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Abstract: Multi-Stokes ultrashort pulse shapes and their relative positions of synchronously pumped
stimulated Raman scattering (SRS) on combined primary and secondary vibrational modes in a
BaWO4 crystal are investigated. An original method of its simultaneous measurement with the help
of a streak camera has been developed. The structure of SRS pulses at the pulse shortening effect
down to the pulse duration, close to the dephasing time of the secondary Raman mode of the BaWO4

crystal, is registered and analyzed for the detuning of the Raman laser cavity length.

Keywords: Raman crystal; synchronous pumping; combined Raman modes; pulse shortening

1. Introduction

Crystalline Raman lasers are reliable sources of coherent radiation at wavelengths
inaccessible to conventional lasers. According to the magnitude of the Raman gain (g),
barium tungstate (BaWO4) crystals (g = 8.5 cm/GW at the Raman shift of 925 cm−1 under
1.06 µm pumping [1]) are among the top three active crystals for Raman lasers, along with
CVD-diamond (g = 17 cm/GW at the Raman shift of 1333 cm−1 under 1.06µm pumping [2])
and Ba(NO3)2 (g = 11 cm/GW at the Raman shift of 1047 cm−1 under 1.06µm pumping [1]).
Moreover, unlike them but similar to the other tetragonal crystals, BaWO4has not only
one, but two (primary and secondary) intense lines in a spontaneous Raman spectrum.
These lines in BaWO4 correspond to stretching (wavenumber ν1 = 925 cm−1, linewidth
∆ν1 = 1.6 cm−1) and bending (wavenumber ν2 = 332 cm−1, linewidth ∆ν2 = 3.8 cm−1)
modes of internal vibrations of anionic groups [3]. It was in BaWO4 that stimulated Raman
scattering (SRS) with a combined frequency shift of ν1 + ν2 was previously observed for
the first time [4]. After that, similar effects were studied for many other crystals having
a lower Raman gain, including KGd(WO4)2, GdVO4, YVO4, SrWO4, SrMoO4, Ca3(VO4)2,
PbMoO4, and Pb(MoO4)0.2(WO4)0.8 [5–11]. These effects were experimentally realized in
schemes of Raman lasers with a high-Q optical cavity compensating a lower Raman gain
at the secondary Raman mode rather than at the primary Raman mode. In the case of
ultrashort pulse pumping, the method [12] of synchronous pumping by repetitive laser
pulses with a repetition period synchronized with the Raman laser cavity round-trip time
was used. Synchronously pumped SRS with the combined frequency shift was realized
for the first time again in a high-gain BaWO4 crystal using linear [13] and ring [14] optical
cavities, and then in other crystals [8–11]. The interest in such synchronously pumped
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crystalline Raman lasers is due to the observed phenomenon of the strong shortening of
SRS pulses with a combined frequency shift down to the dephasing time τ2 = 1/(πc∆ν2) of
the secondary Raman mode. Therefore, the SRS pulse duration becomes shorter than the
primary Raman mode dephasing time τ1 = 1/(πc∆ν1), and it amounts ~1 ps and shorter
under pumping by 36 ps pulses [8–11,13,14]. This phenomenon so far has only a qualitative
explanation as a combination of several optical effects. It can be explained not only by the
combination of effects of group velocity walk-off and strong pump pulse depletion [15,16]
(it was studied only for the first Stokes pulse), but also by the formation of ultrashort SRS
pulses under intracavity excitation [17]. The latter should cause strong shortening of the
second Stokes pulse with a combined (ν1 + ν2) frequency shift under intracavity pumping
by the first ν1-shifted Stokes component. However, in [13], it was also shown that the
intracavity oscillated second Stokes component with the primary Raman mode double shift
(ν1 + ν1), like the first ν1-shifted Stokes component in BaWO4, had no such strong pulse
shortening. Therefore, the combined Raman shift is apparently fundamental to obtain
strong pulse shortening under synchronous pumping. A study of the pulse shortening
mechanism requires simultaneous measurement of not only the durations, but also of the
shapes and relative positions of the pulses of different Stokes components. Such a study
can be carried out using a streak camera, but in previous works the laser pulse energies
(~300 nJ) were not sufficiently high for this.

In the present work, we used the pump 1079 nm, 64 ps Nd:YAP laser with a 1000 times
higher pulse energy of 300 µJ for the experimental study of the output of multi-Stokes
ultrashort pulse shapes of the synchronously pumped Raman laser on combined vibrational
modes in a BaWO4 crystal. An original method of simultaneous measurement of pulse
shapes and relative temporal positions of several Stokes components of the Raman laser
with the help of a streak camera was developed.

2. Experimental Setup

The experimental setup of the synchronously pumped Raman laser with the system
of measurement of the individual pulse shapes and relative temporal positions for the
multi-Stokes output laser radiation is shown in Figure 1.
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Figure 1. Experimental setup.

The laboratory-designed master oscillator power amplifier Nd:YAP laser system, at a
wavelength of λ0 = 1079 nm, was used as the pump laser (1) [18]. The pump laser master
oscillator operated in a hybrid mode-locking regime with a passive negative feedback
element based on a GaAs crystal [19] to form a long laser pulse train of ~200 pulses. The
Pockels cell-based pulse extraction system controlled by signals from the DG645 digital
delay generator (Stanford Research Systems, Sunnyvale, CA, USA) provided the extraction
of a laser pulse train of 56 pulses. It also allowed obtaining equal durations of pulses of
7 ± 0.5 ps at a repetition period of 8 ns in the 56 pulses train. The laser pulse train was
directed to a volume Bragg grating [20] with a period varying linearly along the light
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propagation direction. As a result, the laser pulses reflected by the volume Bragg grating
were negatively chirped and stretched in time from 7 ± 0.5 ps up to 64 ± 4.5 ps. Then, the
chirped laser pulse train was directed to a four-stage amplifier system based on Nd:YAP
crystals, increasing the individual, 64 ps, 1079 nm pulse energy up to 300 µJ. The pump
laser system was isolated from the Raman laser under study using a Faraday isolator.

The a-cut 43 mm-long BaWO4 crystal (2), grown by the Czochralski technique at
Prokhorov General Physics Institute of the Russian Academy of Sciences, was used as the
Raman-active medium. The crystal had no antireflection coatings. The crystal’s optical axis
(c) was oriented for pumping at E||c, enabling the access of the maximum intensities of
both the ν1 and ν2 Raman modes [8]. The BaWO4 crystal was placed in an external linear
(z-fold) cavity with a round-trip time synchronized with the pump pulse repetition period
(8 ns) by tuning the Raman laser cavity length. The Raman laser cavity consisted of two
concave mirrors (3 and 4) and two flat mirrors (5 and 6). The concave (a curvature radius
of r = 500 mm) mirrors had high reflection for the SRS radiation at wavelengths in a range
of 1198–1248 nm and high transmission for the pump radiation (1079 nm) and for the SRS
components with wavelengths longer than 1248 nm. One of the flat mirrors (5) had high
reflection, at 1198–1248 nm. The second (6) was an output coupler with a reflectivity of
R1198 = 99.5% at the 1198 nm and R1248 = 96% at 1248 nm, and with high transmission for
longer wavelength SRS components. It was placed on a precise translation stage for the
tuning of the Raman laser cavity length (∆L). The pump radiation was focused by a lens
(7) with a focal length of 1.2 m into the BaWO4 crystal to a spot with a radius of 300 µm,
matched with the Raman laser cavity mode.

The measurement system was installed at the laser output behind the output coupler
(6). To measure different characteristics of the output laser radiation, we used different tools
of measurement (spectrometer, oscilloscope, streak-camera, etc.). Figure 1 shows only the
most important system, measuring the laser pulse shapes and its relative temporal positions.
The scheme of simultaneous streaking of two light sources used earlier, for example,
for electron-beam diagnostics studies [21], was refined here for the characterization of a
one multiwavelength Raman laser. To perform this, the output radiation of the Raman
laser was split into Stokes components (1198 nm and 1248 nm) by a reflective diffraction
grating (8); a system of mirrors (9–11), which formed a delay line (∆tdelay = 150 ps); and a
semi-transmitting mirror (12), which combined the Stokes components into one beam for
measurement by the PS-1/S1 streak camera (13) with a time resolution of 1.5 ps, developed
at the Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia [22].

3. Experimental Results

Initially, we visualized the output SRS radiation and registered its spectrum. We
focused the output SRS radiation using a lens with a focal length of 10 cm into a frequency
doubler based on a LiIO3 crystal (having low difference of phase-matching angles of
2.9◦ for frequency doubling of the radiations at 1198 and 1248 nm), and we registered the
converted visible radiation using the spectrometer Ocean Optics HR2000 (wavelength range
200–1100 nm, resolution <2 nm) (Ocean Insight, Orlando, FL, USA). Figure 2 demonstrates
the characteristic registration result. We can see three spectral lines in an orange-red spectral
range. The 599 nm and 624 nm lines can be identified as the second harmonics of the first
ν1-shifted Stokes SRS component at a wavelength of λ1 = (λ0

−1 − ν1)−1 = 1198 nm and the
second Stokes SRS component with the combined (ν1 + ν2) frequency shift at a wavelength
of λ2 = [λ0

−1 − (ν1 + ν2)]−1 = 1248 nm, respectively. The intermediate 611 nm line does
not correspond to any other SRS component, but it is a sum frequency from the first and
second Stokes SRS components. Generation of higher order SRS components with longer
wavelengths did not occur because of the selectivity of the Raman laser cavity.
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Figure 2. Spectrum of the output SRS radiation converted by a LiIO3 crystal.

Figure 3 demonstrates the results of detuning the Raman laser cavity length (∆L).
We should note that the detuning curve is more symmetric than for the cases of low-
intensity synchronous pumping, in which positive detuning is more critical than negative
ones [13,15], and the detuning scale is an order of magnitude wider. We obtained the same
character of detuning as in [23], in which similar conditions of high-intensity synchronous
pumping were realized for a LiIO3 crystal. In Figure 3, zero detuning corresponds to a
maximum pulse energy of the output SRS radiation of 14 µJ (12% at 1198 nm and 88% at
1248 nm) at a conversion efficiency of 4.7% (the input pump pulse energy was 300 µJ). Pulse
energy was measured by the energy meter StarLite (Ophir-Spiricon, LLC, North Logan,
UT, USA).
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Figure 3. Detuning of the Raman laser cavity length.

Then, shapes of the laser pulse trains were recorded using three avalanche photodiodes
separately for each laser radiation component (including the residual 1079 nm pump behind
the mirror (4) in Figure 1) and displayed on a four-channel oscilloscope LeCroy WaveSurfer
3054 (bandwidth 500 MHz) (Teledyne LeCroy, Inc., Milpitas, CA, USA). The characteristic
result is shown in Figure 4.
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It can be seen from Figure 4 that cascade-like SRS conversion occurred firstly from the
pump (green line) into the first Stokes SRS component (yellow line), and secondly from
the first Stokes into the second Stokes SRS component (red line), which is usual. However,
SRS radiation pulse trains (yellow and red lines) have a pulse repetition rate that doubles
in comparison with that of the pump pulse train (green line). This is unusual and has
not previously been observed in synchronously pumped Raman lasers. More precisely,
the double repetition rate SRS pulse train consists of two sub-trains with the 8 ns pulse
period. The first sub-train (in yellow or red line) is synchronous with the pump pulse
train (green line) and has higher intense pulses. The second sub-train is delayed by half
of the 8 nm period and has less intense pulses. In the first Stokes pulse train (yellow
line), the second sub-train has an intensity of pulses of about 50% of the first sub-train
pulse intensity. In the second Stokes pulse train (red line), the second sub-train intensity is
even higher—about 70% of the first sub-train pulse intensity. The second sub-train can be
explained by backward SRS in addition to forward SRS in the first sub-train. Therefore, a
higher intensity of backward SRS at the second Stokes pulse train compared to that of the
first Stokes pulse train is caused by intense multi-pass intracavity pumping of the second
Stokes oscillation by the first Stokes component, in contrast to single-pass pumping of the
first Stokes oscillation.

The reason for the observation of synchronously pumped backward SRS in BaWO4 can
be that the pump pulse duration has a 3.3 times higher ratio compared to the crystal transit
time (it is critical for stimulated backscattering [24]) and that it has an order of magnitude
of greater intensity of pump pulses (SRS oscillation threshold takes place already at the
fourth pulse of the pump pulse train in Figure 4) in comparison with previous similar
works with BaWO4 [13,14].

Figure 5 demonstrates the individual SRS pulse shapes and their relative positions
measured with the help of the streak camera at various values of detuning of the Raman
laser cavity length. The demonstrated picture was synchronous with the 36th pump pulse
in the pump pulse train (Figure 4), and it corresponded to the forward SRS sub-train.
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As one can see from Figure 5a, the zero detuning case corresponds to efficient conver-
sion into the 1248 nm second Stokes component with a combined frequency shift at the
pulse duration of τ2 = 20 ps and strong depletion of the 1198 nm first Stokes pulse. The
first Stokes pulse depletion took place at its leading edge. This can be explained by higher
group velocity for the second Stokes component compared to the first Stokes component
due to positive dispersion of the active crystal.

It can be seen from Figure 5b that positive detuning (∆L = +8 mm) of the Raman laser
cavity length led to strong shortening of the second Stokes component with a combined
frequency shift down to τ2 = 7 ps. This agrees with previous works [13,14]. At this point,
the structure of pulses at the shortening effect can be observed. The depleted part of the
first Stokes pulse is longer than the second Stokes pulse duration because the second Stokes
pulse has a higher group velocity moving to the leading edge of the first Stokes pulse
during the multi-pass oscillation process.

Increasing the cavity length detuning from 0 (maximum conversion) up to 15 mm
(conversion close to 0) resulted in shortening of the 1248 nm second Stokes pulses from
20 ps down to 4 ps (close to inverse linewidth of secondary Raman mode of BaWO4 [3]) for
keeping the Gaussian shape, as can be seen in Figure 5 with decreasing conversion efficiency
due to temporal walk-off between the pump, the first Stokes pulse, and the second Stokes
pulse. We should also note that the shortened pulse duration is comparable with the initial
pulse duration (7 ps) of the pump laser master oscillator. Therefore, an additional reason
for pulse shortening at the negatively chirped pumping is that this chirp compensates by
positive dispersion of the BaWO4 crystal in conditions of multi-pass SRS oscillation. Earlier,
in theoretical works [15,16], the effect of shortening a first Stokes pulse in synchronously
pumped Raman lasers for positive cavity length detuning was explained by a delay of
the first Stokes pulse relative to the pump pulse when the cavity round-trip time was
longer than the pump pulse repetition period. Now, we can observe (Figure 5b) a stronger
shortening effect for the second (ν1 + ν2)-shifted Stokes pulse under intracavity pumping
by the first ν1-shifted Stokes pulse. It can be additionally explained by the mechanism of
ultrashort pulse formation under intracavity pumping, as predicted in another theoretical
work [17].
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4. Conclusions

In conclusion, multi-Stokes ultrashort pulse shapes and their relative positions of
synchronously pumped stimulated Raman scattering on combined vibrational modes in a
BaWO4 crystal were investigated. The SRS pulse’s structure at the pulse shortening effect
down to the dephasing time of the secondary Raman mode of the BaWO4 crystal was
registered and analyzed for the detuning of the Raman laser cavity length. The information
obtained opens new possibilities for explaining the mechanism of pulse shortening in
ultrafast synchronously pumped crystalline Raman lasers and can be used in future works.
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13. Frank, M.; Jelínek, M.; Vyhlídal, D.; Kubeček, V.; Ivleva, L.I.; Zverev, P.G.; Smetanin, S.N. Multi-wavelength picosecond BaWO4

Raman laser with long and short Raman shifts and 12-fold pulse shortening down to 3 ps at 1227 nm. Laser Phys. 2018, 28, 025403.
[CrossRef]

https://rscf.ru/project/22-22-00708/
http://doi.org/10.1109/JQE.2012.2237505
http://doi.org/10.1016/S0925-3467(00)00037-9
http://doi.org/10.1364/OE.16.003261
http://www.ncbi.nlm.nih.gov/pubmed/18542414
http://doi.org/10.1364/OE.20.015180
http://www.ncbi.nlm.nih.gov/pubmed/22772216
http://doi.org/10.1016/j.optcom.2016.01.083
http://doi.org/10.3390/cryst9030167
http://doi.org/10.3390/cryst10100871
http://doi.org/10.1364/OE.414842
http://doi.org/10.1364/OL.441592
http://doi.org/10.1063/1.1653806
http://doi.org/10.1088/1555-6611/aa9814


Crystals 2022, 12, 495 8 of 8

14. Frank, M.; Smetanin, S.N.; Jelínek, M.; Vyhlídal, D.; Ivleva, L.I.; Zverev, P.G.; Kubeček, V. Highly efficient picosecond all-solid-state
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