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Abstract: Using acid–base assays and simple slow evaporation method at ambient temperature,
we were successful in producing a novel salt with the chemical formula (C5H14N2)[HgCl4]·H2O.
According to single-crystal X-ray diffraction data, the crystal packing was regulated by H-bonds
and by Coulomb interactions (also called electrostatic interactions) between distinct entities, which
formed a 3D network. The 2D fingerprint plots and the Hirshfeld surface were utilized to examine
the effect of intermolecular interactions. FTIR spectroscopy, PL spectroscopy, thermal analysis, and
electrical conductivity experiments were also carried out, and the antioxidant activity was tested.

Keywords: photoluminescence; FT-IR; chloromercurate (II); dielectric analysis; antioxidant activity

1. Introduction

Several strategies have been used to investigate, synthesize, and describe mercury-
based compounds because of their self-assembling nature [1]. The anions in this class of
compounds have long been recognized to exhibit a wide range of stoichiometric, geometric,
and connectivity properties, due to the full 4f and 5d electron shells, which make themmore
flexible [2]. These compounds may have different geometries, and their deformed forms
and substantial distortions in the ideal polyhedron are readily possible [3–6]. Hg2+ ions
have a wide range of potential applications in the paper industry, paints, and preservation
of mercury (II) compounds. Despite these advantages in terms of potential applications in
various fields, the formation of polymers containing Hg2+ ions is disproportionately sparse
in comparison to Zn2+ and Cd2+metals [7–18].

Recently, homopiperazine (heterocyclic amine) has found widespread use in several
applications, including as a component of liquids for CO2 capture [19] and as a compo-
nent of various organic and organic/inorganic supramolecular ionic salts and transition
metal complexes. In these applications, the materials are generally characterized by X-ray
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diffractions, we can conclude that there are a large number of X-ray structures involving
the dication of homopiperazinium in salts or mixed salts; we note sulfate oxalate man-
ganese [20], cobalt sulfate [21], zinc phosphate [22], and so on. There are also an interesting
number of structures in which homopiperazine reacts like bidentate ligand on nickel [23],
copper [24], and platinum [25–28]. There are several uses for homopiperazines in medicine,
including antimicrobial, antibiotic, antituberculous, antipsychotic, anticonvulsant, depres-
sive, anti-inflammatory, cytotoxic, antimalarial, antiarrhythmic, and antiviral [29–33].

In this article, according to the motivations stated above, we have introduced a novel
compound, homopiperazine-1.4-diium tetrachloromercurate (II) monohydrate ([HgCl4]2−,
(C5H14N2)2+, H2O). We will analyze the information given by the single-crystal XRD and
by PXRD. We will discuss their spectroscopic properties (FT-IR and PL) and their thermal
properties. Moreover, we will study their intermolecular interactions by the analysis of
Hirshfeld surfaces. Furthermore, we will determine the electric and dielectric properties
to give more information about conduction modes. We ended the study with a test of
antioxidant activity.

2. Experimental Part
2.1. Chemical Preparation

The compound (C5H14N2)[HgCl4]·H2O is obtained by acid–base reaction. The ho-
mopiperazine amine (C5H14N2) (0.28 mL, 2mmol, purity 98%, Sigma-Aldrich, Burlington,
MA, USA) dissolved in 20 mL of ethanol was added to a solution containing HgCl2 (0.271 g,
1 mmol, 99.5% Fluka, Buchs, Switzerland) dissolved in 15 mL of hydrochloric acid (36–38%,
Sigma-Aldrich) (6 M) (molar ratio 1:2) and 15 mL of water. Drop by drop, concentrated
hydrochloric acid (HCl) was added to the solution until it was clear. Colorless prismatic
crystals of high quality formed after almost three weeks of crystallization in the solution at
room temperature.

The reaction scheme is as follows:

HgCl2+2HCl + C5H12N2+H2O→ (C5H14N2)[HgCl4]·H2O

The CHN-elemental analysis for the compound (C5H14N2)[HgCl4]·H2O is as follows:
Anal. calculated C, 12.98; H, 3.48; and N, 6.05%; and experimental: C, 12.67; H, 3.09;
and N, 5.98%.

2.2. Investigation Methods

Rigaku Mercury CCD2 (Rigaku Corporation, Tokyo, Japan) equipped with MoKα radi-
ation (0.71075) at 298 K was used to determine crystal data of (C5H14N2)[HgCl4]·H2O.The
refinement was carried out by the SHELXL version 2018/1 program [34]. Empirical ab-
sorption adjustments were calculated on the basis of a multi-scan. ORTEP and DIAMOND
software were used to generate the structural graphics [35]. Table 1 contains selected
crystallographic data and experimental information. The experimental PXRD patterns
of (C5H14N2)[HgCl4]·H2O were determined using a powder diffractometer called Ad-
vance Bruker D8 with Cu-(λ(Kα1)= 1.54060 Å) radiation (with receiving slit size = 0.1 mm,
and sample length= 10 mm) and by the variation of 2θ from 0 to 50◦. The simulated
diffractogram is determined directly by Mercury software [36].

The (C5H14N2)[HgCl4]·H2O compound’s Fourier transform infrared spectrum was ac-
quired using a Nicolet Impact 410 FT-IR spectrophotometer, according to the manufacturer
(SpectraLab Scientific Inc., Markham, ON, Canada). A SAFAS FLX-Xenius spectrofluorom-
eter (SAFAS, Monaco, Monaco) was used to conduct photoluminescence experiments at
room temperature (T = 25 ◦C), with the intensities of the photoluminescence measurements
being corrected for the screening effect.
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Table 1. The results obtained by the X-ray diffraction analysis on a single crystal.

Crystal Data

Chemical formula (C5H14N2)[HgCl4]·H2O
Molar mass (g·mol−1) 462.59

Crystal system, space group Monoclinic, P21/c
Temperature (K) 293

a, b, c(Å) 6.272 (3), 12.480 (6), 15.984 (9)
β (◦) 94.386 (6)

V (Å3) 1247.5 (11)
Z 4

Radiation type Mo Kα

µ (mm−1) 13.16
Crystal size (mm) 0.45 × 0.3 × 0.2

Form, Color Prism, colorless

Data Collection

Diffractometer
Absorption correction

Rigaku Mercury CCD2
Multi-scan

Tmin, Tmax
Limits h, k, l

0.048, 0.071
h = −8–8

k = −16–13
l = −17–20

No. of measured, independent, and observed
(I > 2σ(I)) reflections 9371, 2829, 2214

Rint 0.061
(sinθ/λ)max (Å−1) 0.649

Refinement

R[F2 > 2σ(F2)], wR (F2), S 0.035, 0.089, 1.07
No. of reflections 2829
No. of parameters 119

∆ρmin, ∆ρmax(e·Å−3) −1.50, 1.47

CCDC No. 2155598

A PYRIS 1 TGA apparatus (Perkin Elmer, Waltham, MA, USA) was used to manu-
facture thermograms in the temperature range 300–680 K with an initial mass of about
11.8 mg utilizing a PYRIS 1 DTA thermogram generator. The electrical measurements of the
real Z′ and imaginary Z” impedance characteristics changed across a temperature range
(311–403 K). These measurements were taken with a Hewlett Packard HP 4192A analyzer
(Test Equipment Center Inc., Gainesville, FL, USA). To guarantee electrical connections,
the pelleted sample’s two parallel sides were covered with silver paint. A weak mechan-
ical pressure was used to maintain contact between the platinum wires and the sample,
which was regulated by a screw/spring system and transferred through an alumina rod.
Furthermore, the anti-free-radical activity of DPPH· was also tested using assays similar
to those reported by Brand-Williams et al., with slight changes [37].Thus, in a volume of
1 mL, different concentrations of the extract to be tested are prepared in methanol, and then
2 mL of the 0.1 mM concentration of DPPH· solution are added. After vigorous stirring,
the mixture is incubated for 1 h in the dark, and then the absorbance was determined using
a UV–vis spectrophotometer (JASCO-V530) (Jasco photometers & spectrophotometers,
Portland, OR, USA) at 515 nm. Parallel to this, a solution containing 1 mL of DPPH·
was created as an analytical blank. The anti-free-radical activity was estimated using the
percentage inhibition (%I) value obtained by the following formula:

%I =
Abs0 −Abs1

Abs0
× 100 (1)
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where Abs0 is absorbance of the analytical blank, and Abs1 is absorbance of the solution in
the presence of extract.

The anti-free-radical activity or EC50 (efficient concentration 50 percent), defined as the
quantity of extract required to halve the initial concentration of DPPH·, can be determined
using the curve showing the variation of (%I) as a function of the different concentrations
of the extract.

3. Results and Discussion
3.1. X-ray Diffraction Powder Analysis

The coincidence between the peak positions of the experimental and the simulated
powder X-ray diffraction patterns (PXRD), indicated in Figure 1, verify the phase purity of
the compound (C5H14N2)[HgCl4]·H2O.
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3.2. Structure Description of (C5H14N2)[HgCl4]·H2O

The asymmetric unit of the title compound consists of one homopiperzine-1.4-diium,
one tetrachloridomercurate [HgCl4]2−, and one water molecule (Figure 2). Table 1 shows
the experimental details of the novel compound. As can be seen in Figure 3, this com-
pound’s atomic structure may be defined by the alternation of three entities: organic cations
(C5H14N2)2+, inorganic anions [HgCl4]2−, and water molecules. The various components
of (C5H14N2)[HgCl4]·H2O are held by a variety of H-bonds and by electrostatic interactions
(Table S1). The hydrogen bonds lead to a wide variety of ring motifs R2

1(5), R2
2(5), and

R4
2 (8) (Figure 4).

In the [HgCl4]2− anion, the Hg2+ is surrounded by four chloride atoms (Cl1, Cl2, Cl3,
and Cl4). To distinguish between tetrahedral geometry, square plane geometry, and trigonal
pyramid geometry, Yang et al. have proposed the parameter “τ4”, employing the following
relation [38]:

τ4 =
360− (α+ β)

141
(2)

where α and β are the two highest angles (α = 137.77 (7)◦ and β = 106.74 (6)◦).If τ4 tends
to 0, the geometry is homologous to the geometry of the square plane; if τ4tends to 1, the
geometry is assimilated to tetrahedral geometry; and if τ4is close to 0.85, the geometry is
assimilated to trigonal pyramid geometry. In this case, τ4 is equal to 0.819 (close to 0.85).
Therefore, this value shows the trigonal pyramid geometry of [HgCl4]2− anions. Indeed,
these results correspond to those observed in comparable compounds [39–44].
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The organic cations [C5H14N2]2+ are intercalated between the inorganic entities to
ensure the balance charge of (C5H14N2)[HgCl4]·H2O. The geometrical properties of the
organic cations [C5H14N2]2+, summarized in Table S2, are consistent with those reported in
the literature [45]. Each cation establishes thirteen hydrogen bonds among them. Two are
bifurcated: N1–H1B . . . (Cl1iii, Cl4vi) and N2–H2B . . . (Cl2ii, Cl3i) (For symmetry codes,
see Table S1). The conformation of the [C5H14N2]2+ring may be defined in terms of Cremer
and Pople puckering coordinates [46], and it was shown that Q = 0.7906 Å, q2 = 0.4355 Å,
q3= −0.6599, θ = 33.43◦, and ϕ = 50.93◦, identical to the most stable chair conformation.
This result can be confirmed by the asymmetrical parameters.

Table S2 gathers the values of the distances and angles of the different entities consti-
tuting the structure of the title compound.

3.3. Hirshfeld Surface Analysis

Using CrystalExplorer software [47], we can determine the nature of the intermolecular
interactions present in (C5H14N2)[HgCl4]·H2O using 3D Hirshfeld surface analysis (HS),
while the 2D fingerprint traces quantitatively reveal the contributions of interactions in the
crystalline edifice. The Hirshfeld surfaces (HS) around the asymmetric unit are portrayed
in Figure 5, presenting the surfaces that were mapped over dnorm(Figure 5a), curvedness
(Figure 5b), and shape index (Figure 5c) surfaces. Dark-red dots found in the dnorm view
represent the contacts of the H-bonds: H . . . Cl and H . . . O (Figure 6).

The value 59.6% is attributed to the dominant contacts, which are H . . . Cl/Cl . . . H,
corresponding to the interactions C–H . . . Cl, N–H . . . Cl, and O–H . . . Cl (Figure 7a).
They are illustrated by a pair of sharp spikes characteristics in the 2D fingerprint plot.
Furthermore, because of the abundance of chlorine and hydrogen on the molecular surface,
these connections are the most common contacts: in this case, the SCl is 32.35%, and the SH
is 61.6%, with an enrichment rate larger than the unity EHCl = 1.495 (Table 2). The H . . . H
contacts occupy 27.2% of the total surface, due to the abundance of hydrogen at the molec-
ular surface with EHH= 0.719. The H . . . H contacts are illustrated by a large spot located
in the middle of the 2D fingerprint (Figure 7b). The percentage 8.1% is reserved for the
third interactions in the (C5H14N2)[HgCl4]·H2O, which are H . . . O/O . . . H contacts with
an enrichment rate greater than the unit EHO= 1.623 (Figure 7c). They refer to N–H . . . O
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hydrogen bonds type. Hg . . . Cl/Cl . . . Hg contacts contribute 2.5% of the total surface
(Figure 7d). The percentages 1.3% and 1.1% are assigned, respectively, to the Cl . . . Cl
contacts and to the Hg . . . H/H . . . Hg interactions (Figure 7e,f). Additionally, Figure 8
illustrates the produced crystal’s void region. The voids in the crystalline substance were
observed by generating an isosurface of the electron density (0.002 a.u.). The volume of the
empty surface per unit cell is about 72.91 Å3, and its surface area is 295.82 Å2. The crystal
unit lattice has a void percentage around 5.844%.
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Table 2. EXY(enrichment reports) of (C5H14N2)[HgCl4]·H2O.

Atoms Hg Cl O H

% Surface 1.8 32.35 4.05 61.6

Hg 2.15 0.50

Cl 0.12 1.49

O 1.62

H 0.72
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3.4. Vibrational Study

Figure 9 shows the IR spectrum of the crystal (C5H14N2)[HgCl4]·H2O. We will de-
termine the different functional groups using published research of similar materials
possessing the same organic cation [48–52]. In Table S3, we propose an attempt to designate
this compound’s most representative vibrational modes.

The bands located at 3522 and 3433 cm−1 correspond to the valence vibrations of the
water molecule. In the region of wavenumbers between 3200 and 2700 cm−1, there are
four broad bands. The first two bands detected at 3127 and 3012 cm−1 are assigned to
the asymmetric and symmetric N–H bond stretching, respectively. The remaining two
bands observed at 2840 and 2776 cm−1 are attributed to the asymmetric and symmetric
C–H stretching, respectively. The thin band at 1625 cm−1 corresponds to NH2 in-plane
deformation vibration. On the other hand, the intense band appearingat 1572 cm−1 corre-
sponds to the δ(C–N–H) asymmetric bending. The band located at 1456 cm−1 is attributed
to δ(CH2). The two low-intensity bands at 1225 and1125 cm−1 correspond to the C–N
stretching. The band at 1068 cm−1is assigned to C–C stretching. The rocking vibration
band, ρ(NH2), is located at 979 cm−1. The two bands at 883 and at 829 cm−1correspond
to δ(C–C–C) ring bending vibrations, while the band seen at 531 cm−1is attributed to the
deformation vibrations δ(C–N–C) and to the deformation vibrations δ(C–C–N).
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3.5. Fluorescence Properties

We performed photoluminescence (PL) measurements to determine the transmission
mode of the light radiation emitted by the compound following excitation. This method is
used to examine the optical emission properties of materials.

The excitation and emission spectra of (C5H14N2)[HgCl4]·H2O are shown in Figure 10
at ambient temperature and in the solid state. The excitation spectrum is recorded for a
wavelength of the order of 280 nm, and three bands are observed, of which the most intense
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is detected around 455 nm. The emission spectrum is constituted by two bands; the first
band is observed at 295 nm, and the second band is detected at 341 nm (the most intense).
These two bands may mainly arise from ligand-metal charge transfer (LMCT) [53,54].
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3.6. Thermal Behavior

Figure 11 highlights the results obtained by the thermal analysis of the compound
(C5H14N2)[HgCl4]·H2O. According to the TGA-DTA curve, four peaks were detected in the
DTA curve, and three mass losses in the TGA curve. The first peak at 370 K corresponds to
the elimination of the water molecule, with a loss of mass of 3.605% (experimentally) vs.
3.8% (theoretically). The second and the third peaks are observed at 510 (∆H= 415.279 J·g−1)
and at 539 K, and they correspond to the departure of the organic part (C5H14N2)2+and
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four chlorine atoms, with a mass loss theoretically equal to 52.739% and experimentally
to 53%. The fourth peak, located at 615 K (∆H = 495.741 J·g−1), corresponds to the Hg
atom’s escape, with a mass loss of 43% (experimentally)/43.3% (theoretically). The black
residue (10%) obtained at the end of the analysis is formed by a mixture of mercury oxide
and carbon.
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3.7. Dielectric Constant Investigation

We suggest investigating the electric transport capabilities of the compounds created
in order to explore probable ionic conduction. To investigate the conductivity of the
compound, we generated a pellet with geometric factor g = e/s = 0.197 cm−1.

Electrical conductivity measurements provide insight into the behavior of charge
carriers in a dielectric conductivity field, as well as their mobility and conduction processes.
Crystals have greater temperature conductivity due to inherent flaws created by thermal
fluctuations, as proven for the Hg complex [55], where the activation energy Ea was
approximately 0.72 eV.

3.7.1. The Dielectric Constants (ε′ and ε′′) Versus ln(f)

The spectra in Figure 12 reveal the link between dielectric constants (ε′ and ε′′) and
frequencies. At low frequencies, these spectra exhibit dielectric dispersion, where all
polarization processes contribute. In general, the polarization process is divided into four
parts: electron polarization (or atomic polarization), orientation polarization (also known as
dipolar polarization), ion polarization, and interfacial polarization (also called space charge
polarization). However, as frequency increases, the influence of various bias mechanisms
decreases. Several studies [56,57] have identified this sort of behavior, which may be
explained by the polarization process. Observations of the dielectric behavior of simple
salts have been made in a similar manner [58,59].



Crystals 2022, 12, 486 12 of 21
Crystals 2022, 12, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 12. (a,b) ε’ as a function of ln(f); (c,d) ε″ as function of ln(f). 

3.7.2. Impedance Spectroscopy 
The impedance spectroscopy technique is used to examine and discriminate between 

the contributions of the material electrode contact and the grain and grain boundary. Sem-
icircular arcs at high frequencies are ascribed to grain contributions, whereas semicircular 
arcs at low frequencies are assigned to grain boundaries [60]. The impedance spectrum 
of(C5H14N2)[HgCl4]·H2O is shown in Figure 13 between 311 and 403 K. We noted that the 
conduction is reduced by those of the grain boundaries at temperatures below 363 K (Fig-
ure 13a,b);on the other hand, at temperatures above 373 K, the conduction is reduced by 
the grains (Figure 13c). Nyquist diagram is another name for this graph. These lines, 
which are quite complicated, form semicircular arcs. There is a certain frequency associ-
ated with each of the experiment’s data points. The diameter of the semicircle denotes the 
electrical resistivity of the product at the specified temperature, and the greatest resistivity 
value corresponds to the relaxation frequency w= 1/RC. Using impedance curves, it is 
possible to show that the radius of the semicircle decreases as the temperature rises. This 
is in accordance with the Cole–Cole rule [61]. The impedance Z may well be measured 
and expressed in the following ways as a function of resistance R and capacitance C: 

Z*(ω) = Z’(ω)−jZ”(ω) (3)

With; Z′ ω =  (4)

Figure 12. (a,b) ε′ as a function of ln(f); (c,d) ε′′ as function of ln(f).

3.7.2. Impedance Spectroscopy

The impedance spectroscopy technique is used to examine and discriminate between
the contributions of the material electrode contact and the grain and grain boundary. Semi-
circular arcs at high frequencies are ascribed to grain contributions, whereas semicircular
arcs at low frequencies are assigned to grain boundaries [60]. The impedance spectrum
of(C5H14N2)[HgCl4]·H2O is shown in Figure 13 between 311 and 403 K. We noted that
the conduction is reduced by those of the grain boundaries at temperatures below 363 K
(Figure 13a,b); on the other hand, at temperatures above 373 K, the conduction is reduced
by the grains (Figure 13c). Nyquist diagram is another name for this graph. These lines,
which are quite complicated, form semicircular arcs. There is a certain frequency associated
with each of the experiment’s data points. The diameter of the semicircle denotes the
electrical resistivity of the product at the specified temperature, and the greatest resistivity
value corresponds to the relaxation frequency w= 1/RC. Using impedance curves, it is
possible to show that the radius of the semicircle decreases as the temperature rises. This is
in accordance with the Cole–Cole rule [61]. The impedance Z may well be measured and
expressed in the following ways as a function of resistance R and capacitance C:

Z*(ω) = Z′(ω)−jZ′′(ω) (3)

With; Z′(ω) =
R

1 +ω2R2C2 (4)
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Z′′ (ω) =
ωR2C

1 + ω2 R2C2 (5)

Z′(ω) and Z′′(ω) represent the real and imaginary components of the impedance created
by the above equations, respectively [62]. The impedance data were matched to the
equivalence of the R and C parallel systems [63].
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(C5H14N2)[HgCl4]·H2O at the range of 373–403 K.

The impedance analysis of this complex enables us to have a better understanding of
the observed dielectric dispersion phenomena. The real component Z′ and the imaginary
part Z” have a frequency dependency, which illustrates the complex impedance of this
sample at different temperatures (Figure 14).

In Figure 14a, we can notice that in the zone where the frequencies are high, Z′ becomes
independent of them, and this is manifested by the merging of the curves. Furthermore,
the rise in frequencies and temperatures causes a decrease in the magnitude of Z′, but it
causesan increase in the conductivity of the material. This observation might be explained
by the release of space charge, which results in a decrease in the material’s barrier properties
as the temperature increases [64].

Z′ increases with frequency and reaches a maximum before quickly decreasing, as seen
in Figure 14b.The value of the maxima of Z” falls gradually as frequency and temperature
increase, finally merging into the high-frequency area. This might be a sign of the material’s
polarization effects accumulating at low frequencies and high temperatures [65].
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3.7.3. Electric Conductivity

Based on the Arrhenius modeling equation, Figure 15 depicts the development of
electrical conductivity (grain and grain boundary) as a function of temperature: σ·T = A
exp(−Ea/Kβ·T) [66] (where Ea represents the activation energy, A is the pre-exponential
factor, K is the Boltzmann constant, and T is the temperature in Kelvin). The curves of
Figure 15a,b show a breakout towards 373 K. Indeed, the curves are made up of two parts,
(I) and (II). The first part (I) is located in the region of temperatures below 363 K, while
the second part (II) is placed in the region of temperatures above 373 K. The conductiv-
ity follows Arrhenius’ law in both parts. According to the curves in Figure 15, there isa
modification in the slope of the linear curve at T = 373 K. The change in the slope can be
explained by a modification of the conduction mechanisms, which causes the departure of
the water molecule (dehydration) because our compound contains H2O. This phenomenon
is observed in other materials [67]. We think that the conduction is of proton origin. Protons
of the synthesized material come from the organic part and from the water molecules. After
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dehydration, conducting proton density decreases, inducting the sudden decrease of the
conductivity observed at 373 K. This result was confirmed in the TGA-DTA part. The activa-
tion energies deduced for both conductions are very close: Ea1 = 1.20 eV and Ea2 = 0.72 eV
(grain conduction), and Ea1 = 1.17 eV and Ea2 = 0.76 eV (grain boundary conduction).
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3.7.4. Electrical Modulus

The purpose of the modulus (M)spectroscopy graph is to discern components that
have the same resistance but have a different capacitance. Another fascinating feature of
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M formalism is the absence of the electrode influence. The following formula was used to
calculate the complex electric modulus (M*):

M* (ω) =
1
ε∗

= M′ + jM′′ (6)

where M′ = ΩC0Z′′, M′′ = ΩC0Z′, ω represent the angular frequency (2πf) and ε* is
called the complex permittivity formalism, and C0 = ε0(A/t) represents the geometrical
capacitance such that

• ε0 represents the permittivity of free space;
• A is the area of the electrode surface;
• T expresses the thickness.

The fluctuation of the real component M′ of the electrical modulus M′ is seen in
Figure 16a,b. The low values of M′ are reported at all temperatures and in the low-frequency
zone. When the frequency is raised, the value of M′ grows as well, until it hits a maximum,
indicating a maximum in dielectric losses. Such findings might be linked to a lack of
restoring force guiding charge carrier motion under the influence of generated electric
fields. This demonstrates that the electrode effect in the material has been eliminated [68].
In Figure 16c,d, at various temperatures and frequencies, the fluctuation of the imaginary
part of the electrical modulus M” is shown as a function of ln(f), implying a connection
between the movements of the mobile ions [69]. At temperatures between 311 and 403 K,
a well-recognized relaxation process has been established. As the temperature rises, the
relaxation peaks move to higher frequencies. The modulus spectrum’s appearance shows
that the material has a hopping electrical conduction process.
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3.8. Discussion of Antioxidant Activity

The different concentrations of the 70% ethanolic extract (0,10,15,20,25,30,35, and
40 µg/mL acted in adose-dependent manner at various doses, with 0, 0.96, 1.95, 3.68, 6.52,
8.19, 15.85, 19.36, and 24.78% inhibition. In Figure 17, it is shown that the percentage
inhibition of the free radical DPPH· (2.2-diphenyl-1-picryldrazyl) has the same pattern
for the extract used. It has been observed that the percentage inhibition increases with
the concentration of the 70%ethanolic extract, and it is generally lower when compared to
that of the synthetic antioxidant DPPH·, which shows a higher antioxidant activity of the
inhibition percentage.
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The study of the antioxidant activity of the extract from Staviarebaudiana using
the DPPH· free-radical-scavenging method showed that the 70% ethanolic extract has
significant antioxidant activity. This activity remains significantly lower than that of
DPPH·, but it is a crude extract, containing a large number of different compounds. It is
therefore very likely that it contains compounds which, once purified, may exhibit activity
comparable to that of DPPH·.

The antioxidant capacity is expressed in Trolox equivalent (TEAC), which gives a value
of EC50 = 18.19 ± 0.04 µM (µg/mL); it corresponds to the concentration of Troloxthatgives
a value of EC50 (Trolox) = 19.642 µM (µg/mL) having the same activity as the substance
to be tested at one concentration. The result is given in µM (µg/mL) of Trolox equivalent
per g of product with a value of 1.863 µmol Trolox/mg of extract (scavenger effect of the
DPPH· radical).

The inhibitory activity of the different extracts [70] on a methanolic solution of
DPPH·measured at 515 nm, was used to assess their anti-free-radical activity. This ef-
fect is explained by the transfer of single electrons from the DPPH·’s exterior orbital
to the antioxidant, which would totally react with the radical after reaching a certain
concentration. When the concentration is increased, the antioxidant is explained by the ex-
istence of multiple bioactive molecules, which is followed by the saturation of the radical’s
electronic layers.

4. Conclusions

The compound homopiperazine-1.4-diium tetrachloridromercurate (II) monohydrate
crystallized in the monoclinic system, according to a single XRD. Four types of hydrogen
bonds and electrostatic interactions connect the various entities that make up the crystal
packing. The different types of intermolecular interactions are demonstrated by Hirsh-
feld surface. The homogeneity of the single crystal was confirmed by the XRD powder
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analysis result. The compound’s several types of functional groups were revealed by IR
spectroscopy. Thermal studies (TGA-DTA) were used to determine the complex’s thermal
stability. At room temperature and in the solid form, luminescence research reveals an
interesting fluorescence feature. Temperature and frequency were used to depict dielectric
characteristics in the 311–403 K range. The Arrhenius law governs the relaxation time and
electrical conductivity. The conductivity of this material has been examined as a function
of frequency in the temperature range 311–403 K, where the conduction process ascribed
to the ion-hopping mechanism. The test for antioxidant activity demonstrates that the
produced compound exhibits antioxidant activity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12040486/s1, Table S1: The different H-Bonds present
in (C5H14N2)[HgCl4]·H2O.; Table S2: The different distances and angles of every part in
(C5H14N2)[HgCl4]·H2O.; Table S3: The main bands detected in the infrared spectrum of
(C5H14N2)[HgCl4]·H2O: Wavenumbers values and their modes of vibration.
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