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Abstract: Environmental pollution and various diseases seriously affect the health of human beings.
Photocatalytic nanomaterials (NMs) have been used for degrading pollution for a long time. However,
the biomedical applications of photocatalytic NMs have only recently been investigated. As a typical
photocatalytic NM, bismuth oxychloride (BiOCl) exhibits excellent photocatalytic performance due
to its unique layered structure, electronic properties, optical properties, good photocatalytic activity,
and stability. Some environmental pollutants, such as volatile organic compounds, antibiotics and
their derivatives, heavy metal ions, pesticides, and microorganisms, could not only be detected but
also be degraded by BiOCl-based NMs due to their excellent photocatalytic and photoelectrochemical
properties. In particular, BiOCl-based NMs have been used as theranostic platforms because of their
CT and photoacoustic imaging abilities, as well as photodynamic and photothermal performances.
However, some reviews have only profiled the applications of dye degradation, hydrogen or oxygen
production, carbon dioxide reduction, or nitrogen fixation of BiOCl NMs. There is a notable knowl-
edge gap regarding the systematic study of the relationship between BiOCl NMs and human health,
especially the biomedical applications of BiOCl-based NMs. As a result, in this review, the recent
progress of BiOCl-based photocatalytic degradation and biomedical applications are summarized,
and the improvement of BiOCl-based NMs in environmental and healthcare fields are also discussed.
Finally, a few insights into the current status and future perspectives of BiOCl-based NMs are given.

Keywords: nanostructure; heterostructure; photodegradation; photodynamic therapy; biosensors;
antibacterial; bioimaging

1. Introduction

Human health has been threatened by environmental pollution and various diseases
for a long time. Photocatalytic technology is recognized as one of the most promising
technologies, which has been widely used in the treatment of environmental pollution.
Recently, this technology has been used for disease diagnosis and therapy. Photocatalysis is
a process of producing free electrons and holes, which can induce oxidation and reduction
reactions [1–5]. When the energy of the incident light is greater than or equal to the
band gap energy (Eg) of the semiconductor, the electrons from the valence band (VB)
of the semiconductor can be excited and transfer to the conduction band (CB), leaving
holes on the VB. The photogenerated electrons have strong reduction ability, while the
holes have strong oxidation ability [6]. Therefore, an effective photocatalyst could be
used for solving environmental and healthcare problems. For environmental pollution,
a photocatalyst could produce both clean water and air due to the generation of reactive
oxygen species (ROS), including superoxide radical (O2•−), singlet oxygen (1O2), and
hydroxyl radical (OH•), which can degrade both liquid and gaseous pollutants, such
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as volatile organic compounds [7,8], antibiotics and their derivatives [9–12], heavy metal
ions [13,14], microorganisms [15–17], and other water contaminants [18–21]. For theranostic
platforms, on the one hand, photocatalysts could detect various biomarkers due to their
photoelectrochemical (PEC) process for detecting pollutants and monitoring human health
and food security [22,23]; on the other hand, some therapeutic agents are also derived from
photocatalysts due to their light-triggered ROS generation abilities [24–26].

Thus far, plenty of inorganic nanomaterials (NMs) have been developed as photo-
catalysts. Among these NMs, bismuth oxyhalide (BIOX, X = Cl, Br, I) has attracted more
attention because of its excellent photoelectronic properties [20,27–29]. The VB of BIOX is
hybridized by O 2p and Bi 6s orbitals, and the CB is composed of a Bi 6p orbital. The internal
electric field formed between layers can promote the effective separation of photogener-
ated electron holes, which plays a key role in improving the photocatalytic performance
of BIOX NMs. As one of the most important and representative BIOX NMs, bismuth
oxychloride (BiOCl) crystals belong to the tetragonal crystal system structure, the space
group is P4/nmm (No. 129), and its crystal structure parameters are a = b = 0.3891 nm,
c = 0.7369 nm, α = β = γ = 90◦, V0 = 0.1108 nm3, and Z = 2 [30]. From the van der Waals
force analysis, there are weak non-bond orbits between the layers in the c-axis direction,
but there is strong bonding in the (001) plane, the O2− and Cl− around Bi3+ form antisquare
column coordination, the conical geometry structure with opposite direction and upper
and lower asymmetry is formed, and the Cl− layer is a positive square coordination. The
next layer is the positive square O2− layer, the Cl− layer and the O2− layers staggered
at 45◦, and intermediate sandwich Bi3+ layer. Under solar energy irradiation, electrons
from the valence band Cl 3p orbital could jump to Bi 6p orbitals, and form photoinduction
electrons and holes. The layered structure has enough space to polarize the atoms and the
atomic orbits, prompt and induce the dipole moment, and effectively separate the electrons
and holes, thus improving the photocatalytic performance.

BiOCl NMs show a unique layered structure, electronic properties, optical properties,
good photocatalytic activity, and stability. Until now, a few reviews have systematically
profiled the various photocatalytic applications, including dye degradation, hydrogen or
oxygen production, carbon dioxide reduction, and nitrogen fixation [31–33]. The photocat-
alytic application of other bismuth oxychloride (such as Bi12O17Cl2, Bi12O15Cl6, Bi3O4Cl,
Bi4O5Cl2) phases has been developed as a research hot topic in recent years [34]. However,
the biomedical application of these phases is rare. Therefore, this review was mainly
focused on the BiOCl phase. In addition, no reviews have systematically profiled the
relationship between BiOCl NMs and human health, especially the biomedical applications
of BiOCl-based NMs, and a notable knowledge gap still exists in their potential property–
activity relationship. In this review, we highlight the very recent progress of BiOCl-based
NMs, from photocatalytic degradation to biomedical applications. We also summarize the
improvement of BiOCl-based NMs in the environmental and healthcare fields. In particular,
we propose and expand the application range of BiOCl, as well as other photocatalysts. At
the end of this review, we give a few insights into the current status and future perspectives
of this field.

2. BiOCl NMs Used for Treating Environmental Pollution

With the development of industry, the problems of water and air pollution are becom-
ing more and more serious, which bring negative effects to human health. Some organic
pollution and microorganisms in water pollution are difficult to remove by conventional
technology. Photocatalytic oxidation has been widely studied to degrade organic pollu-
tants and kill bacteria. In 2006, via a hydrolysis method, Zhang et al. synthesized BiOCl
NMs, whose bandgap was measured to be 3.46 eV. With ultraviolet (UV) light irradiation,
BiOCl could completely decompose methyl orange (MO) within 10 min, which exhibited
higher efficacy than P25 NMs, showing an excellent photocatalytic degradation activity
against MO [35]. Meanwhile, BiOCl NMs were also used to degrade other pollutants,
such as pesticides, antibiotics, heavy metal ions, and microorganisms. Morphology regula-
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tion and heterostructure formation are two common and effective strategies to improve
photocatalytic degradation efficacy.

2.1. Improved Photodegradation Efficacy through Regulating Morphologies

As is well known, there is a close relationship between the morphology of nanostruc-
ture photocatalysts and their dye degrading activity. BiOCl NMs with various morpholo-
gies, including nanoplate, nanosheet, nanobelt, nanotube, microspheres, and microflowers,
were fabricated to improve their photocatalytic efficacy. As a widely used surfactant,
polyvinylpyrrolidone (PVP), was used for fabricating BiOCl NMs with different nanostruc-
tures [35]. Zhang et al. have used different surfactants as assembly reagents to investigate
the influence of morphology as well as the photocatalytic activity. As shown in scanning
electron microscope (SEM) images (Figure 1), without a surfactant, the main morphology is
2D nanoplates with an average size of 40 nm in thickness, while the 2D nanoplates could
be self-assembled into uniform flower-like (Figure 1) and round pie-like (Figure 1) architec-
tures when added to a PVP and bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane solution.
They also proposed a possible growth mechanism. As shown in Figure 1, numerous tiny
BiOCl crystalline nuclei appear first. Then, these tiny nuclei could grow into 2D nanoplates
based on their inner crystallographic orientation. When adding PVP as the assemble
reagent, these nanoplates could easily aggregate on these long chain polymers and form
a 3D complex hierarchical structure. However, when using AOT as the surfactant, these
nanoplates tend to constitute the final products of square plates due to the two hydrophobic
chains of AOT. The building blocks of the flower-like BiOCl were cross-link nanoplates,
while the pie-like were flat microplates. Compared with nanoplates, the flower-like BiOCl
could effectively degrade different dyes, such as MO, rhodemine B (RhB), methene blue
(MB), and ethylene violet (EV), with the irradiation of simulated sunlight due to its larger
specific surface area [36].
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Figure 1. SEM images of BiOCl nanoplate (A), flower-like (B), and pie-like (C) microspheres, as well
as the possible growth mechanism. Reproduced with permission from Ref. [36], 2009, Royal Society
of Chemistry.

Through a facile hydrothermal route using xylitol as the surfactant, the square-shaped
BiOCl nanosheets were synthesized. Through changing the concentration of xylitol, the
width of these nanosheets ranged from 50 to 400 nm, and the thicknesses were from
20 to 50 nm, respectively. Meanwhile, the bandgap was narrowed from 3.34 eV to 3.21 eV
when the amount of xylitol was 0.1 g, and it had a maximum degradation rate constant of
0.19674 min−1, higher than others [37]. In order to further narrow the bandgap of BiOCl
NMs, Zou et al. fabricated a series of hierarchical interconnected BiOCl NMs through the
solvothermal method by using a mixture of ethylene glycol-water (1:1, v/v ration) as the
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solvent and thiourea as the surfactant [38]. As shown in Figure 2A, the as-prepared BiOCl
NMs were nanoplates with thicknesses of ~10 nm and diameters of ~50 nm with smooth
surfaces. When the amount of thiourea was adjusted from 5 to 30 mL, BiOCl microspheres
with uniform sizes were formed via the self-assembly process, and the size increased from
400 to 600 nm with increasing amounts of thiourea. Compared with the BiOCl nanoplate,
the specific surface area increased from 4.89 to 43.9 m2 g−1, and the bandgap was narrowed
from 3.11 to 2.22 eV as measured by UV-vis diffuse reflectance spectra (DRS) (Figure 2B).
Therefore, BiOCl microspheres have an excellent photocatalytic performance under visible
light irradiation against RhB (Figure 2C). Moreover, other solvents or surfactants, such as
triethylene glycol [39], ethanol [40], urea [41], mannitol [42], and citric acid [43], were also
used to improve the photocatalytic efficacy through regulating their morphologies, as well
as their specific surface areas or bandgaps.
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Figure 2. SEM images (A), UV-vis DRS (B), and photocatalytic dye degradation ability (C) of BiOCl
NMs synthesized with different amounts of thiourea. For SEM images, BiOCl-0 (a,b), BiOCl-5 (c,d),
BiOCl-10 (e,f), BiOCl-15 (g,h), BiOCl-30 (i,j). Reproduced with permission from Ref. [38], 2019,
American Chemical Society.

In addition, the morphologies of BiOCl NMs could also be regulated without sur-
factants. For instance, Wang’s and Hao’s group successfully fabricated BiOCl flake and
nanowire arrays through employing the anodic aluminum oxide (AAO) template assisted
sol–gel method. As shown in SEM images (Figure 3A,B), the flakes with a diameter of
~3 µm and a thickness of ~300 nm were formed perpendicular to the AAO template at a
lower concentration of sol, while the nanowires with a diameter of ~100 nm and a length
~3 µm were growth on the AAO template. For comparison, when the glass template was
used, the flake-like film with diameters ranging from 0.5 to 1.5 µm and thicknesses from
50 to 100 nm were formed (Figure 3C). Both the flake and nanowire arrays on the AAO
template had stronger adsorption capacity and more effective photocatalytic ability against
RhB than the flake-like film on the glass template [44,45]. Moreover, the morphologies
and band structures were also regulated by changing the amount of HCl through a simple
one-step solvothermal method [46]. As shown in Figure 3D, when the added amount of
HCl was less than 4 mmol, the nanoneedle-assembled microspheres were formed. With
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increasing amounts of HCl, the nanosheet-assembled microspheres were formed, and the
distance between BiOCl nanosheets increased with increasing HCl concentration. The dye
degradation experiments showed that nanosheet-assembled microspheres had a higher
photocatalytic efficacy than nanoneedle-assembled ones, due to their larger specific sur-
face areas and the stronger reduction capability of photoinduced electrons. BiOCl hollow
spheres were also prepared due to the large surface-to-volume ratio and short transport
length of mass or charge of the hollow structure [43,47–49]. For example, by using carbona-
ceous microspheres as sacrificial templates, Yu et. a. obtained BiOCl hollow nanospheres
with diameter of ~200 nm and an average shell thickness of 40 nm, which showed high
visible light photocatalytic activity towards the degradation of RhB [47].
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Figure 3. (A–C) SEM images of BiOCl flake (A) and nanowire arrays (B) on AAO template (A), flake-
like film on glass template (C); reproduced with permission from Ref. [45], 2010 and 2011, Elsevier
(Amsterdam, Netherlands); (D–F) SEM images of BiOCl nanoneedle- and nanosheet-assembled
microspheres. Reproduced with permission from Ref. [46], 2020, Elsevier.

2.2. Improved Photodegradation Efficacy through Forming Heterostructures

Semiconductor heterostructures show better photocatalytic performance than pure
semiconductors. Table 1 summarizes some BiOCl-based heterostructures and their pho-
tocatalytic degradation performance. Facet heterostructures have shown excellent pho-
tocatalytic performance, such as the TiO2{101}-TiO2{001} heterostructure, which exhibits
higher electron-hole spatial separation ability and antibacterial activity than TiO2{101} or
TiO2{001} nanocrystals [50]. Based on this heterostructure, Zhu’s group [51] synthesized
BiOCl facet heterostructures and investigated their photocatalytic activities. Through the
hydrolysis method under strong acid environment, two different BiOCl nanoplates with
different proportions of exposed {001}/{110} were synthesized. Surface photo-voltage spec-
tra and electrochemistry impedance spectra improved the BiOCl nanoplates, with a lower
proportion of {001}/{110} exhibiting higher electron–hole separation ability. The above
two heterostructures could effectively degrade RhB with simulated sunlight irradiation
due to the formation of Z-scheme heterostructure, as proved by density functional theory
calculation. Due to the similar layer structures of BiOX, BiOCl-BiOX heterostructures have
been fabricated. Fan et al. fabricated BiOI{001}/BiOCl{001} and BiOI{001}/BiOCl{010}
type II heterostructures, in which BiOI{001}/BiOCl{010} have a better photocatalytic per-
formance because of the shorter photogenerated electron diffusion distance induced by
the self-induced internal electric fields of the BiOCl slabs [34]. Meanwhile, BiOCl/BiOBr
heterostructures were also designed, which showed excellent photocatalytic degradation
performance against organic pollutants (MO and phenol) and pharmaceuticals (levofloxacin
and ofloxacin) [52,53].
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Table 1. BiOCl-based heterostructures for improving photocatalytic degradation performance.

Heterostructures Types of
Heterostructures Excited Light Degradation Performances Ref.

BiOCl{001}-BiOCl{110} Z-scheme 150 W Xe lamp without UV
cutoff filter RhB, 50 min, ~100% [51]

BiOI{001}-BiOCl{010} Type II 300 W metal-halide lamp with
a 420 nm cutoff filter MO, 3 h, 95% [34]

BiOCl-BiOBr-
Bi24O31Br10

Type II 400 W halogen lamp without
UV cutoff filter

Levofloxacin, 180 min, 82%
Ofloxacin, 180 min, 78.3%

Norfloxacin, 180 min, 65.5%
Ciprofloxacin, 180 min, 43.4%

[52]

BiOCl-BiOBr Type II Visible light
(>420 nm)

MO, 40 min, ~95%
Phenol, 4 h, ~100% [53]

BiOCl-TiO2 Type II 300 W Xe lamp with a 450 nm
cutoff filter Phenol, 6 h, 43% [18]

BiOCl-CQDs-ZnIn2S4 Type II
300 W Xe lamp with a 420 nm

cutoff filter
150 W infrared lamp (<700 nm)

Tetracycline, 60 min, 82.3%
Ciprofloxacin, 90 min, ~80%

Oxytetracycline, 90 min, ~70%
[17]

BiOCl-CuO Type II 600 W Xe lamp Bisphenol A, 60 min, 98.42% [21]
BiOCl-NaBiO3 Type II 500 W Xe lamp RhB, 60 min, 100% [54]
BiOCl-BiPO4 Type II 500 W Xe lamp MO, 14 min, 98% [55]

BiOCl-BiVO4 Type II 500 W Xe lamp with a 400 nm
cutoff filter MO, 11 h, ~90% [56]

BiOCl-PbBiO2Cl Type I 150 W Xe arc lamp Crystal violet, 12 h, 99% [57]
BiOCl-C3N4 Z-scheme 300 W Xe lamp Tetracycline, 60 min, 97.1% [58]

BiOCl-K+Ca2Nb3O10
− Z-scheme 250 E Xe lamp Tetracycline hydrochloride,

150 min, 100% [20]

BiOCl-VO-BiPO4 Z-scheme 300 W Xe lamp Carbamazepine, 30 min, 81.7% [59]

BiOCl-Au-CdS Z-scheme 300 W Xe lamp with an AM 1.5
cutoff filter

MO, 180 min, 100%
RhB, 30 min, 100%

Phenol, 100 min, 100%
Sulfadiazine, 4 h, 100%

[60]

Other heterostructures, including type I, type II, and Z-scheme, have also been
designed for improving the degradation efficacy. For type I heterostructures, BiOCl-
PbBiO2Cl heterostructures (Figure 4A) were designed for degrading crystal violet and
2-hydroxybenzoic acid under visible light illumination. Due to the separation of the photo-
generated electrons and holes, the reaction rate constant of PbBiO2Cl/BiOCl h was 3.01 and
2.12 times higher than that of PbBiO2Cl and BiOCl alone. For type II heterostructures, vari-
ous NMs, such as TiO2, BiPO4, BiVO4, CuO, and NaBiO3, were used to form BiOCl-based
type II heterostructures. For example, Yu et al. fabricated a BiOCl-NaBiO3 heterostruc-
ture by using NaBiO3 and hydrochloric acid aqueous solutions as the raw materials [54].
This heterostructure shows higher photodegradation efficacy due to the excellent electron
and hole separation abilities (Figure 4B). BiPO4 NMs with different amounts were also
incorporated on BiOCl NMs (Figure 4C), in which a 40% BiPO4-BiOCl composite could
degrade 98% of MO within only 14 min under simulated sunlight irradiation because of
the formation of a p–n junction [55]. A similar BiOCl-BiVO4 p–n junction has also been re-
ported by Song’s group [56]. Compared with type I and type II heterostructures, Z-scheme
heterostructures could not only separate photogenerated electrons and holes effectively,
but also keep their strong redox abilities. Serval BiOCl-based Z-scheme heterostructures
were designed to improve their photocatalytic performance. Au was a commonly used
mediator to form semiconductors in Z-scheme heterostructures. Zhang et al. introduced
Au to form a BiOCl-Au-CdS indirect Z-scheme heterostructure (Figure 4D), which could
degrade the anionic dye MO, the cationic dye RhB, phenol, and the antibiotic sulfadiazine
with simulated sunlight irradiation [60]. Oxygen vacancy (OV) was also used to form a
BiOCl-OV-BiPO4 direct Z-scheme heterostructure, in which oxygen vacancy acted as an
electron mediator in the Z-scheme to promote the separation efficiency of photogenerated
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electron–hole pairs with high redox ability (Figure 4E) [59]. In addition, a BiOCl-based
direct Z-scheme heterostructure, such as BiOCl-C3N4 and BiOCl-K+Ca2Nb3O10

−, were
also fabricated for RhB and tetracycline hydrochloride degradation [20]. Therefore, tuning
morphologies and forming heterostructures could enhance the photocatalytic degradation
efficacy of BiOCl NMs.
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Society. (E) BiOCl-OV-BiPO4 Z-scheme heterostructure. Reproduced with permission from Ref. [59],
2018, Elsevier.

3. BiOCl NMs Used as Theranostic Platform

Since the late 19th century, bismuth subsalicylate has been used to relieve nausea,
diarrhea, and gastrointestinal discomfort. It can be hydrolyzed into BiOCl in the human
body to effectively treat diarrhea and upset stomach [61,62], proving the excellent biocom-
patibility of BiOCl NMs. Recently, BiOCl NMs have been used as a theranostic platform,
including for drug delivery [63], bioimaging [64–66], biosensors, Alzheimer’s disease [67],
antibacterial, and anticancer applications [68,69].

3.1. Bioimaging

Bismuth-based NM has been used as an ideal X-ray computed tomography (CT)
contrast agent due to the higher atomic numbers and X-ray attenuation coefficient of Bi
elements [24]. As a typical Bismuth-based NM, BiOX NMs, such as BiOI [70], BiOBr [71],
and BiOCl, have recently been used for spatial- and temporal-specific CT imaging of tumors.
However, only a few studies on bioimaging of BiOCl NMs have been reported. As reported
by Ye’s group [64], Se-doped BiOCl nanosheets were fabricated via a solvothermal method.
As shown in the top and cross-sectional views of the mouse (Figure 5A), the evident signal-
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to-noise ratio changes from 39.24 to 82.12 at 1 h post-injection, meaning the excellent X-ray
CT imaging ability of Se-doped BiOCl nanosheets. Multimodal imaging that integrates
several imaging technologies, such as fluorescence imaging, magnetic resonance imaging,
and photoacoustic (PA) imaging, can diagnose tumors more precisely and quickly. In order
to obtain BiOCl NMs with multi-mode diagnostic ability, Zhang’s and Wang’s groups
introduced oxygen vacancies into BiOCl NMs. As shown in Figure 5B, with increasing
Bi concentrations, significantly enhanced hounsfield unit (HU) values were observed in
oxygen-vacancy-rich BiOCl containing aqueous solution. Meanwhile, in vivo CT imaging
on tumor-bearing mice showed (Figure 5C) that the HU values on tumors enhanced from
71.6 to 113.3, proving the good CT imaging ability. Moreover, after introducing oxygen
defects, PA signals were observed. In order to investigate the relationship between PA
signals and oxygen defects, three O-BiOCl nanosheets with different oxygen defects were
fabricated. As shown in Figure 5D, with an increasing amount of oxygen defects, PA
signals enhanced about 2.0 and 5.5 times, respectively. After intratumoral injection of
oxygen-vacancy-rich BiOCl nanosheets into 4T1 tumor-bearing mice, Figure 5E showed
that the PA value increased from 0.135 to 0.636, proving the excellent CT and PA imaging
ability. In addition, oxygen-vacancy-rich BiOCl s have also been used for PA imaging for
Panc-1 tumors through intravenous injection, as shown in Figure 5F [66].
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Ref. [66], 2021, Elsevier.

3.2. Biosensor

The release of pesticide residue and antibiotics has become a public health concern.
Therefore, the detection of biomarkers, pesticides, and antibiotics has a significant impact
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on human health. Photoelectrochemical sensing is becoming an innovative technique due
to its simple detection equipment, rapid analysis, and high sensitivity abilities [72]. As
shown in Table 2, a series of BiOCl-based NMs have been developed to detect various
substances, such as pesticides, antibiotics, and biomarkers, due to the faster separation
efficiency of photogenerated carriers. Antibiotics, such as ciprofloxacin, chloramphenicol,
kanamycin, and lincomycin, have been widely used for the treatment of bacterial infections
and showed good therapeutic effects. However, they cannot be fully absorbed and de-
graded, leading to environmental and water pollution, or even worse to adverse effects on
the health of humans. For instance, the release of ciprofloxacin has caused serious threats
to human health. Yuan’s group [73,74] first designed a BiOCl-based PEC senor for the
detection of ciprofloxacin though monitoring the changes of photocurrents produced by
BiOCl under irradiation. In order to improve the sensitivity of the BiOCl-based PEC senor,
graphitic carbon nitride or metallic Bi were used to form heterostructures with BiOCl NMs
to separate photogenerated carriers. Both of these heterostructures show much higher
photocurrents than BiOCl alone, thus leading to higher detection ranges and limits. In
order to obtain a PEC senor with high selectivity, the aptamer, which serves as a specific
biometric molecule due to its biological affinity and specific recognition with a specific
analyte, was usually decorated on the surface to form PEC aptasenor. Li et al. [75] designed
an aptamer-modified BiOCl-Bi24O31Cl10 PEC aptasenor, which can be applied to the deter-
mination of ciprofloxacin in water with good selectivity and reproducibility. The residues
and metabolites of chloramphenicol also cause damage to the human hematopoietic and
gastrointestinal system. Li’s group [76] designed Ag nanoparticles modified with a BiOCl
NM (BiOCl-Ag) PEC aptasenor, which could effectively improve the absorption of incident
light and promote the migration and separation of photogenerated carriers due to the
surface plasmon resonance (SPR) of Ag NMs. After decorating with the aptamer, there
were obvious changes to the photocurrent when incubating the BiOCl-Ag PEC aptasenor
with chloramphenicol, while no changes were observed in the other subjects, such as tetra-
cycline, lincomycin, oxytetracycline, bisphenol A, norfloxacin, and hexafluorobisphenol A,
proving the good selectivity due to the specific binding of the chloramphenico-aptamer. In
addition, other antibiotics, such as kanamycin and lincomycin, were also detected by the
BiOCl-MnO2 and BiOCl-Au-CdS heterostructure PEC aptasenor, with excellent sensitivity
and selectivity, respectively [77,78].

Table 2. BiOCl-based NMs used as photoelectrochemical sensing platform.

Substance BiOCl-Based NMs Detecting Subject Detection Range Detection Limit Refs.

Antibiotics

BiOCl-Bi ciprofloxacin 0.16~9.64 µg mL−1 0.05 µg mL−1 [73]
BiOCl-C3N4 ciprofloxacin 0.5~1840 ng mL−1 0.2 ng mL−1 [74]

BiOCl-Bi24O31Cl10 ciprofloxacin 5.0~1.0 × 104 ng mL−1 1.67 ng mL−1 [75]
BiOCl-Ag chloramphenicol 0.2~1.0 × 104 pM 0.08 pM [76]

BiOCl-MnO2 lincomycin 1.0 × 10−3~1.0 × 103 nM 3.33 × 10−4 nM [78]
BiOCl-Au-CdS kanamycin 50~5000 fM 29 fM [77]

Pesticides

BiOCl-Au 4-chlorophenol 0.16~20 mg L−1 0.05 mg L−1 [79]
BiOCl-BiPO4 4-chlorophenol 20~3.38 × 104 ng mL−1 6.78 ng mL−1 [80]
BiOCl-GQDs chlorpyrifos 0.3~80 ng mL−1 0.01 ng mL−1 [81]
BiOCl-TiO2 chlorpyrifos 1~12 µM 0.11 µM [82]

BiOCl0.5Br0.5-C3N4-Au 2-chloroethyl phosphate 20~6.3 × 104 nM 6.9 nM [83]

Antibiotics

BiOCl-graphene glucose 0.5~10 mM 0.22 mM [84]
BiOCl-TiO2 glucose 0~1300 µM 5.7 µM [85]

BiOCl glutathione 0.01~20 µM 0.6 µM [86]
BiOCl-BiPO4-CDs dopamine 1~1.0 × 104 pM 0.3 pM [87]
BiOCl-Bi2S3-CdS alkaline phosphatase 0.1~4000 U L−1 0.06 U L−1 [88]

BiOCl-C3N4 carcinoembryonic antigen 0.1~1.0 × 104 pg mL−1 0.1 pg mL−1 [89]
BiOCl-CdS carcinoembryonic antigen 0.01~40.0 ng mL−1 0.002 ng mL−1 [90]
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Table 2. Cont.

Substance BiOCl-Based NMs Detecting Subject Detection Range Detection Limit Refs.

Others
BiOCl-CuO aflatoxin B1 0.5~1.0 × 105 pg mL−1 0.07 pg mL−1 [91]

BiOCl Pb ions 0.2~300 µg L−1 33 ng L−1 [92]
BiOCl-CuS-FeN3 naproxen 0.2~500 µM 0.06 µM [93]

Pesticides, which are widely used in agriculture, also cause serious pollution of the
environment and threaten the health of human beings. It has been reported that serious
symptoms of the nervous system, such as dizziness, rash, and itching could be caused
through drinking 4-chlorophenol-contaminated water for a long time [94]. A BiPO4-BiOCl
heterostructure PEC aptasensor has been designed for detecting 4-chlophenol in wastewa-
ter samples [80]. The photoelectrochemical characterization implied that the BiOCl-BiPO4
heterostructure could induce the highest photocurrent, compared with BiOCl or BiPO4
alone, leading to a wider linear range and a lower detection limit of 4-chlophenol. Fur-
ther real sample analysis (wastewater samples from Yudai River at Jiangsu University)
by a PEC aptasensor shows a similar result measured by high-performance liquid chro-
matography (HPLC). Zhang’s group has also obtained a BiOCl-Au PEC aptasensor, the
detection range and limit of which were determined to be 0.16~20 mg L−1 and 0.05 mg L−1,
respectively [79]. Moreover, this PEC aptasensor shows the negligible interference of
4-chlorophenol detection when adding metal ions or dyes into 4-chlorophenol aqueous
solutions, indicating it can be used for real sample detection rather than experimental
samples. Chlorpyrifos, as one type of broad-spectrum organophosphorus pesticide, also
endangers the health of humans and animals. Through the one-pot precipitation method, a
Z-scheme iodine-doped BiOCl (I-BiOCl)-nitrogen-doped graphene quantum dot (N-GQDs)
heterostructure was fabricated, in which iodine doping could narrow the bandgap of BiOCl,
and the formed heterostructure could not only absorb more incident light but also separate
photogenerated carriers, leading to sensitivity of the detection range and limit [81]. Based
on the sensitivity of the BiOCl heterostructure PEC aptasensor, Tan’s group [82] detected
doses of chlorpyrifos on lettuce, leek, and cucumber with a BiOCl TiO2 PEC aptasensor,
which also proves that a BiOCl-based PEC aptasensor could be applied for analysis of
real samples. 2-chloroethyl phosphate, as a rapid ripening agent for fruits and vegetables,
has been a concern regarding food security issues. Juan et al. prepared a bismuth oxy-
chloride/bismuth oxybromide (BiOCl0.5Br0.5)-C3N4-Au heterostructure PEC aptasensor,
which has a detection limit of 6.9 nM 2-chloroethyl phosphate and been used for tomato
samples [83]. Aflatoxin B1, known as a class of secondary fungal metabolites, could induce
serious illnesses to humans and animals even at an extremely low dose. Thus, a BiOCl-CuO
PEC aptasensor with ultra-sensitivity (0.07 pg mL−1) was designed by Zhang’s group. More
importantly, this aptasensor could also degrade aflatoxin B1 under light irradiation and
suitable bias voltage, and the degradation rate could reach up to ~81.3% when 5.0 µg mL−1

of aflatoxin B1 was added [91].
In addition to bioimaging, the detection of biomarkers, such as glucose, glutathione

(GSH), dopamine, alkaline phosphatase (ALP), and tumor markers, is a widely used
method to diagnose various diseases. Among these biomarkers, glucose is a common
biomarker, whose concentration is critically significant in many facets of biological research
and medical specialties. Enzyme-based electrochemical biosensors have been widely used
due to its good selectivity and sensitivity. In order to solve the limitations of enzyme-
based electrochemical biosensors, such as complicated enzyme immobilization procedures,
instability, restricted operational conditions, and poor reproducibility, BiOCl-graphene
and BiOCl-TiO2 heterostructures were designed and prepared for glucose detection, and
the detection limit was 0.22 mM and 5.7 µM, respectively [84,85]. The changes of ALP
also reflect numerous illnesses, such as hepatitis, diabetes, bone disease, and prostate
cancer. Luo et al. [88] designed a BiOCl-Bi2S3-CdS Z-scheme heterostructure for PEC
detection of ALP with a limit of 0.06 U L−1. Moreover, in order to detect human serum
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samples, the selectivity of ALP and stability in blood of this sensor were investigated.
Compared with the interfering substances, including egg albumin, GSH, L-cys, GOx,
DA, Na+, K+, BSA, and UA, ALP could be specifically measured. Meanwhile, during
10 on/off cycles, the photocurrent induced by this sensor did not obviously change. The
result implies the potential and preliminary application of BiOCl-Bi2S3-CdS Z-scheme PEC
biosensors in actual sample analysis. Meanwhile, GSH and dopamine were also detected
by a BiOCl-based PEC biosensor [86,87]. Tumor markers are usually detected through
ELISA, chemiluminescent, fluorescent, or colorimetric techniques. The PEC immunoassay
has been developed rapidly due to its high sensitivity. Taking a carcinoembryonic antigen
(CEA) as an example, after modifying the CEA antibody for selective recognition of the
CEA target, the BiOCl-based PEC immunoassay could effectively detect CEA in serum
samples [89,90]. In addition, other substances, such as Pb ions [92] and naproxen [93], were
also detected by various BiOCl-based PEC sensors.

3.3. Antibacterial

One of the serious threats to the world’s public health is bacterial invasion, which
could induce cholera, pneumonia, influenza, tuberculosis, measles, meningitis, etc. There-
fore, bacteria inactivation is significant. However, traditional antibiotics bring bacterial
resistance, and moreover, the antibiotic itself is toxic to animals and humans. Due to the
capability of ROS generation, there were some studies on the photocatalytic antibacterial
abilities of BiOCl-based NMs. In fact, BiOCl NMs hydrolyzed by bismuth subsalicylate have
been reported to act upon enteric pathogens without light irradiation in the gastrointestinal
tract [61]. In order to study the mechanism of the antimicrobial properties of bismuth
subsalicylate [95], Jan et al. investigated the antimicrobial effects of bismuth subsalicylate
and BiOCl on Clostridium difficile, Salmonella, Shigella, Shiga toxin-producing Escherichia
coli strains, and norovirus. The results indicated that bismuth subsalicylate and BiOCl
have similar antimicrobial effects on a wide range of diarrhea-causing pathogens. Inspired
by the excellent ROS generation ability, BiOCl-based NMs have been used to kill both
Gram-positive and Gram-negative bacteria, including Staphylococcus aureus, Enterococcus
faecalis, Escherichia coli, and Pseudomonas aeruginosa [96]. To enhance antibacterial
efficacy, Ag nanoparticles are usually used to couple with BiOCl NMs [97,98]. On the one
hand, Ag could not only enhance the light absorption ability due to the SPR effect, but also
separate photoinduced electrons and holes as a result of heterostructure; on the other hand,
Ag nanoparticles could release Ag+, which could kill bacteria effectively [99]. Forming
a semiconductor heterostructure could also improve antibacterial efficacy. For example,
BiOCl-AgCl [100], BiOCl-Bi3O4Cl [101], and BiOCl-BiO1.84H0.08 [102] heterostructures were
designed, and showed that effective visible light triggered antibacterial performance. The
binding between bacteria and antibacterial agents is another important key to improving
the efficacy of bacterial inactivation. In order to regulate the binding ability with bacteria,
Yu’s group [103] used PEG (MW = 10000) and cetrimonium bromide (CTAB) as a template
to prepare two vacancy types of BiOCl microspheres (Figure 6A). Fourier transform in-
frared spectroscopy showed no peaks of these two templates, which ruled out the effect of
templates on the following bioeffects of the microspheres. The positron lifetime spectra
and zeta potential proved that PEG-modified BiOCl microspheres exhibited one negative
charge (−1.58 mV), while CTAB-modified BiOCl microspheres possessed ten negative
charges (−15.95 mV). As shown in Figure 6B, the adsorption ability of BiOCl microspheres
to the bacterial cell wall components liposaccharide (LPS, for Gram-negative bacteria) and
teichoic acid (TA, for Gram-positive bacteria) were further investigated via first-principles
computations, which proved that PEG-modified BiOCl showed a higher capacity to adsorb
both LPS and TA than CTAB-modified BiOCl. Additionally, the adsorption experiments
also showed that PEG-modified BiOCl adsorbed 68% of LPS and 56% of TA, while CTAB-
modified BiOCl only adsorbed 21% of LPS and 28% of TA. Therefore, PEG modified BiOCl
has a much higher binding ability to both Gram-negative and Gram-positive bacteria than
CTAB-modified BiOCl, thus could effectively kill bacteria.
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Figure 6. (A) Scheme of vacancy engineering of BiOCl microspheres for binding and killing bacteria;
(B) Adsorption ability of the BiOCl microspheres to bacterial cell wall components LPS and TA
via first-principles computations and experiments. * indicates significant difference between the
two groups at the indicated time point (p < 0.05). Reproduced with permission from Ref. [103],
2021, Elsevier.

Inspired by the excellent antibacterial activity, our group [104] designed Bi2Te3-
functionalized BiOCl (BOBT) for enhancing antibacterial activity and wound healing
efficacy with sunlight irradiation (Figure 7). The bandgap of BiOCl was narrowed from
3.25 eV to 2.37 eV, as proved by UV diffuse reflectance spectroscopy. With simulated
sunlight irradiation, BOBT could effectively produce ROS and inhibit the growth of both
Gram-positive and Gram-negative bacteria. In vivo experiments further confirmed the
excellent wound healing capability of BOBT.
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3.4. Anticancer

The incidence rate and mortality rate of cancer are increasing year by year. According
to the latest report from the World Health Organization, in 2020 there were 19.29 million
new cancer cases and 9.96 million deaths [105]. As a non-invasive treatment technology,
some new therapeutic methods based on nanotechnology, such as photodynamic therapy
(PDT), photothermal therapy (PTT), and sonodynamic therapy (SDT), are widely used due
to their advantages of strong tissue penetration, high efficiency, low side effects, and broad-
spectrum anticancer applications. As semiconductors, more and more bismuth-based
semiconductor NMs, such as bismuth sulfide [25,26], BiOBr [106], and Cu3BiS3 [107], have
been used as PDT agents due to their ROS generation capabilities under light irradiation.
Based on the excellent photocatalytic activity, Wu et al. first applied layered BiOCl NMs
toward cancer PDT [108]. BiOCl nanosheets and nanoplates were synthesized through
a hydrothermal method. Both of them have square shapes (Figure 8A) and have ideal
dispersion stability after ultrasonic dispersion and polyetherimide (PEI) modification. Com-
pared with the commonly used photocatalyst (P25), both BiOCl nanosheets and nanoplates
could effectively degrade methyl violet and kill tumor cells with UV light irradiation
(Figure 8B,C). These BiOCl nanosheets could also kill ~20% of MCF-7 cells without light
irradiation, indicating that BiOCl nanosheets are slightly toxic to cells. However, the above
BiOCl NMs could only be excited by UV light due to their wide bandgaps, which limited
their applications to only cancer cells due to the side effect of UV light. Therefore, Se-doped
BiOCl were synthesized to narrow the bandgap by Ye’s group [64]. After doping, the ab-
sorption had a redshift from 387 nm of BiOCl to 540 nm of Se-doped BiOCl, which could be
irradiated by visible light. As is well known, both UV and visible light have weaker tissue
penetration capabilities than near-infrared (NIR) light. Therefore, Yang’s group adjusted
the exciting light of BiOCl to NIR through hybriding with upconversion nanoparticles
(UCNPs) [109]. TEM images in Figure 9A show that the smaller UCNPs were distributed
on the surface of the BiOCl nanosheet, and the absorption of the BiOCl nanosheet is well
matched with the emission of UCNPs (Figure 9B), indicating BiOCl nanosheets could be
excited by the emitted light of UNCPs under irradiation. As a result, it could produce ROS
with NIR light irradiation (Figure 9C), thus killing tumor cells (Figure 9D) and eliminating
tumors (Figure 9E). Meanwhile, they also doped lanthanide into BiOBr NMs to endow
them with NIR light-responsive PDT activity [71].
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killing (C) abilities of BiOCl nanosheets, nanoplates, and P25 nanoparticles. Reproduced with
permission from Ref. [108], 2016, Royal Society of Chemistry.
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Figure 9. UCNP-BiOCl NMs used for PDT against cancer cells. (A) TEM images of UCNP-BiOCl
nanosheets; (B) the emission spectrum of UCNPs and absorption spectrum of BiOCl nanosheet;
(C) DPBF absorbance spectrum after treating with UCNP-BiOCl nanosheet with irradiation of 980 nm
laser; (D) Dead/live staining of cells treated with UCNP-BiOCl NMs; (E) Tumor growth curves
treated with UCNP-BiOCl NMs. Reproduced with permission from Ref. [109]. 2017, Royal Society
of Chemistry.

In addition to PDT agents, bismuth-based NMs have also been used as other therapeu-
tic agents, including SDT, PTT, and radiotherapy agents. NIR-activated PTT are a promising
technology for tumor ablation. Usually, the photothermal properties are generated from
localized surface plasmon resonances or narrow bandgaps (smaller than 1.53 eV) [24,110].
However, photothermal performance has also been observed for semiconductor bandgaps
greater than 1.53 eV, the photothermal properties of which may originate from various
defects, such as deep level defects in bismuth sulfide [111], hydrogen impurity in TiO2 [112],
and oxygen vacancies in manganese dioxide [113] or bismuth tungstate [114]. Inspired
by oxygen-vacancy-induced photothermal performance, oxygen vacancies have been in-
troduced to BiOCl to endow them photothermal properties [65]. As shown in Figure 10,
after exposure to UV light, oxygen vacancies could be induced and tuned easily, leading
to a strong light absorption in NIR windows, as well as a high photothermal conversion
efficiency. The concentration of oxygen vacancies could be tuned by changing the UV
irradiation time from 2 to 12 h. After 12 h of exposure to UV light, the maximum tempera-
ture and photothermal conversion efficiency of BiOCl could reach up to 65 ◦C and 13.9%,
respectively, higher than that exposed for 2 and 6 h. In addition, UCNPs were also used to
form heterostructures with BiOCl to endow them with photodynamic and photothermal
performances for tumor therapy under NIR laser irradiation [68].
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Figure 10. PTT performance of BiOCl induced by oxygen vacancies. Reproduced with permission
from Ref. [65], 2020, Royal Society of Chemistry. (a) 3D schematic illustration of BiOCl nanosheets
containing different amounts of oxygen vacancies after exposure to UV irradiation for 2, 6 and 12 h.
(b–g) Photothermal effect (b–d) and time constant (e–g) of BiOCl nanosheets after the exposure
to UV irradiation for 2 (b,e), 6 (h,f), and 12 h (d,g). (h–i) The photothermal-heating curves of
BiOCl nanosheets under 808 nm laser irradiation at a power density of 1.5 (h) and 2.0 W cm−2 (i).
(j) Recycling-heating profiles of BiOCl nanosheets aqueous solution after 808 nm laser irradiation at
2.0 W cm−2 for five laser on/off cycles.

Considering the tissue penetration capability, ultrasound and X-ray are also used for
irradiating semiconductors through different mechanisms. With ultrasound irradiation
(20 kHz~1 GHz), the microbubbles (cavitation nuclei) existing in the liquid will vibrate,
grow, and continuously gather the sound field energy. When the energy reaches the
threshold, the cavitation nuclei will collapse and release the energy, producing local high
temperature and high pressure (5000 K, 1800 ATM), thus resulting in the decomposition of
water molecules and the fracture of chemical bonds. When these broken chemical bonds are
recombined, they will release energy and produce luminescence (sonoluminescence). The
emitted light is mainly ultraviolet light, which can be used to stimulate most semiconductor
materials to generate ROS [115]. Therefore, BiOCl NMs could be excited by ultrasound
to produce ROS. Based on this mechanism, Wang et al. [66] designed oxygen-vacancy-
rich BiOCl nanosheets modified with PTP and CRK peptides (Figure 11), in which BiOCl
served as the sonosensitizer for ROS generation, oxygen vacancies were introduced to
enhance ROS generation and induce PA imaging ability, and PTP and CRK peptides
were modified to target cancer cells and mitochondria through plectin-1 and p32 proteins,
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respectively. Electron paramagnetic resonance (EPR) spectrum showed that OV-Bi NSs
could produce both 1O2 and OH• under ultrasound irradiation. Moreover, in vitro and
in vivo experiments proved that oxygen-vacancy-rich BiOCl NSs modified with PTP and
CRK peptides could effectively enter into cancer cells and target mitochondria, thus leading
to cell death and tumor elimination, providing a potent nanomedicine for the diagnosis
and treatment of pancreatic cancer. GSH, which was highly expressed in tumor tissues,
could reduce ROS to protect cancer cells from oxidative stress injury. Therefore, Zhang’s
group modified oxygen-vacancy-rich BiOCl NSs with L-buthionine-sulfoximine (BSO), an
inhibitor of biosynthesis of GSH, to improve SDT efficacy [69]. With ultrasound irradiation,
PEG decorated oxygen-vacancy-rich BiOCl NSs could effectively amplify cellular oxidative
stress due to the production of 1O2 and inhibition of GSH. Further in vitro and in vivo
experimental results show good SDT efficacy of BSO-modified oxygen-vacancy-rich BiOCl
NSs. In addition, the routine analysis of blood, blood biochemistry, biodistribution, and
H&E staining of major organs indicated the excellent biocompatibility of BSO-modified
oxygen-vacancy-rich BiOCl NSs.
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Figure 11. BiOCl nanosheets used for PA imaging-guided SDT. (A) Fabrication of oxygen-vacancy-
rich BiOCl NSs modified with PTP and CRK; (B) scheme of cancer cell and mitochondrial targeting,
PA imaging, and ROS generation capabilities; (C) scheme of PA imaging-guided SDT of oxygen-
vacancy-rich BiOCl NSs. Reproduced with permission from Ref. [66], 2021, Elsevier.

X-ray is another method for stimulating semiconductors to produce ROS, due to its
higher energy. This is especially true for bismuth-based semiconductors, as they have
stronger X-ray absorption abilities due to high atomic numbers (83) and the X-ray at-
tenuation coefficient (4.3 cm2 g−1 at 100 keV) of Bi elements. In fact, there have been
some bismuth-based NMs used for radiation therapy, such as Bi2S3 [116], Bi2Se3 [117],
Bi2O3 [118], BiOI [70], pure Bi [119], and BiOCl NMs [120]. However, the radiation ther-
apy efficacy has been limited by the tumor microenvironment of solid tumors, such as



Crystals 2022, 12, 491 17 of 23

hypoxia and antioxidative GSH. In order to improve therapeutic efficacy, Li’s group de-
signed hydrogen peroxide (H2O2)-loaded Cu-doped BiOCl nanocomposites (BCHN) to
improve the synergistic effect of radiation and chemodynamic therapy through modulating
the tumor microenvironment [120]. BCHN were fabricated through a stepwise method.
First, Na0.2Bi0.8O0.35F1.91 (NBOF) was obtained through co-precipitation of sodium nitrate,
bismuth nitrate, and ammonium fluoride. Then, Cu2+ was absorbed on the surface of
NBOF. After adding sodium hydroxide and H2O2, BCHN monodispersed mesoporous
nanospheres were obtained, as proved by the XRD pattern (Figure 12A) and SEM image
(Figure 12B). The existence of Cu2+ and H2O2 in BCHN has been confirmed by Cu 2p high-
resolution XPS spectrum (Figure 12C) and the redox reaction of potassium permanganate
and H2O2 (Figure 12D). Intracellular GSH and O2 levels showed that BCHN could effec-
tively deplete GSH (Figure 12E) and produce O2 (Figure 12F) through Fenton-like reactions
among Cu2+, GSH, and H2O2. Therefore, without radiation, BCHN alone could kill some
cancer cells due to the chemodynamic property, as well as change the antioxidant and hy-
poxic microenvironment, while with radiation, BCHN could effectively produce ROS to kill
the other cancer cells (Figure 12G). In vivo experiments further proved that BCHN could be
used as a synergistic radiation therapy/chemotherapy agent with good biocompatibility.
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Figure 12. Hydrogen peroxide (H2O2)-loaded Cu-doped BiOCl nanocomposite (BCHN) to improve
synergistic effect of radiation and chemodynamic therapy through modulating tumor microenviron-
ment. (A–C) XRD pattern (A), SEM image (B), and XPS spectra (C) of BCHN. (D) UV–vis absorption
spectra of KMnO4 solution (50 µg mL−1) after adding CuCl2, BCHN, and H2O2, respectively (0.1 M
H2SO4, reaction time = 10 min). (E–F) Relative GSH content (E) and oxygen levels (F)in 4T1.2 cells
without or with BCHN incubation. (G) Relative viability of 4T1.2 cells incubated with BCHN and
further radiated with or without X-rays under normoxic and hypoxic conditions. Reproduced with
permission from Ref. [120], 2021, Elsevier.

4. Conclusions and Perspectives

In this review, we summarized the recent progress of BiOCl NMs, from degradation
to biomedical applications. As typical 2D NMs, BiOCl can effectively generate ROS, which
can be used for simulating sunlight-triggered pollution degradation, bacterial inactivation,
biosensing, and cancer therapy. Regulating the morphologies and forming heterostructures
are the two main and effective methods for improving ROS generation efficacy, because
both methods could not only narrow the bandgap of BiOCl for more light absorption,
but also facilitate photoinduced electron and hole separation. However, the biomedical
application of BiOCl NMs still needs to be development. There exist some challenges that



Crystals 2022, 12, 491 18 of 23

need to be investigated and addressed to promote the practical application of theranostic
BiOCl-based NMs. (1) Being used as nanomedicine, the biosafety and biocompatibility
needs to be systematically investigated. (2) As typical 2D NMs with various morphologies,
BiOCl-based nanocarriers with responsive releasing performance for treating different
diseases need to be developed. (3) BiOCl-based NMs could kill effective bacteria due to
the excellent ROS production ability; however, few studies have applied them to in vivo
diseases. Therefore, BiOCl-based antibacterial agents could be further used for various
bacterial invasion diseases, such as wound healing, cholera, pneumonia, and influenza.
(4) Bi-containing NMs have good performance for CT imaging; however, the CT imaging
application of BiOCl-based NMs is rare. As a result, more BiOCl-based NMs need to be
developed for bioimaging. (5) Although BiOCl-based NMs have been used for cancer
therapy, the NIR-activating ability needs to be realized. Moreover, more strategies need to
be developed for improving cancer therapy efficacy. (6) As a type of semiconductor, BiOCl
could also be activated by ultrasound and X-ray. As a result, BiOCl-based sonodynamic
therapy and radiation therapy should be developed.
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