrochemical degradation of carmine in the presence of the same
catalyst (K = 0.15712 min−1). Meanwhile, the electrochemical degradation of carmine in
the absence of the catalyst has a lower value of the rate constant (0.1198 min−1).
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Figure 11. (a) Kinetic plots and (b) rate constant values of the electrochemical degradation reaction
of carmine in the absence of the catalyst, in the presence of 0.001 g of G/N-doped ZnO, and pho-
toelectrochemical degradation reaction of carmine in the presence of 0.001 g of G/N-doped ZnO
nanocomposite after a time interval of 15 min.

Mechanism of Photoelectrochemical Oxidation of Carmine Dye Degradation

The following describes the photoelectrochemical degradation process: 0.001 g of
the G/N-doped ZnO nanocomposite under UV–visible light acts as a catalyst to produce
electron–hole pairs. Under the influence of an applied electric field, photogenerated
holes in the valence band of semiconductor nanoparticles move through interconnected
semiconductor particles to the semiconductor particle–solution interface to oxidize Cl−

ions. The Cl• and Cl2•− radicals formed can contribute to the decomposition of dye
molecules adsorbing in the solution or on the surface of the electrode. At the same time,
photogenerated electrons in the conduction band migrate through linked semiconductor
particles to the substrate, where they are extracted as anodic photocurrents [43].

The following is the mechanistic approach for the degradation of carmine dye on
0.001 g of the G/N-doped ZnO nanocomposite [43].

G/N doped ZnO nanocomposites + hυ→ +e−CB + h+VB (17)
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h+VB(holes in space charge layer)
h+s (trapped holes at catalyst surface)

h+s + OH−ad → OH•ad + H+ (18)

h+s + Cl−ad → Cl•ad (19)

Cl−ad + Cl•ad → Cl•−2 ad (20)

h+s + dye→ Products (21)

OH•ad + dye→ Products (22)

Cl•−2 ad + dye→ Products (23)

Orange II dye degradation by photoelectrochemistry is quick and more effective
than photocatalytic degradation using nanostructured WO3 film electrodes, according to
Jin Luo et al. [43], and the degradation rate of orange II dye in solution with Cl− ions is
more than in other forms of media. The generation of extra reactive species such OCl−

from the electrolyte in the presence of ZnO was hypothesized as the reason for the faster
rate of electro-oxidation of methylene blue over the materials compared to photo-oxidation.
According to Allami et al. [44], the improved photoelectrochemical performance of ZnO
films produced in a nitrogen atmosphere as an electrode could result from higher mobility
of the majority of charge carriers and decreased electron/hole (e−/h+) pair recombination.

4. Conclusions

The combustion method was used to synthesize novel G/N-doped ZnO nanocompos-
ites successfully. XRD, FT-IR, and SEM analyses were used to characterize the G/N-doped
ZnO nanocomposite. The prepared nanocomposite had high crystalline hexagonal wurtzite
ZnO structures according to XRD results, and this finding was further validated by FTIR.
The presence of graphene may increase the surface area of the 0.001 g of G/N-doped ZnO
nanocomposites, increasing its photocatalytic effectiveness. Under UV light irradiation, the
photocatalytic activity of the produced G/N-doped ZnO nanocomposites photocatalyst
for carmine dye degradation was investigated. Under UV light irradiation by 0.001 g of
G/N-doped ZnO nanocomposites, a maximum of 66.76% degradation of carmine dye was
observed at 185 min. The higher photocatalytic performance of as-generated nanocompos-
ites can be connected to the development of intermediate levels in the prohibited bandgap
energy and the increased oxygen vacancies due to nitrogen doping. The results provided
in this paper offer interesting comparisons between photocatalytic, indirect electrochemical
oxidation, and photoelectrochemical oxidation. It has been concluded that photoelectro-
chemical carmine dye degradation is faster and more effective than photocatalytic carmine
dye degradation.
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