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Abstract: Concrete mixtures can be developed to deliver a broad spectrum of mechanical and durabil-
ity properties to satisfy the configuration conditions of construction. One technique for evaluating the
compressive strength of concrete is to suppose that it pursues a probabilistic model from which it is
reliability estimated. In this paper, a new technique to generate probability distributions is considered
and a new three-parameter exponential distribution as a new member of the new family is presented
in detail. The proposed distribution is able to model the compressive strength of high-performance
concrete rather than some other competitive models. The new distribution delivers decreasing,
increasing, upside-down bathtub and bathtub-shaped hazard rates. The maximum likelihood es-
timation approach is used to estimate model parameters as well as the reliability function. The
approximate confidence intervals of these quantities are also obtained. To assess the performance of
the point and interval estimations, a simulation study was conducted. We demonstrate the perfor-
mance of the offered new distribution by investigating one high-performance concrete compressive
strength dataset. The numerical outcomes showed that the maximum likelihood method provides
consistent and asymptotically unbiased estimators. The estimates of the unknown parameters as well
as the reliability function perform well as sample size increases in terms of minimum mean square
error. The confidence interval of the reliability function has an appropriate length utilizing the delta
method. Moreover, the real data analysis indicated that the new distribution is more suitable when
compared to some well-known and some recently proposed distributions to evaluate the reliability of
concrete mixtures.

Keywords: logarithmic transformed method; alpha power method; exponential distribution;
maximum likelihood estimation; order statistics

1. Introduction

In fact, concrete is a widely used construction material in the world. Concrete com-
pressive strength is a criterion employed in specifying the portion of resistance a structural
component can deliver to deformation. Compressive strength is a widely used standard to
access the performance of a provided concrete mixture. This technique of assessing concrete
is essential because it is the primary measure determining how sufficiently concrete can
resist loads that impact its measure. It specifically informs us whether a distinct mixture is
appropriate for encountering the conditions of a certain venture. Concrete can astound-
ingly stand up to compressive loading. This is a frequent reason for why it is useful for
constructing arches, foundations, dams, columns and tunnel linings among other buildings.

Experimenters from various areas of science may endeavor to represent phenomena
of interest, such as high-concrete concrete compressive strength, using probabilistic models.
In recent years, many authors have exhibited significant appeal in representing new gener-
alized families of probability distributions by adding one or more additional parameters
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to well-known distributions to yield new models with more incredible flexibility in mod-
eling. The growth of proposing new statistical distributions is a major study area in the
approach of distribution theory. Noteworthy methods include the following: the exponen-
tiated method by Mudholkar and Srivastava [1], Marshall–Olkin method by Marshall and
Olkin [2], beta-G family by Eugene et al.Olkin [3], Kumaraswamy-G family by Cordeiro
and Castro [4], T-X family by Alzaatreh et al. [5], Weibull-G family by Bourguignon et al. [6],
logarithmic transformed (LT) method by Pappas et al. [7], alpha power (AP) method by
Mahdavi and Kundu [8], Marshall–Olkin AP method by Nassar et al. [9] and weighted
AP transformed method by Alotaibi et al. [10]. For more details about other methods for
generating distributions, one can refer to Lee et al. [11] and Jones [12].

Pappas et al. [7] proposed the LT approach, which uses a cumulative distribution
function (CDF) and probability density function to induct a new parameter into well-known
distributions (PDF), respectively.

F(x; θ) =

{
1− log[θ−(θ−1)G(x)]

log(θ) if θ > 0, θ 6= 1

G(x) if θ = 1
(1)

f (x; θ) =

{
(θ−1)g(x)

log(θ)[θ−(θ−1)G(x)] if θ > 0, θ 6= 1

g(x) if θ = 1,
(2)

Pappas et al. [7] considered the modified Weibull extension distribution by Xie et al. [13]
as a baseline distribution G in (1) and studied some characteristics of the new distribution.
Nassar et al. [14] used the LT method to propose a new form for the Weibull distribution.
Eltehiwy [15] introduced the LT inverse Lindley distribution. Alotaibi et al. [16] utilized
the CDF in (1) to introduce a new generalization for the traditional Lomax distribution.

Lately, Mahdavi and Kundu [8] offered the AP method for yielding new probability
distributions by introducing an extra parameter to bring about a more elastic family.
The CDF of the AP method is provided as follows:

Q(x; α) =

{
αG(x)−1

α−1 if α > 0, α 6= 1
G(x) if α = 1,

(3)

and the corresponding PDF is the following.

q(x; α) =

{
log(α)g(x) αG(x)

α−1 if α > 0, α 6= 1
g(x) if α = 1.

(4)

Utilizing the AP method, a new AP Weibull (APW) distribution is proposed by Nas-
sar et al. [17]. Dey et al. [18] introduced the AP inverse Lindley distribution. Ihtisham et al. [19]
proposed the AP Pareto distribution. Eghwerido et al. [20,21] presented the AP Gompertz
and AP Teissier distributions, respectively. Eghwerido et al. [22] proposed the AP-extended
generalized exponential distribution.

The main goal of this article is to present a new method for generating probability
distributions by using the AP CDF from (3) as the baseline CDF in (1). The logarithmic
transformed alpha power (LTAP) family is the name given to the new family. The new
LTAP family can be used to produce probability distributions with closed forms CDF
and PDF. Firstly, we derive some structural properties of the LTAP family including the
mixture representation for the PDF. Secondly, we assume the exponential as a baseline
for the LTAP family and develop a new three-parameter LTAP-exponential (LTAPEx)
distribution. The hazard rate functions (HRF) of the LTAPEx distribution accommodates
monotonic, decreasing, increasing, upside-down bathtub and bathtub-shaped models.
Therefore, the LTAPEx distribution can be used as a competitive model for many well-
known distributions presented in the literature. Another motivation for the LTAPEx
distribution is that it contains some sub-models such as exponential and alpha power
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exponential (APEx) distributions. Moreover, it can be considered as an appropriate model
for modeling positively skewed data, which may not be suitably fitted by other standard
distributions. The highly complex materials of high-performance concrete can render
modeling its behavior an extremely difficult task. One of our practical objectives in this
study is to evaluate the reliability of the high-performance concrete by assuming that the
compressive strength of concrete follows the LTAPEx model. We then apply this model
to a real high-performance concrete compressive strength dataset to check our findings.
The outcomes of this analysis showed that the proposed model can be considered as an
appropriate model when compared with some other competitive models to model high-
performance concrete. The current study is an attempt to investigate and choose the most
suitable model to assess the reliability of high-performance concrete, which we believe
would be of outstanding appeal to reliability engineers.

The rest of the article is divided into the following sections: In Section 2, we present
the LTAP family and provide a linear representation for the LTAP family PDF. In Section 3,
we present the LTAPEx distribution. In Section 4, we study some properties of the LTAPEx
distribution. The maximum likelihood method is considered to obtain the point and
interval estimates for the model parameters as well as the corresponding reliability function
(RF) in Section 5. A simulation study is conducted in Section 6. The investigation of one
real dataset is provided in Section 7. Finally, Section 8 provides some conclusions.

2. The LTAP Family of Distributions

The CDF of the LTAP family is obtained by replacing G(x) in Equation (1) by Q(x) of
the APT class given by (3). We have the following.

FLTAP(x; θ, α) =

1− log[θ− θ−1
α−1 (αG(x)−1)]
log(θ) if θ, α > 0, α, θ 6= 1

G(x) if α = θ = 1.
(5)

Its PDF reduces to the following.

fLTAP(x; θ, α) =


(θ−1) log(α)

log(θ)
g(x)αG(x)

[(θα−1)−(θ−1)αG(x)]
if θ, α > 0, α, θ 6= 1

g(x) if α = θ = 1.
(6)

Henceforth, we denotea random variable having PDF in (6) by X. In the next subsec-
tions, some general properties of the LTAP family are derived.

2.1. Mixture Representation of the LTAP Family

Following the same approach by Dey et al. [23], the PDF in (6) can be represented
as follows.

fLTAP(x; θ, α) =
(θ − 1) log(α)
log(θ)(θ + 1)

g(x)αG(x)

1−
1 + (θ−1)

(α−1) (α
G(x) − 1)

θ + 1

−1

. (7)

Now, using the binomial expansion and the following two series:

(1− y)−1 =
∞

∑
k=0

yk, |y| < 1, αy =
∞

∑
m=0

(log α)m ym

m!
,

the PDF of the LTAP family in (6) can be written, after some simplifications, in the
following form:

fLTAP(x; θ, α) =
∞

∑
m=0

φmwm+1(x), (8)
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where wc+1(x) = (c + 1) g(x) Gc(x) refers to the exponentiated-G (exp-G) PDF with shape
parameter c > 0, and φm is given by the following.

φm =
∞

∑
k=0

k

∑
j=0

j

∑
i=0

(
k
j

)(
j
i

)
(−1)j(i + 1)m[log(α)]m+1

log(θ)(m + 1)!

(
1

θ + 1

)k+1 (θ − 1)j+1

(α− 1)j . (9)

The expansion in (8) provides the PDF of the LTAP family as a linear combination of
the PDF of the exp-G family. Therefore, some structural properties of the new family can
be obtained directly using this representation. In addition, the expansion of the CDF of the
LTAP family can be derived by integrating (8), and it is stated as follows:

FLTAP(x; θ, α) =
∞

∑
k=0

φmWm+1(x), (10)

where Wc+1(x) is the CDF of the exp-G family with shape parameter c > 0.

2.2. Quantile Function of the LTAP Family

For the LTAP family, the quantile function can be reached by inverting (5) as follows.

xp = G−1

 log
[
1 + θ(α−1)(1−θ−p)

θ−1

]
log(α)

, 0 < p < 1. (11)

Many beneficial measures can be calculated from (11), including the first quartile,
median and third quartile by placing p with 0.25, 0.5 and 0.75, respectively. For example,
the median of the LTAP family can be obtained as follows.

Median = G−1


log
[
1 + (α−1)(θ−

√
θ)

θ−1

]
log(α)

. (12)

Different significant applications relative to the quantile function in (11) are used to
simulate random samples from the LTAP family. Let U ∼ Uni f orm(0, 1), then one can
generate a random sample consisting of n observations from the LTAP family as follows.

xi = G−1

 log
[
1 + θ(α−1)(1−θ−ui )

θ−1

]
log(α)

, i = 1, . . . , n. (13)

3. The LTAPEx Distribution

In this section, we explain the LTAPEx distribution and some associated statistical
features. By entering G(x; β) = 1− e−βx, of the exponential distribution in (5), one can
reach the CDF of the LTAPEx distribution as follows.

F(x; θ, α, β) = 1−
log
[
θ − θ−1

α−1

(
α1−e−βx − 1

)]
log(θ)

, x > 0, θ, α, β > 0. (14)

By differentiating (14) with respect to x, we can obtain the PDF of the LTAPEx distri-
bution as follows:

f (x; θ, α, β) =
(θ − 1) log(α)

log(θ)
βe−βx

1− θ + (θα− 1)αe−βx−1
, (15)
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where β is the scale parameter, and θ and α are the shape parameters. Moreover, the RF
and the HRF of the LTAPEx distribution are furnished, respectively, by the following.

R(x; θ, α, β) =
log
[
θ − θ−1

α−1

(
α1−e−βx − 1

)]
log(θ)

(16)

h(x; θ, α, β) =
log(α)(θ − 1)βe−βx[

1− θ + (θα− 1)αe−βx−1
]

log
[
θ − θ−1

α−1

(
α1−e−βx − 1

)] . (17)

It can be observed here that when θ and α tend to one, the PDF in (15) reduces to
the PDF of the exponential distribution. Moreover, when θ → 1, the LTAPEx distribution
reduces to the alpha power exponential distribution proposed by Mahdavi and Kundu
(2017). Another special case is when α → 1, the LTAPEx distribution reduces to the
logarithmic transformed exponential distribution. Figure 1 layouts the various plots of the
PDF of the LTAPEx distribution applying β = 1 in all cases and by considering several
values for the shape parameters θ and α. In Figure 1, we can recognize that the new shape
parameters θ and α afford more flexibility to the PDF of the LTAPEx distribution than
the conventional exponential distribution. The LTAPEx distribution is a right-skewed
distribution, and this characteristic encourages the use of this distribution to model right-
skewed data rather than some other competitive distributions such as Weibull and gamma
distributions. Figure 2 displays the various shapes of the HRF of the LTAPEx distribution.
Figure 2 reveals that the HRF of the LTAPEx distribution has different shapes, including
decreasing, increasing, upside-down and bathtub-shaped hazard rates.

Using the linear representation for the PDF in (8), one can write the PDF of the LTAPEx
distribution given by (15) as follows:

f (x; θ, α, β) =
∞

∑
m=0

m

∑
a=0

φm,a g(x; β(a + 1)), (18)

where g(x; β(a + 1)) is the PDF of the exponential distribution with scale parameter
λ(a + 1) and the following.

φm,a = φm

(
m
a

)
(−1)a(m + 1)

a + 1
. (19)

Various structural properties of the LTAPEx distribution can be acquired directly from
(18) based on the well-known properties of exponential distribution. Integrating (18), one
can write the expansion of the CDF of the LTAPEx distribution as follows:

F(x; θ, α, β) =
∞

∑
m=0

m

∑
a=0

φm,a G(x; β(a + 1)), (20)

where G(x; β(a + 1)) is the CDF of the exponential distribution.
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4. Main Properties of the LTAPEx Distribution

In this section, we provide some necessary statistical mathematical properties for
the LTAPEx distribution, such as the following: quantile, moments, moment generating
function, quantile and order statistics.

4.1. Quantile and Random Number Generation

Quantiles are essential for estimation and simulation. For the LTAPEx distribution,
the pth quantile xp can be expresses as follows.

xp =
−1
β

log

1−
log
[
1 + θ(α−1)(1−θ−p)

θ−1

]
log(α)

, 0 < p < 1. (21)

Let U ∼ Uni f orm(0, 1), then (21) can be operated to generate a random sample
containing n observations from the LTAPEx distribution as follows.

xi =
−1
β

log

1−
log
[
1 + θ(α−1)(1−θ−ui )

θ−1

]
log(α)

, i = 1, . . . , n. (22)

4.2. Moments and Generating Function

Moments play an important role in statistics and its applications. Some significant
properties of a probability distribution can be studied based on moments including, ten-
dency, dispersion, skewness and kurtosis. For the LTAPEx distribution, the rth moment
follows from (15) as follows:

µ
′
r =

∞

∑
m=0

m

∑
a=0

φm,a

∫ ∞

0
β(a + 1)xre−β(a+1)x

=
∞

∑
m=0

m

∑
a=0

φm,a E(Zr
a+1) (23)

where Z follows the exponential distribution with scale parameter β(a + 1). It is known
that for the exponential distribution with scale parameter β, the rth moment is Γ(r + 1)/βr,
then it follows from (23) that

µ
′
r =

∞

∑
m=0

m

∑
a=0

φm,a
Γ(r + 1)

[β(a + 1)]r
. (24)

Similarly, using the result that the moment generating function of the random variable
Z is MZ(t) = (1− t/β)−1, we can write the moment generating function of the LTAPEx
distribution in the following expression.

MX(t) =
∞

∑
m=0

m

∑
a=0

φm,a

(
1− t

β(a + 1)

)−1
. (25)

Using (25) and for different values for θ and α with scale parameter β = 1, Figure 3
shows the plots for the mean, variance, skewness and kurtosis of the LTAPEx distribu-
tion. It is observed from Figure 3 that the mean and variance of the LTAPEx distribution
increased as θ and α increased. On the other hand, as θ and α increased, the skewness and
kurtosis decreased. It is also noted that the LTAPEx distribution is always a positively
skewed distribution.
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Figure 3. Mean, variance, skewness and kurtosis of LTAPEx distribution.

4.3. Entropies

Entropy has been employed in various cases and has numerous applications in dif-
ferent areas such as statistics and physics. For the random variable X, entropy measures
uncertainty. The Rényi entropy (RE) is specified as follows.

Eδ(x) =
1

1− δ
log
{∫ ∞

0
[ f (x)]δdx

}
, δ >, δ 6= 0. (26)

From the LTAPEx distribution and using (7), we can write [ f (x)]δ as follows.

[ f (x)]δ =

[
(θ − 1) log(α)β

(α− 1)(θ + 1) log(θ)

]δ(
e−βx α1−e−βx

)δ

1−
1 + (θ−1)

(α−1) (α
1−e−βx − 1)

θ + 1

−δ

. (27)

Using series (1− z)−v = ∑∞
j=0[Γ(v + j)/Γ(v)j!]zj, v > 0, |z| < 1, the power series and

the binomial expansion, we can write (27) as follows:

[ f (x)]δ =

[
(θ − 1) log(α)β

(α− 1)(θ + 1) log(θ)

]δ ∞

∑
k=0

k

∑
t=0

ϕk,t e−βx(δ+t), (28)

where the following is the case.

ϕk,t =
∞

∑
j=0

j

∑
i=0

∞

∑
m=0

(log α)k(δ + m)kΓ(δ + j)(θ − 1)i(−1)i+t

(θ + 1)j(α− 1)iΓ(δ)k!j!

(
j
i

)(
i
m

)(
k
t

)
. (29)
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Then, from (26) and (28), we can write the following.

Eδ(x) =
1

1− δ
log

{[
(θ − 1) log(α)β

(α− 1)(θ + 1) log(θ)

]δ ∞

∑
k=0

k

∑
t=0

ϕk,t

∫ ∞

0
e−βx(δ+t)dx

}
. (30)

After simplification, Equation (30) becomes the following.

Eδ(x) =
δ

1− δ
log
[

(θ − 1) log(α)β

(α− 1)(θ + 1) log(θ)

]
+

1
1− δ

log

[
∞

∑
k=0

k

∑
t=0

ϕk,t
1

β(δ + t)

]
. (31)

Another measure for entropy is the ξ-entropy, which is obtained as follows.

Eξ(x) =
1

ξ − 1
log
{

1−
∫ ∞

0
[ f (x)]ξ dx

}
, ξ >, ξ 6= 0.

Then, it follows from (28) that the following is obtained.

Eξ(x) =
1

ξ − 1
log

{
1−

[
(θ − 1) log(α)β

(α− 1)(θ + 1) log(θ)

]ξ ∞

∑
k=0

k

∑
t=0

ϕk,t
1

β(δ + t)

}
. (32)

4.4. Order Statistics

Let X(1), . . . , X(n) refer to the order statistics of a random sample of size n taken from
a continuous probability distribution with PDF f (x) and CDF F(x), then the PDF of the sth
order statistic, X(s), can be expressed as follows:

fX(s)
(x) = f (x)

n−s

∑
i=0

Ai Fs+i−1(x), (33)

where the following is the case.

Ai =
n!

(s− 1)!(n− s)!
(−1)i

(
n− s

i

)
.

For the LTAPEx distribution with CDF and PDF given by (14) and (15), respectively,
and based on (33), we can write the PDF of the sth order statistic as follows:

fX(s)
(x) =

n−s

∑
i=0

s+i−1

∑
k=0

A∗i,k
e−βx

1− θ + (θα− 1)αe−βx−1

{
log
[

θ − θ − 1
α− 1

(
α1−e−βx − 1

)]}k
, (34)

where the following is the case.

A∗i,k = Ai(−1)k β(θ − 1) log(α)
log(θ)[log(θ)]k

(
s + i− 1

k

)
.

Moreover, the CDF of the sth order statistic can be expressed as follows.

FX(s)
(x) =

n−s

∑
i=0

Ai
s + i

Fs+i(x). (35)

Thus, from (14) and (36), the CDF of the sth-order statistic for the LTAPEx distribution
is given by the following.

FX(s)
(x) =

n−s

∑
i=0

s+i

∑
k=0

Ai(−1)k

s + i

(
s + i

k

){
log
[

θ − θ − 1
α− 1

(
α1−e−βx − 1

)]}k
. (36)
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5. Estimation of the Parameters and Reliability Function

In this section, we consider the maximum likelihood estimation method for estimating
parameters θ̂, α̂ and β̂ as well as the reliability function of the LTAPEx distribution. Let
x1, . . . , xn be a random sample obtained from the LTAPEx distribution with PDF given
by (15), then the likelihood function can be formulated as follows.

L(θ, α, β) =

[
β(θ − 1) log(α)

log(θ)

]n n

∏
i=1

e−βxi

1− θ + (θα− 1)αe−βxi−1
. (37)

Taking the natural logarithm of (37), one can obtain the log-likelihood function, de-
noted by ` = log L(θ, α, β), as follows.

` = n log
[

β(θ − 1) log(α)
log(θ)

]
− β

n

∑
i=1

xi −
n

∑
i=1

log
[
1− θ + (θα− 1)αe−βxi−1

]
. (38)

Hence, the maximum likelihood estimates (MLEs) of θ, α and β, denoted by θ̂, α̂ and β̂,
can be computed by maximizing the objective log-likelihood function in (38) with respect
to θ, α and β. Another useful approach to obtain these estimates is to solve the following
three normal equations simultaneously.

∂`

∂θ
=

n
θ − 1

− n
θ log(θ)

−
n

∑
i=1

αe−βxi − 1

1− θ + (θα− 1)αe−βxi−1
= 0, (39)

∂`

∂α
=

n
α log(α)

−
n

∑
i=1

αe−βxi−2[1 + (θα− 1)e−βxi
]

1− θ + (θα− 1)αe−βxi−1
= 0 (40)

∂`

∂β
=

n
β
−

n

∑
i=1

xi − (θα− 1) log(α)
n

∑
i=1

xie−βxi αe−βxi−1

1− θ + (θα− 1)αe−βxi−1
= 0. (41)

It is observed from (39)–(41) that there are no ended forms for the MLEs of θ, α and β.
Therefore, to reach these estimates, we should adopt an iterative procedure for determining
the numerical solution of (39)–(41). Now, based on the invariance property of MLEs,
the MLEs of the RF at x0 can be computed from (16) as follows.

R̂(x0) =
log
[
θ̂ − θ̂−1

α̂−1

(
α̂1−e−β̂x0 − 1

)]
log(θ̂)

. (42)

The ACIs of θ, α and β are instantly obtained based on the asymptotic properties
of the MLEs. It is known that (θ, α, β) ∼ N[(θ̂, α̂, β̂), I−1

0 (θ, α, β)], where I−1(θ, α, β) is the
asymptotic variance–covariance matrix of MLEs. Actually, it is not easy to reach I−1(θ, α, β);
hence, the approximate asymptotic variance–covariance matrix of the MLEs expressed by
I−1(θ̂, α̂, β̂) can be used alternatively as follows

I−1(α̂, β̂) =

 −Iθθ −Iθα −Iθβ

−Iαθ −Iαα −Iαβ

−Iβθ −Iβα −Iββ

−1

(θ,α,λ)=(θ̂,α̂,λ̂)

=

 v̂ar(θ̂) ĉov(θ̂, α̂) ĉov(θ̂, β̂)
ĉov(α̂, θ̂) v̂ar(α̂) ĉov(α̂, β̂)
ĉov(β̂, θ̂) ĉov(β̂, α̂) ĉov(β̂, β̂)

. (43)

The elements Iθθ , Iαα, Iλβ, Iθα = Iαθ , Iθβ = Iβθ and Iαβ = Iβα are the second derivatives
of the log-likelihood function in (38), and they can be expressed as follows:

Iθθ =
n[1 + log(θ)]

θ2 log2(θ)
− n

(θ − 1)2 +
n

∑
i=1

(
αe−βxi − 1

)2

ψ2
i

, (44)
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Iαα = −n[1 + log(α)]
α2 log2(α)

+
n

∑
i=1

α2e−βxi−4(1 + ϕi)
2

ψ2
i

−
n

∑
i=1

αe−βxi−3(θαe−βxi + (1 + ϕi)(e−βxi − 2)
)

ψi
, (45)

Iββ = − n
β2 +

n

∑
i=1

x−2
i ξ2

i
ψ2

i
−

n

∑
i=1

ξi
ψi
− log(α)

n

∑
i=1

ξie−βxi

ψi
, (46)

Iθα = Iαθ =
n

∑
i=1

(
αe−βxi − 1

)
αe−βxi−2(1 + ϕi)

ψ2
i

−
n

∑
i=1

e−βxi αe−βxi−1

ψi
, (47)

Iθβ = Iβθ = log(α)
n

∑
i=1

xie−βxi αe−βxi

ψi
−

n

∑
i=1

x−1
i ξi

(
αe−βxi − 1

)
ψ2

i
(48)

Iαβ = Iβα =
n

∑
i=1

x−1
i ξi

α log(α)ψi
+

n

∑
i=1

x−1
i ξi(1 + ϕi)

α(θα− 1)ψi
−

n

∑
i=1

x−1
i ξi(1 + ϕi)α

e−βxi−2

ψ2
i

, (49)

where ψi = 1 − θ + (θα − 1)αe−βxi−1, ϕi = (θα − 1)e−βxi and
ξi = (θα − 1)x2

i log(α)e−βxi αe−βxi−1. Now, the (1 − υ)% ACIs of parameters θ, α and β
can be computed as follows:

θ̂ ± zυ/2

√
v̂ar(θ̂), α̂± zυ/2

√
v̂ar(α̂) and β̂± zυ/2

√
v̂ar(β̂),

where zυ/2 is the upper (υ/2)th percentile point of the standard normal distribution.
In order to obtain the ACIs of the reliability function, we are required to obtain its variance.

One of the common significant adopted procedures for approximating the variance is the delta
method. To practice this approach, suppose that ∆R = (∂R/∂θ, ∂R/∂α, ∂R/∂β)|(θ,α,β)=(θ̂,α̂,β̂),
where the following is the case:

∂R
∂θ

= − log(A)

θ log2(θ)
− α(α−e−βx0 − 1)

(α− 1) log(θ)A
, (50)

∂R
∂α

=
(θ − 1)

{
α−e−βx0 [1 + e−βx0(α− 1)

]
− 1
}

(α− 1)2 log(θ)A
(51)

∂R
∂β

= − x(θ − 1) log(α)e−βx0 α1−e−βx0

(α− 1) log(θ)A
, (52)

where A = θ − θ−1
α−1

(
α1−e−βx0 − 1

)
. Then, the approximate estimate for the variance of the

reliability function is as follows, respectively:

V̂(R̂) ≈ [∆R I−1(α̂, β̂)∆>R ],

Therefore, the two-sided ACI for the reliability function is provided by the following.

R̂(x0)± z υ
2

√
V̂(R̂).

6. Simulation Study

In this section, a simulation analysis is accomplished to assess the performance of
the MLEs of the unknown parameters and the reliability function. The efficiency of the
estimates is evaluated using their mean squared errors (MSEs) and the confidence interval
lengths. We employ Equation (22) to yield samples from the LTAPEx distribution. The simu-
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lation experiment is replicated 1000 times, each for samples of 25, 50 and 100. These sample
sizes are selected to reflect the impact of small, intermediate and large sample sizes on the
estimates. Moreover, different values for the unknown parameters θ, α and β are considered.
The selected values are θ = (0.5, 1.5), α = (0.5, 1.5, 2.5) and β = (0.5, 1, 1.5, 2.5, 5). In a
separate setting, we have acquired the MLE, MSE and confidence interval lengths (CILs).
The simulation study is carried out based on following the steps:

1. Decide the values of n, θ, α, β and the distinct time x0;
2. Generate n observations from the LTAPEx distribution using (22);
3. Use the generated sample to compute the MLEs of θ, α, β and R(x0);
4. Obtain the MSEs of θ, α, β and R(x0);
5. Obtain the confidence interval bounds of θ, α, β and R(x0);
6. Redo steps 2–5 M times;
7. Compute the the average values (AVs) of MLEs, MSEs, confidence interval bounds

(CIBs) and CILs of the parameter λ = [θ, α, β, R(x0)] as follows:

AV-MLE(λ) =
1
M

M

∑
i=1

λ̂i, AV-MSE(λ) =
1
M

M

∑
i=1

(λ̂i − λ)2

AV-CIB(λ) =

[
1
M

M

∑
i=1

λL
i ,

1
M

M

∑
i=1

λU
i

]
, AV-CIL(α) =

1
M

M

∑
i=1

(λU
i − λL

i ),

where λL
i and λU

i are the lower and upper CIBs, respectively.

The simulation outcomes are presented in Tables 1–6. From these Tables, we can
observe that as the sample size grows, the AV-MLEs of the different parameters and the
reliability function are stable and relatively close to the actual parameter values. This
implies that the MLEs act asymptotically unbiased estimators. Furthermore, the AV-MSEs
reduce as the sample size increases in all issues, which indicate that the MLEs are consistent.
Finally, one can observe that, as the sample size increases, CILs decrease in all the cases, as
expected. This is because as the sample size raises, more additional information is collected.

Table 1. The AVs of estimates and the corresponding MSEs for n = 25.

Parameters B MSE

θ α β θ α β R(0.5) θ α β R(0.5)

0.5 0.5 0.5 0.694 0.670 0.648 0.592 0.347 0.343 0.149 0.033
1.0 0.698 0.699 1.290 0.409 0.390 0.401 0.576 0.037
1.5 0.684 0.716 1.938 0.302 0.335 0.432 1.319 0.033
2.5 0.665 0.673 3.249 0.173 0.275 0.366 3.789 0.022
5.0 0.687 0.672 6.455 0.064 0.314 0.329 14.69 0.008

1.5 0.5 0.634 2.380 0.608 0.702 0.371 5.619 0.096 0.026
1.0 0.590 1.945 1.221 0.511 0.290 2.865 0.385 0.037
1.5 0.585 2.198 1.823 0.398 0.257 4.563 0.817 0.038
2.5 0.617 2.133 3.054 0.251 0.298 4.129 2.490 0.031
5.0 0.605 2.056 6.050 0.093 0.275 3.494 9.092 0.014

2.5 0.5 0.574 3.970 0.600 0.736 0.261 16.93 0.076 0.023
1.0 0.537 4.069 1.196 0.557 0.211 18.60 0.301 0.043
1.5 0.599 3.960 1.793 0.441 0.347 17.21 0.696 0.042
2.5 0.575 4.080 2.986 0.283 0.270 18.04 1.897 0.039
5.0 0.559 3.822 6.005 0.107 0.247 15.24 8.021 0.020
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Table 1. Cont.

Parameters B MSE

θ α β θ α β R(0.5) θ α β R(0.5)

1.5 0.5 0.5 1.619 0.779 0.651 0.685 1.371 0.599 0.145 0.029
1.0 1.597 0.833 1.299 0.502 1.408 0.752 0.562 0.044
1.5 1.623 0.796 1.950 0.389 1.364 0.607 1.335 0.045
2.5 1.593 0.779 3.275 0.233 1.292 0.628 3.834 0.033
5.0 1.581 0.773 6.493 0.088 1.327 0.559 14.29 0.015

1.5 0.5 1.688 2.136 0.629 0.768 2.385 4.508 0.101 0.021
1.0 1.727 2.167 1.262 0.600 2.786 4.855 0.384 0.039
1.5 1.609 1.964 1.899 0.460 2.328 3.382 0.911 0.049
2.5 1.736 2.178 3.153 0.305 2.963 4.519 2.489 0.042
5.0 1.673 2.038 6.354 0.109 2.421 3.808 10.53 0.017

2.5 0.5 1.665 3.143 0.632 0.798 2.987 8.055 0.097 0.016
1.0 1.522 3.336 1.253 0.650 1.480 9.600 0.379 0.031
1.5 1.578 3.070 1.878 0.506 2.207 7.305 0.820 0.046
2.5 1.493 3.280 3.148 0.332 1.324 8.840 2.293 0.041
5.0 1.579 3.262 6.276 0.114 2.248 8.689 9.034 0.015

Table 2. The AVs of estimates and the corresponding MSEs for n = 50.

Parameters MLE MSE

θ α β θ α B R(0.5) θ α β R(0.5)

0.5 0.5 0.5 0.636 0.631 0.556 0.657 0.119 0.115 0.059 0.015
1.0 0.622 0.609 1.114 0.460 0.102 0.096 0.240 0.021
1.5 0.596 0.622 1.680 0.336 0.069 0.096 0.525 0.018
2.5 0.607 0.619 2.784 0.198 0.078 0.092 1.458 0.015
5.0 0.608 0.618 5.584 0.068 0.077 0.094 6.716 0.007

1.5 0.5 0.658 1.656 0.551 0.750 0.152 0.659 0.038 0.008
1.0 0.621 1.728 1.102 0.573 0.110 0.928 0.160 0.017
1.5 0.648 1.695 1.652 0.447 0.149 0.727 0.346 0.021
2.5 0.662 1.642 2.744 0.279 0.163 0.647 0.926 0.021
5.0 0.632 1.642 5.504 0.094 0.125 0.643 3.658 0.009

2.5 0.5 0.570 2.997 0.552 0.790 0.077 3.055 0.032 0.006
1.0 0.576 2.938 1.106 0.623 0.086 2.883 0.127 0.014
1.5 0.584 2.849 1.649 0.492 0.094 2.685 0.284 0.019
2.5 0.581 2.919 2.777 0.309 0.089 2.768 0.830 0.019
5.0 0.611 2.803 5.525 0.107 0.133 1.878 3.259 0.010

1.5 0.5 0.5 1.816 0.584 0.571 0.744 0.818 0.089 0.053 0.010
1.0 1.818 0.560 1.140 0.563 0.766 0.068 0.207 0.019
1.5 1.821 0.582 1.713 0.437 0.746 0.097 0.471 0.023
2.5 1.831 0.576 2.847 0.271 0.837 0.092 1.289 0.023
5.0 1.824 0.567 5.694 0.095 0.768 0.078 5.130 0.011

1.5 0.5 1.771 1.652 0.575 0.824 0.941 0.581 0.032 0.004
1.0 1.874 1.752 1.147 0.677 1.378 1.037 0.126 0.011
1.5 1.761 1.728 1.722 0.545 0.921 0.885 0.286 0.016
2.5 1.722 1.635 2.869 0.348 0.799 0.536 0.780 0.018
5.0 1.817 1.653 5.755 0.118 1.148 0.593 3.269 0.010

2.5 0.5 1.807 2.932 0.579 0.859 1.249 2.651 0.027 0.003
1.0 1.883 2.873 1.160 0.723 1.544 2.413 0.111 0.008
1.5 1.776 2.837 1.744 0.596 1.130 2.013 0.252 0.013
2.5 1.855 2.858 2.912 0.397 1.421 2.251 0.726 0.018
5.0 1.739 2.884 5.817 0.129 0.930 2.396 2.957 0.007
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Table 3. The AVs of estimates and the corresponding MSEs for n = 25.

Parameters MLE MSE

θ α β θ α β R(0.5) θ α β R(0.5)

0.5 0.5 0.5 0.586 0.521 0.515 0.650 0.058 0.016 0.027 0.010
1.0 0.573 0.523 1.026 0.458 0.048 0.016 0.109 0.015
1.5 0.572 0.523 1.537 0.337 0.045 0.016 0.247 0.016
2.5 0.576 0.521 2.589 0.193 0.048 0.016 0.677 0.013
5.0 0.569 0.528 5.147 0.066 0.045 0.021 2.785 0.007

1.5 0.5 0.568 1.581 0.521 0.757 0.033 0.174 0.022 0.004
1.0 0.560 1.589 1.048 0.577 0.033 0.198 0.084 0.010
1.5 0.557 1.565 1.573 0.445 0.028 0.119 0.189 0.012
2.5 0.550 1.573 2.620 0.272 0.028 0.136 0.552 0.013
5.0 0.553 1.609 5.223 0.092 0.033 0.196 2.086 0.009

2.5 0.5 0.523 2.586 0.544 0.785 0.017 0.525 0.015 0.002
1.0 0.526 2.545 1.085 0.613 0.019 0.428 0.062 0.006
1.5 0.522 2.559 1.624 0.478 0.018 0.587 0.134 0.008
2.5 0.536 2.592 2.729 0.291 0.021 0.567 0.382 0.008
5.0 0.526 2.614 5.471 0.085 0.017 0.606 1.490 0.003

1.5 0.5 0.5 1.714 0.515 0.535 0.749 0.439 0.012 0.033 0.007
1.0 1.741 0.520 1.064 0.576 0.452 0.012 0.133 0.015
1.5 1.563 0.519 1.595 0.439 0.128 0.010 0.297 0.018
2.5 1.560 0.512 2.669 0.267 0.128 0.012 0.813 0.019
5.0 1.561 0.518 5.301 0.098 0.131 0.012 3.306 0.013

1.5 0.5 1.555 1.483 0.563 0.822 0.109 0.034 0.020 0.002
1.0 1.553 1.480 1.129 0.664 0.104 0.060 0.082 0.006
1.5 1.548 1.488 1.690 0.534 0.086 0.067 0.175 0.009
2.5 1.538 1.493 2.804 0.339 0.087 0.045 0.473 0.010
5.0 1.539 1.473 5.615 0.102 0.086 0.042 1.848 0.004

2.5 0.5 1.527 2.509 0.565 0.857 0.061 0.143 0.018 0.001
1.0 1.528 2.524 1.122 0.722 0.043 0.205 0.064 0.004
1.5 1.519 2.518 1.687 0.595 0.049 0.191 0.149 0.007
2.5 1.522 2.499 2.807 0.390 0.047 0.154 0.399 0.009
5.0 1.525 2.521 5.608 0.122 0.046 0.191 1.571 0.004

Table 4. The AVs of CIBs (in parentheses) and the corresponding CILs for n = 25.

Parameters ACIs

θ α β θ α β R(0.5)

0.5 0.5 0.5 [0,2.746]2.746 [0,2.916]2.916 [0.050,1.247]1.196 [0.422,0.761]0.338
1.0 [0,2.510]2.510 [0,2.945]2.945 [0.263,2.316]2.053 [0.254,0.564]0.310
1.5 [0,2.602]2.602 [0,3.159]3.159 [0.215,3.662]3.447 [0.163,0.441]0.278
2.5 [0,2.502]2.502 [0,2.974]2.974 [0.531,5.967]5.436 [0.082,0.264]0.182
5.0 [0,2.523]2.523 [0,2.908]2.908 [0.877,12.04]11.15 [0.013,0.115]0.102

1.5 0.5 [0,3.160]3.160 [0,11.24]11.24 [0.271,0.945]0.674 [0.566,0.838]0.272
1.0 [0,3.038]3.038 [0,10.07]10.07 [0.461,1.980]1.519 [0.343,0.679]0.336
1.5 [0,2.814]2.814 [0,10.38]10.38 [0.742,2.905]2.163 [0.247,0.549]0.302
2.5 [0,2.885]2.885 [0,9.831]9.831 [1.264,4.844]3.580 [0.144,0.357]0.213
5.0 [0,2.833]2.833 [0,9.796]9.796 [2.287,9.812]7.525 [0.034,0.153]0.119

2.5 0.5 [0,1.982]1.982 [0,16.45]16.45 [0.248,0.952]0.704 [0.588,0.884]0.296
1.0 [0,1.739]1.739 [0,15.49]15.49 [0.536,1.855]1.319 [0.410,0.704]0.294
1.5 [0,1.872]1.872 [0,15.85]15.85 [0.920,2.666]1.747 [0.297,0.586]0.288
2.5 [0,1.823]1.823 [0,15.90]15.90 [1.467,4.505]3.039 [0.172,0.394]0.222
5.0 [0,1.793]1.793 [0,15.01]15.01 [2.863,9.148]6.285 [0.047,0.167]0.120
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Table 4. Cont.

Parameters ACIs

θ α β θ α β R(0.5)

1.5 0.5 0.5 [0,5.296]5.296 [0,2.951]2.951 [0.231,1.071]0.839 [0.554,0.817]0.263
1.0 [0,5.235]5.235 [0,3.156]3.156 [0.479,2.119]1.640 [0.350,0.654]0.304
1.5 [0,5.366]5.366 [0,3.082]3.082 [0.678,3.221]2.543 [0.247,0.530]0.283
2.5 [0,5.269]5.269 [0,2.997]2.997 [1.150,5.399]4.249 [0.128,0.338]0.209
5.0 [0,5.160]5.160 [0,2.970]2.970 [2.426,10.560]8.13 [0.035,0.141]0.106

1.5 0.5 [0,5.380]5.380 [0,7.637]7.637 [0.283,0.976]0.692 [0.666,0.870]0.203
1.0 [0,5.574]5.574 [0,7.905]7.905 [0.582,1.943]1.362 [0.463,0.737]0.275
1.5 [0,5.668]5.668 [0,7.272]7.272 [0.838,2.959]2.121 [0.321,0.599]0.278
2.5 [0,5.447]5.447 [0,7.710]7.710 [1.443,4.863]3.420 [0.182,0.429]0.246
5.0 [0,6.181]6.181 [0,7.557]7.557 [2.531,10.17]7.645 [0.040,0.179]0.139

2.5 0.5 [0,5.310]5.310 [0,12.37]12.37 [0.327,0.937]0.611 [0.701,0.895]0.194
1.0 [0,4.956]4.956 [0,12.34]12.34 [0.656,1.849]1.193 [0.516,0.784]0.268
1.5 [0,5.045]5.045 [0,11.89]11.89 [0.940,2.816]1.876 [0.361,0.650]0.289
2.5 [0,4.763]4.763 [0,12.48]12.48 [1.660,4.636]2.975 [0.199,0.465]0.266
5.0 [0,4.915]4.915 [0,13.08]13.08 [3.292,9.261]5.969 [0.038,0.191]0.153

Table 5. The AVs of CIBs (in parentheses) and the corresponding CILs for n = 50.

Parameters ACIs

θ α β θ α β R(0.5)

0.5 0.5 0.5 [0,1.920]1.920 [0,2.104]2.104 [0.234,0.878]0.644 [0.538,0.775]0.236
1.0 [0,1.892]1.892 [0,2.103]2.103 [0.433,1.795]1.363 [0.341,0.579]0.238
1.5 [0,1.749]1.749 [0,2.067]2.067 [0.680,2.680]2.000 [0.231,0.440]0.209
2.5 [0,1.936]1.936 [0,2.201]2.201 [0.861,4.707]3.847 [0.117,0.278]0.161
5.0 [0,1.785]1.785 [0,2.046]2.046 [2.275,8.892]6.617 [0.027,0.109]0.083

1.5 0.5 [0,2.713]2.713 [0,6.503]6.503 [0.296,0.805]0.509 [0.648,0.851]0.203
1.0 [0,2.781]2.781 [0,6.918]6.918 [0.599,1.606]1.007 [0.457,0.689]0.233
1.5 [0,2.778]2.778 [0,6.921]6.921 [0.853,2.452]1.600 [0.329,0.566]0.237
2.5 [0,2.967]2.967 [0,6.832]6.832 [1.440,4.048]2.608 [0.181,0.377]0.195
5.0 [0,2.912]2.912 [0,6.876]6.876 [2.873,8.134]5.261 [0.037,0.151]0.114

2.5 0.5 [0,1.854]1.854 [0,9.675]9.675 [0.315,0.789]0.474 [0.691,0.888]0.197
1.0 [0,1.906]1.906 [0,9.730]9.730 [0.605,1.608]1.003 [0.485,0.761]0.276
1.5 [0,1.846]1.846 [0,9.004]9.004 [0.928,2.371]1.444 [0.366,0.618]0.251
2.5 [0,1.927]1.927 [0,9.722]9.722 [1.493,4.061]2.568 [0.196,0.422]0.226
5.0 [0,1.882]1.882 [0,8.906]8.906 [3.170,7.880] 4.710 [0.051,0.162]0.111

1.5 0.5 0.5 [0,5.046]5.046 [0,1.655]1.655 [0.308,0.833]0.525 [0.661,0.828]0.166
1.0 [0,5.189]5.189 [0,1.614]1.614 [0.593,1.688]1.095 [0.454,0.672]0.219
1.5 [0,5.174]5.174 [0,1.664]1.664 [0.923,2.503]1.580 [0.332,0.541]0.209
2.5 [0,5.034]5.034 [0,1.585]1.585 [1.549,4.144]2.595 [0.187,0.354]0.166
5.0 [0,5.161]5.161 [0,1.608]1.608 [3.033,8.355]5.322 [0.046,0.144]0.098

1.5 0.5 [0,4.447]4.447 [0,4.113]4.113 [0.352,0.798]0.447 [0.753,0.895]0.142
1.0 [0,4.603]4.603 [0,4.239]4.239 [0.736,1.559]0.823 [0.582,0.772]0.190
1.5 [0,4.344]4.344 [0,4.188]4.188 [1.098,2.347]1.249 [0.441,0.650]0.209
2.5 [0,4.391]4.391 [0,4.093]4.093 [1.730,4.007]2.277 [0.246,0.450]0.203
5.0 [0,4.619]4.619 [0,4.198]4.198 [3.590,7.920]4.330 [0.057,0.179]0.122

2.5 0.5 [0,4.818]4.818 [0,8.072]8.072 [0.361,0.798]0.436 [0.790,0.927]0.137
1.0 [0,5.083]5.083 [0,8.031]8.031 [0.718,1.601]0.883 [0.620,0.827]0.206
1.5 [0,4.972]4.972 [0,8.218]8.218 [0.980,2.508]1.528 [0.463,0.729]0.267
2.5 [0,4.857]4.857 [0,7.801]7.801 [1.811,4.013]2.202 [0.289,0.505]0.216
5.0 [0,4.753]4.753 [0,7.941]7.941 [3.574,8.061]4.487 [0.063,0.195]0.132
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Table 6. The AVs of CIBs (in parentheses) and the corresponding CILs for n = 100.

Parameters ACIs

θ α β θ α β R(0.5)

0.5 0.5 0.5 [0,1.426]1.426 [0,1.381]1.381 [0.272,0.758]0.486 [0.574,0.727]0.153
1.0 [0,1.385]1.385 [0,1.356]1.356 [0.567,1.485]0.917 [0.382,0.533]0.151
1.5 [0,1.361]1.361 [0,1.343]1.343 [0.853,2.221]1.368 [0.270,0.404]0.134
2.5 [0,1.360]1.360 [0,1.315]1.315 [1.439,3.740]2.301 [0.139,0.246]0.107
5.0 [0,1.479]1.479 [0,1.553]1.553 [2.616,7.677]5.061 [0.034,0.099]0.065

1.5 0.5 [0,1.889]1.889 [0,5.153]5.153 [0.342,0.701]0.359 [0.682,0.831]0.148
1.0 [0,1.909]1.909 [0,5.296]5.296 [0.678,1.419]0.741 [0.484,0.669]0.185
1.5 [0,1.877]1.877 [0,5.115]5.115 [1.022,2.125]1.102 [0.359,0.530]0.171
2.5 [0,1.849]1.849 [0,5.096]5.096 [1.706,3.535]1.829 [0.207,0.337]0.131
5.0 [0,1.825]1.825 [0,5.130]5.130 [3.436,7.011]3.576 [0.055,0.129]0.074

2.5 0.5 [0,1.577]1.577 [0,7.578]7.578 [0.381,0.706]0.326 [0.719,0.851]0.132
1.0 [0,1.569]1.569 [0,7.172]7.172 [0.768,1.401]0.633 [0.529,0.698]0.169
1.5 [0,1.560]1.560 [0,7.477]7.477 [1.149,2.098]0.948 [0.393,0.563]0.170
2.5 [0,1.642]1.642 [0,7.908]7.908 [1.913,3.545]1.633 [0.221,0.361]0.140
5.0 [0,1.620]1.620 [0,7.978]7.978 [3.820,7.121]3.301 [0.046,0.123]0.078

1.5 0.5 0.5 [0,5.042]5.042 [0,1.458]1.458 [0.339,0.731]0.393 [0.689,0.809]0.120
1.0 [0,4.537]4.537 [0,1.460]1.460 [0.658,1.471]0.813 [0.491,0.647]0.156
1.5 [0,4.454]4.454 [0,4.454]4.454 [0.964,2.226]1.262 [0.361,0.516]0.155
2.5 [0,4.472]4.472 [0,1.438]1.438 [1.630,3.708]2.078 [0.206,0.329]0.123
5.0 [0,4.625]4.625 [0,1.480]1.480 [3.289,7.314]4.025 [0.061,0.135]0.073

1.5 0.5 [0,4.025]4.025 [0,3.764]3.764 [0.388,0.737]0.349 [0.768,0.876]0.108
1.0 [0,3.976]3.976 [0,3.720]3.720 [0.790,1.467]0.677 [0.590,0.739]0.149
1.5 [0,4.027]4.027 [0,3.771]3.771 [1.184,2.196]1.012 [0.453,0.614]0.161
2.5 [0,3.960]3.960 [0,3.738]3.738 [1.935,3.674]1.739 [0.262,0.415]0.153
5.0 [0,4.027]4.027 [0,3.755]3.755 [3.919,7.312]3.394 [0.056,0.148]0.092

2.5 0.5 [0,3.816]3.816 [0,6.068]6.068 [0.400,0.729]0.329 [0.809,0.906]0.097
1.0 [0,4.055]4.055 [0,6.515]6.515 [0.778,1.466]0.688 [0.646,0.797]0.151
1.5 [0,3.902]3.902 [0,6.344]6.344 [1.185,2.188]1.004 [0.509,0.680]0.170
2.5 [0,3.950]3.950 [0,6.332]6.332 [1.901,3.712]1.811 [0.303,0.477]0.174
5.0 [0,4.044]4.044 [0,6.499]6.499 [3.807,7.408]3.601 [0.072,0.172]0.100

7. Real Data Analysis

In this section, one real dataset is considered to explain the flexibility of our offered
LTAPEx distribution. We compare the results of the LTAPEx distribution with some
competitive distributions, such as exponential (Ex), generalized exponential (GEx) by
Gupta and Kundu [24], APEx by Mahdavi and Kundu [8], APW by Nassar et al. [17]
and Marshall–Olkin alpha power exponential (MOAPEx) by Nassar et al. [9]. The PDFs
of these distributions are shown in Table 7 (for x > 0). To compare the suitability of
the different competitive models to fit the real datasets, we consider employing some
different statistics including the following: The log-likelihood function is evaluated at the
MLEs ( ˆ̀), Anderson–Darling (A∗) and Cramér–Von Mises (W∗). Moreover, we use the
Kolmogorov–Smirnov (KS) statistic in addition to the corresponding p-value.

Table 7. The PDFs of different competitive models.

Distribution PDF

Ex f (x; β) = βe−βx

GEx f (x; θ, β) = θβe−βx(1− e−βx)θ−1.
APEx f (x; α, β) =

log(α)
α−1 βe−βxα1−e−βx

.

MOAPEx f (x; θ, α, β) =
βθ log(α)

α−1
eβxα1−e−βx

[θ+(1−θ)(α−1)−1(α1−e−βx−1)]2
.

APW f (x; θ, α, β) =
log(α)
α−1 βθxθ−1e−βxθ

α1−e−βxθ

.
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The dataset presents the high-performance concrete compressive strength, which is
originally provided by Yeh [25] and analyzed recently by Alam and Nassar [26]. The dataset
was established from 17 various sources to inspect the reliability of a proposed strength
model. The data collected concrete comprising cement alongside fly ash, blast furnace
slag and superplasticizer. The dataset consisted of a single dependent variable, namely
the compressive strength of concrete (in MPa), and eight independent variables. The data
contain 1030 instances. Our purpose here is to find a suitable model to fit the compressive
strength of the concrete variable in order to evaluate reliability using some concrete com-
pressive strength. Before analyzing this dataset, we first plot the corresponding histogram
as well as the TTT plot. Figure 4 shows the corresponding histogram and the TTT plot.
From this Figure, we can notice that the dataset is positively skewed. Furthermore, the TTT
plot demonstrates that the empirical hazard rate function is an increasing function. Conse-
quently, we can conclude that the LTAPEx distribution is appropriate to model this dataset.

Concrete compressive strength
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Figure 4. Histogram and TTT plots for the concrete compressive strength data.

The MLEs of the unknown parameters of the LTAPEx model and the other competitive
models are obtained and displayed in Table 8. Moreover, the standard errors and the
different goodness-of-fit statistics are computed and presented also in Table 8. From Table 8,
one can observe that the LTAPEx model has the lowest values of A∗, W∗ and KS distance
with the highest p-value compared to all other competitive models. Consequently, we can
deduce that the LTAPEx model is the most acceptable model to fit concrete compressive
strength data. Figure 5 shows the fitted density and the estimated CDF, RF and probability–
probability (PP) plots of the LTAPEx model for concrete compressive strength data. Figure 5
demonstrates that the LTAPEx model can deliver a tight fit to the dataset. Generally, we can
infer that the LTAPEx model is appropriate for modeling concrete compressive strength
data rather than some traditional and some recently proposed distributions.

Practically, the concrete compressive strength can vary from 17 MPa to 28 MPa for
residential constructions, while it can be increased as 70 MPa in the case of commercial
buildings. Accordingly, based on the results of the LTAPEx distribution in Table 8, reliability
is estimated at 17 MPa, 28 MPa and 70 MPa. Table 9 shows the input and output values
of the proposed model. The different estimates and the associated CIBs are displayed in
Table 10. Figure 6 shows the ACIs of the reliability function at each point of the real dataset.
Based on the reliability probabilities displayed in Table 10, one can infer that the tested
instances were appropriate for commercial constructions.



Crystals 2022, 12, 431 18 of 21

Concrete compressive strength

f(
x
)

0 20 40 60 80

0
.0

0
0

0
.0

1
0

0
.0

2
0

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Concrete compressive strength

F
(x

)

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
(x

)

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Concrete compressive strength

R
(x

)

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Observed

E
x
p

e
c
te

d

Figure 5. Plots of fitted functions and PP plot of the LTAPEx distribution for concrete compressive
strength data.

Table 8. MLEs, standard errors (in parentheses) and goodness of fit statistics for real data.

Model θ α β ˆ̀ W A KS p-Value

LTAPEx 111.953 376.044 0.1205 4327.724 0.1250 0.8956 0.0288 0.3589
(88.023) (186.23) (0.0106)

MOAPEx 4.7715 54.1317 0.0890 4337.01 0.1655 1.4423 0.0294 0.3355
(1.1394) (29.599) (0.0034)

APW 1.4428 30.956 0.0100 4335.53 0.1607 1.3842 0.0302 0.3030
(0.0359) (8.961) (0.0016)

APEx - 474.873 0.0665 4350.909 0.5713 3.6236 0.0561 0.0030
(116.849) (0.0015)

GEx 4.6603 0.0613 - 4361.66 1.1431 6.7256 0.0709 0.0001
(0.2526) (0.0017)

Ex - - 0.02791 4715.80 0.6631 3.9067 0.2442 0.0000
(0.0008)

Table 9. Input and output values of the model for the concrete compressive strength data.

Input Output

1. Concrete compressive strength data. 1. MLEs of θ, α and β.
2. Initial values of θ, α and β. 2. R̂(x0).
3. x0 = 17, 28 and 70. 3. CIBs of θ, α, β and R̂(x0).
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Table 10. MLEs and the CIBs (in parentheses) for the concrete compressive strength data.

Estimates θ α β R(17) R(28) R(70)

MLEs 111.953 376.044 0.1205 0.8694 0.6498 0.0284
CIBs [0,284.47] [11.03,741.06] [0.099,0.141] [0.854,0.885] [0.629,0.669] [0.020,0.036]
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Figure 6. The ACIs of R(x) for the concrete compressive strength data.

8. Conclusions

In this article, we have presented a new family of probability distributions called the
logarithmic transformed alpha power family. The new family is obtained by taking the dis-
tribution function of the well-known alpha power method as the baseline distribution in the
logarithmic transformed method. Some structural properties of the new family are derived.
We have used the offered family to introduce a new three-parameter exponential distribu-
tion. We refer to the proposed distribution as the logarithmic transformed alpha power
exponential distribution. The point and interval estimates of the unknown parameters and
the reliability function are obtained via the maximum likelihood estimation method. By
conducting a simulation study, the behavior of the point and interval estimates is studied
based on mean square errors and confidence interval lengths, respectively. Moreover,
one application relative to the high-performance concrete compressive strength dataset is
considered. Based on theoretical and numerical results, we can conclude the following:

• The new distribution is able to provide a better fit for high-performance concrete
compressive strength data rather than some other competitive distributions.

• The hazard rate function of the proposed model can bear various forms including
decreasing, increasing, upside-down bathtub and bathtub-shaped rates.

• The proposed model can be regarded to be effective in modeling lifetime data.
• The simulation outcomes demonstrated that the estimates are asymptotically unbiased

and consistent.
• The confidence interval of the reliability function performs well in terms of confidence

length, which indicates that the delta method produces a small variation.
• Based on the empirical outcomes, we can infer that the logarithmic-transformed alpha

power exponential distribution delivers a more satisfactory fit to the high-performance
concrete compressive strength data than the traditional exponential and some other
competitive models.
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• As a future work, it is of interest to consider the same model described in this paper to
assess the reliability of normal concrete.
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