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Abstract: All-inorganic halide perovskites, especially lead perovskite microcrystals, have attracted
more and more attention because of their excellent photoelectric properties and chemical stabil-
ity. Herein, high quality CsPbBr3 microcrystals with three different stable morphologies, namely
microplate, frustum of a square pyramid and pyramid, were synthesized by the chemical vapor
deposition (CVD) method through altering the flow rate of a carrier gas and were comparatively stud-
ied in structure and optical property. The photoluminescence (PL) results showed that the CsPbBr3

microplate has the best luminescence property. The structural characterization results by scanning
electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), X-ray
rocking curves (XRC) and Raman revealed that the flow rate of the carrier gas could manipulate the
morphology evolution of CsPbBr3 microcrystals and further impact their luminescence properties.

Keywords: all-inorganic lead halide perovskite; CsPbBr3; structure–function relationship; morphology;
crystal growth; luminescence

1. Introduction

Lead halide perovskite (LHP) APbX3 (A = CH3NH3
+, CH(NH2)2

+, Cs+, X = Cl−,
Br−, and I−) materials have gained substantial attention over the past decades [1–7],
owing to their excellent characteristics, including broadly tunable band gaps, high photo-
luminescence (PL) quantum efficiency, low nonradiative recombination rate, and direct
band-gap [8–11]. For this reason, a large number of LHP-based photoelectric devices have
been developed, including solar cells, low-threshold lasers, bright light-emitting diodes
(LEDs) and photodetectors [12–15].

Among the various types of LHP-based devices, the ones based on organic–inorganic
hybrid perovskites usually exhibit excellent performance because of the mutual modulation
effects between organic and inorganic components. However, the issue of stability is a
crucial factor for realizing the expected potential of such kind of solar cells [16]. Organic–
inorganic hybrid perovskites are found to decompose easily in a humid environment on
account of the existence of hygroscopic amine salt [17,18], and they show low thermal
stability even in an inert atmosphere [19]. Comparatively, all-inorganic halide perovskite,
which was first reported by Møller in 1958 [20], possesses a stronger tolerance for moisture,
oxygen, heat, light, and electrical field. For example, Jin et al. reported an all-inorganic
solar capacitor by integrating a perovskite solar cell unit and a supercapacitor unit into a
single device that exhibits high open-circuit voltage and outstanding stability [21]. Xue et al.
developed a self-powered, high-performance CsPbBr3 perovskite photodetector that shows
the responsivity and detectivity of 0.3 A/W and 1.15 × 1013 cm·Hz1/2/W, respectively,
and has an anti-corrosion ability to water and alcohol [22]. Apart from outstanding sta-
bility, all-inorganic perovskites can also have a high light-harvesting capability [23] and
display strong PL emission with narrow full width at half maximum (FWHM), with a
PL quantum yield up to ~90% [24]. Besides, all-inorganic perovskites can also be doped
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by other elements and show more excellent properties. For example, Mn-doped CsPbCl3
nanocrystals (NCs) with high Mn substitution synthesized at room temperature showed
excellent stability and luminescence property [25]. In addition, all-inorganic perovskites
can be fabricated in heterojunction with other semiconductor materials to obtain more
outstanding optoelectronic performance. For example, P.K. Giri et al. fabricated a vertical
heterojunction photodetector with integrating CsPbBr3 nanocrystals on a large-area mono-
layer MoS2, and the photodetector showed a high responsivity (24.3 A W−1 at 405 nm)
and extremely fast photo response with photocurrent growth and decay times of 5.5 and
24.0 µs, respectively [26]. Therefore, all-inorganic perovskites have been intensively in-
vestigated from the synthesis of crystals to optoelectronic properties. Compared with
organic–inorganic hybrids perovskites, all-inorganic perovskites have many different mor-
phologies, which are highly conducive for studying the principle of intrinsic properties.
However, the electrical and optical properties of all-inorganic perovskites with different
morphologies still have not been studied widely [27,28].

At present, wet chemistry, a common synthesis method, is widely used to synthesize
all-inorganic perovskites. Although people could get high quality perovskites by using
wet chemistry, it may introduce unnecessary impurities from solvents and surfactants.
In contrast, all-inorganic perovskite crystals that were synthesized by chemical vapor
deposition (CVD) have higher purity [29] and have no ligands or other impurities, which
are beneficial for us to study the intrinsic properties of perovskites. Recent studies have
found that the process parameters of CVD, such as temperature, pressure, growth time,
etc., can sometimes significantly influence the morphology and further impact the property
of the samples. The effect of the flow rate of a carrier gas, one of the key parameters in
the CVD process, is intensively explored in the growth of crystals such as graphene and
MoS2 [30,31]. However, there are still few reports about how the flow rate affects the
growth of CsPbBr3.

Here, CsPbBr3 microcrystals with three different morphologies, namely microplate,
frustum of a square pyramid and pyramid, were synthesized by adjusting the flow rate
of the carrier gas in the CVD process. A scanning electron microscope (SEM) and atomic
force microscope (AFM) were used to explore the morphology, while X-ray rocking curve
(XRC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman were
applied to investigate the structure of the CsPbBr3 microcrystals. The PL results revealed
the luminescence properties of CsPbBr3 microcrystals. The diversity of morphologies of
all-inorganic perovskite microcrystals were demonstrated, and the relationship between
intrinsic structure and optical properties was explored. Our findings provided a new
insight into the structure–function relationship of all-inorganic perovskites, which can be a
valuable reference for design of outstanding photoelectric devices.

2. Materials and Methods

Materials: High-purity (>98%) PbBr2 powder was bought from Alfa Aesar. CsBr
powder with a purity of 99.5%, acetone and ethanol were purchased from Sinopharm
Chemical Reagent Co., Ltd. The silicon wafer (diameter: 100 mm, thickness: 525 µm)
obtained from HeFei Crystal Technical Material Co., Ltd. (Hefei, China) was cleaved into
50 × 20 mm slices, which were used as the substrate.

Pretreatment of substrate: The silicon substrate was first washed ultrasonically at
room temperature in acetone, ethanol and deionized water for 15 min separately to remove
the organic contaminants on the surface, was then placed into the piranha solution at 90 ◦C
for 2 h to dissolve the oxide overlayer, and lastly, was cleaned and dried by deionized water
and ultrahigh purity N2.

Synthesis of CsPbBr3 perovskite microcrystals: The CsPbBr3 perovskite microcrystals
were synthesized by a vapor-phase method using a home-built CVD system that was
equipped with a tube furnace having two heating zones, as shown in Figure 1. The source
materials were the mixed powder of PbBr2 (36.7 mg) and CsBr (42.6 mg) with a molar ratio
of 1:2, and then they were placed into a quartz boat. Next, the quartz boat was placed into
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the center of heating zone I of the furnace. The silicon substrate was placed in the center
of heating zone II with a distance of about 20 cm from the source materials. The quartz
tube was first evacuated to a low vacuum state by a turbo molecular pump, and then it
was filled with a high-purity Ar carrier gas with a flow rate of 40~120 sccm until the inner
pressure reached 380 Torr. In the process of preparing the sample, zone I and zone II of
the furnace were heated simultaneously to a temperature of 600 and 340 ◦C, respectively,
which is the optimal condition to grow the target samples. The growth process lasted for
70 min at such a status and finished by stopping the heating of the furnace and allowing
the system to cool down to room temperature naturally.
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Figure 1. Schematic diagram of the CVD system.

Characterization: The morphologies and elemental mapping information of the
CsPbBr3 microcrystals were obtained using SEM (HITACHI, SU8220, Tokyo, Japan) and
the accessory energy distribution spectroscopy (EDS) method. The AFM images of the
CsPbBr3 microcrystals were obtained using the Atomic Force Microscope (Veeco, diInnova,
New York, NY, USA).

The XPS tests were performed to obtain the oxidation states of the elements in the
CsPbBr3 microcrystals. The XPS was conducted at room temperature using the spec-
trometer (Thermo Scientific Escalab 250, Westborough, MA, USA) equipped with an
aluminum anode.

The phase and structure information of CsPbBr3 microcrystals was collected at room
temperature by using the Rigaku TTR-III X-ray diffractometer equipped with Cu Kα

radiation. The XRC were scanned using a high-resolution X-ray diffractometer (Malvern
PANalytical, X’Pert3 MRD, Waltham, MA, USA) to investigate the quality of the CsPbBr3
microcrystals.

Time-resolved photoluminescence results were collected from a Lecroy (New York,
NY, USA) Wave Runner 6100 Digital Oscilloscope (1 GHz) equipped with a tunable laser
(pulse width = 4 ns, gate = 500 ns) as the excitation source.

The Raman results were obtained on the HORIBA (Jobin Yvon, Paris, French) LabRAM
HR Evolution system using a 633 nm laser light at room temperature.

For the purpose of detecting the optical property of the CsPbBr3 microcrystals, the
PL measurements were carried out at room temperature on the HORIBA LabRAM HR
Evolution system by using an excitation laser with a wavelength of 325 nm at constant
power mode.

The Raman and PL measurements were performed on a single microcrystal.

3. Results and Discussion

In the process of preparing CsPbBr3 perovskite materials using the CVD method, we
found three typical microcrystals with the morphologies of a microplate, frustum of a
square pyramid and pyramid, which could be repeatedly synthesized simply by controlling
the flow rate of the carrier gas Ar when the other growth parameters are optimized and
fixed. Figure 2a–c showed the SEM images of the samples on the silicon substrate obtained
at a flow rate 40, 80 and 120 sccm, respectively. As we can see, the microcrystals in the
form of the microplate, frustum of a square pyramid and pyramid dominated in number in
each corresponding image. However, the densities of the pyramid and frustum of a square
pyramid were higher than that of microplate. This phenomenon is not hard to understand
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since a higher flow rate of carrier gas leads to more nucleation, which would further evolve
into higher crystallite density. The morphologies of the three kinds of microcrystals were
verified by the AFM images and the scanned profile curves along the labeled lines in
Figure 3a–c, respectively. All three microcrystals we selected have sharp edges: the square
microplate in Figure 3a has a side length of about 10 µm and height of less than 1 µm, the
frustum of a square pyramid in Figure 3b has an upper side length of about 7 µm, down
side length of 10 µm and height of 2 µm, and the pyramid in Figure 3c has a width of about
8 µm and height of 4 µm. The AFM results indicate that the microplate tended to grow in
two dimensions, while the frustum of a square pyramid and pyramid preferred to grow in
three dimensions.
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Then, the elemental composition and chemical stoichiometry of the microcrystals with
different morphologies were analyzed by using energy dispersive spectroscopy (EDS),
and the results are shown in Figure 4. As the elemental mappings in the illustration of
Figure 4a–c demonstrate, all three kinds of microcrystals are composed of the elements
Cs, Pb and Br, which are distributed uniformly and overlap perfectly in the microcrystals.
Based on the weight percentages of the three elements shown in Figure 4, the atomic ratios
of Cs: Pb: Br in the microplate, frustum of a square pyramid and pyramid are calculated
to be 17.31:17.72:50.44, 17.16:17.76:50.56, and 16.17:17.19:53.69, respectively, which are all
tightly close to the expected stoichiometric ratio of CsPbBr3 (1:1:3). Thus, it was necessary
to determine the oxidation states of the three elements in the microcrystals by the technique
XPS. Figure 5a–c demonstrates, respectively, the high-resolution core level XPS spectra of
Cs, Pb and Br for the three kinds of microcrystals. From Figure 5, all the spin-orbit split
doublets of Cs 3d, Pb 4f and Br 3d levels can be clearly observed, and the binding energies
and spectral shapes reveal that the three elements are in the valence states of Cs+, Pb2+ and
Br−, respectively, which are well consistent with the previous report [32]. There were small
differences in the binding energies of Cs 3d, Pb 4f, and Br 3d among these microcrystals
with different morphologies, which means that the bonding structure of them are almost
the same; the differences may come from the defects and the instrumental errors.
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Figure 4. The EDS spectra and corresponding elemental mappings of the microplate (a), frustum of a
square pyramid (b) and pyramid (c).

The above results indicate that the three kinds of microcrystals might be formed by
the CsPbBr3 perovskites. Therefore, the XRD technique was applied to detect the crystal
structures and phase information of the three microcrystals. The XRD pattern of the sample
containing microplate, as displayed in Figure 6a, shows three strong and sharp diffraction
peaks at 15.4◦, 30.6◦ and 30.9◦, which were indexed respectively to the (100), (002), (200)
facets of the CsPbBr3 monoclinic phase [33]. While for the XRD spectra of the samples
containing the frustum of a square pyramid and pyramid, besides the dominant peaks at
15.4◦, 30.6◦ and 30.9◦, two extra peaks at 21.7◦ and 44.2◦ became obvious, which can be
indexed to the (-110) and (-220) facets of the monoclinic-phase CsPbBr3, respectively. This
behavior indicates that there emerged a new orientation during the growth of the CsPbBr3
frustum of a square pyramid and pyramid. From the XRD patterns, we can conclude that
the morphologies of the CsPbBr3 microcrystals are closely related to the flow rate of the
carrier gas. At a low flow rate, the microplate grew slowly and orderly in two dimensions
along the c-axis of the (100) direction, with the (100) plane as the terminal surface of the
microcrystal, while the proportions of the side face for the frustum of a square pyramid
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and pyramid increased with the rise of the flow rate. This phenomenon may indicate that
at a high flow rate, the mass transfer rate becomes faster, which means that the initial atoms
may not have enough time to move into the right lattice location, where crystal domains
can have the lowest surface free energy. Therefore, the subsequent atoms would grow in
some specific direction in which the surface free energy of the crystal could decrease. As a
consequence, CsPbBr3 microcrystals displayed different morphologies by altering the flow
rate of the carrier gas. A similar growth mechanism has also been proposed by Ting Yu et al.
in MoS2 crystal growth under different flow rates of carrier gas [34]. There were other little
miscellaneous XRD peaks for the three CsPbBr3 microcrystals, which indicated that they all
have the same pure phases and good crystalline quality. Apart from XRD, Raman spectra
were also measured to study the structure of the CsPbBr3 microcrystals. The three spectra
all showed well-resolved scattering bands at 73 cm−1, 127 cm−1 and 310 cm−1 assigned to
the vibrational modes of [PbBr6]4−, the motion of Cs+ cations and the second-order phonon
mode of octahedron, respectively, which exist typically in CsPbBr3 perovskites [35,36].

Figure 5. The XPS spectra of CsPbBr3 microplate, frustum of a square pyramid, and pyramid for Cs
3d (a), Pb 4f (b), and Br 3d (c).
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As a strong common method to determine the crystalline quality of the crystal [37],
the XRC measurement was also carried out and the (200) facet’s rocking curves of CsPbBr3
microplate, frustum of a square pyramid and pyramid are shown in Figure 7. In gen-
eral, a small FWHM represents good quality of crystal, low dislocation density and small
residual stress in the crystal [38]. As Figure 7 shows, the FWHM of the CsPbBr3 mi-
croplate, frustum of a square pyramid and pyramid is 0.32◦, 0.53◦, 0.51◦, respectively. The
FWHM of each curve is small and close to each other. These results indicate that all of
the CsPbBr3 microcrystals have good crystalline quality, which is consistent with the XRD
result mentioned above.
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For the CsPbBr3 microcrystals, their optical properties were of most concern; thus, PL
measurements were performed to explore the optical characteristics of the three kinds of
CsPbBr3 microcrystals. As shown in Figure 8, the PL emissions of the CsPbBr3 microplate,
frustum of a square pyramid and pyramid are all located at around 2.3 eV, while the
luminous intensities of them are obviously different. The PL intensity of the CsPbBr3
microplate is the strongest, which is 1.4 times that of the frustum of a square pyramid and
2.2 times that of the pyramid. This result indicated that the flow rate of the carrier gas
could manipulate the morphology evolution of CsPbBr3 microcrystals and further impact
their luminescence properties.
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For the CsPbBr3 microplate with the strongest PL intensity, we further studied its
long-term stability and time-resolved photoluminescence (TRPL). As shown in Figure 9a,
the diffraction peaks of the microplate after 80 days of storage in ambient condition are still
strong and sharp, which means that the microplate owns strong-phase stability. Figure 9b
illustrates that the microplate has a good stability in optical properties, since the PL intensity
of the microplate after 80 days of storage only has a small decrease compared with the fresh
microplate. TRPL decay profiles of the microplate show that its average lifetime (τave) is
about 117 ns (Figure 9c).
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4. Conclusions

In summary, the microplate, frustum of a square pyramid and pyramid of CsPbBr3
microcrystals were synthesized by regulating the flow rate of a carrier gas in the CVD
process. The XRD results indicated that the three CsPbBr3 microcrystals all have pretty
good crystalline structure. The PL spectra showed that the CsPbBr3 microplate displayed
the best luminescence property among them. This result indicated that the flow rate of the
carrier gas could manipulate the morphology evolution of the CsPbBr3 microcrystals and
further impact their luminescence properties. In addition, the CsPbBr3 microplate showed
long-term stability and good lifetime performance. Our findings provided a meaningful
reference for the design of outstanding photoelectric devices.
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