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and Vesna Ðord̄ević *
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Abstract: Eu3+-doped YxLu1−xNbO4 (x = 0, 0.25, 0.5, 0.75, 1) were prepared by the solid-state
reaction method. YNbO4:Eu3+ and LuNbO4:Eu3+ crystallize as beta-Fergusonite (SG no. 15) in
1–10 µm diameter particles. Photoluminescence emission spectra show a slight linear variation of
emission energies and intensities with the solid-solution composition in terms of Y/Lu content. The
energy difference between Stark sublevels of 5D0→7F1 emission increases, while the asymmetry
ratio decreases with the composition. From the dispersion relations of pure YNbO4 and LuNbO4,
the refractive index values for each concentration and emission wavelength are estimated. The
Ω2 Judd–Ofelt parameter shows a linear increase from 6.75 to 7.48 × 10−20 cm2 from x = 0 to 1,
respectively, and Ω4 from 2.69 to 2.95 × 10−20 cm2. The lowest non-radiative deexcitation rate was
observed with x = 1, and thus LuNbO4:Eu3+ is more efficient phosphor than YNbO4:Eu3+.

Keywords: phosphor; Eu3+; niobates; Judd-Ofelt; quantum efficiency; refractive index

1. Introduction

Phosphors designed with rare earth (RE)-activated compounds are a continuously
rising research topic in both basic and applied science. Materials containing the trivalent
europium ion (Eu3+) are well known for their strong luminescence in the orange/red
spectral region, making them suitable for use in artificial lights, display devices, luminescent
sensing, and biomedical research, among other applications [1–4]. In addition, the Eu3+ ion
is a truly unique spectroscopic probe from a theoretical point of view. Because the 4f shell of
Eu3+ has an even number of electrons ([Xe]4f 6), the ion exhibits a non-degenerated ground
(7F0) and excited (5D0) energy states, as well as non-overlapping 2S+1LJ multiplets, resulting
in emission spectra that are predictably dependent on the host material site symmetry. The
energy level structure, the intensities of the f -f transitions (including the Judd–Ofelt theory),
and the decay times of the excited states allow the Eu3+ ion to be used as a spectroscopic
probe [5–8].

Compounds with the ABO4 composition (A = RE; B = P, V, Nb) are suggested to be
excellent hosts for luminescent materials in the vast field of phosphors [9–11] due to the
coupling between rare-earth (RE3+) ions and the BO4

3− group. RE-Niobates (RENbO4)
have long been known, but have received far less attention than vanadates or phosphates.
They are chemically stable and have good dielectric properties, as well as ion and proton
conductivities [12–15]. They have been prepared as single crystals [16,17], thin films [18],
and in crystalline power form [19,20] for a variety of potential applications, primarily as
optical hosts. Under UV or x-ray excitation, YNbO4 is a self-activated phosphor with a
broad and strong emission band in the blue spectral region around 400 nm (associated
with NbO4

3− groups from the host crystalline lattice) [21,22]. RE-Niobates’ luminescent
properties can be altered by doping with various rare-earth ions. Emission has been
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observed from: Tm3+, Tb3+, Dy3+, Sm3+, Er3+, Nd3+ [23–28], and Eu3+ [20,29]. Recent
applications of RE-doped niobates involved luminescent temperature sensors [27,30].

The RENbO4 structure type has a more complex profile than the REVO4 materials,
which always occurs in the typical tetragonal zircon structure type. YNbO4 was originally
thought to be the parent material of the RENbO4 group, like the natural mineral fergusonite,
leading to the classification of the material as a tetragonal phase with a scheelite (I41/a)
structure [31]. However, there are two major crystalline forms of RENbO4. One is the
low-temperature M-phase isostructure with a monoclinic form of the fergusonite, and the
other is the high-temperature T-phase corresponding to the tetragonal scheelite. Between
500 and 850 ◦C, the reversible transition between two phases, monoclinic and tetragonal,
occurs [32]. Subsequent research revealed that the low-temperature phase, monoclinic
beta-Fergusonite structure can be described by the space group I-centered (I12/a1) or
C-centered (C12/c1), as the I2/a space group is a non-standard setting of C2/c (SG no.
15) [33–35]. In both settings, Y is surrounded by 8 oxygens in a large, low-symmetry YO8
octahedron [34]. When other rare earth ions, such as Eu3+, occupy the Y site, the tilting of
adjacent NbO4 and NbO6 polyhedra is expected to influence the luminescence properties
of the dopant.

In this study, we wanted to investigate the effect of different ionic radii of RE3+ ions
on the photoluminescence of the Eu3+-activated niobate host. We prepared a set of five Eu-
doped YxLu1−xNbO4:Eu samples (x = 0, 0.25, 0.5, 0.75, and 1) with a fixed Eu concentration
(5%) to investigate the influence of the Y to Lu ratio in the host niobate material on Eu3+

luminescence features. In that sense, the crystal field splitting of 7F1 manifold, R intensity
ratio and Judd–Ofelt parameters were determined. The application of Judd–Ofelt theory
was explained, and the difference in the refractive index of the materials was considered.

2. Materials and Methods

The set of five samples, Eu-doped YxLu1−xNbO4:Eu3+ (x = 0, 0.25, 0.5, 0.75, and
1), were prepared by the solid-state reaction method. In the stoichiometric amounts of
starting materials, Yttirium(III) oxide (Y2O3 Alfa Aesar, 99.9%), Lutetium(III) oxide (Lu2O3,
Alfa Aeser 99.9%), and Niobium(V) oxide (Nb2O5 Alfa Aesar, 99.5%) were mixed with
Europium oxide (Eu2O3 Alfa Aesar, 99.9%) added in order for Y or Lu to reach 95% (i.e.,
Y0.95Eu0.05NbO4). With the addition of sodium sulphate decahydrate (Na2SO4 x 10H2O,
Alfa Aesar, 99%) as flux and small amount of ethanol, the mixtures were homogenized in
a ball mill (BM500, Anton Paar) for several hours. The dried mixture was pre-sintered at
800 ◦C for 2 h, then sintered at 1450 ◦C for 8 h and allowed to cool to room temperature.
Such obtained powders or pellets prepared from the powder under a load of 5 × 108 Pa
were used for measurements.

X-ray diffraction measurements were performed with a Rigaku SmartLab diffractome-
ter (Tokyo, Japan) using Cu Kα radiation (30 mA, 40 kV) measured in the 2θ range from 10◦

to 90◦. The built-in package software was used to obtain relevant structural analysis results
(crystal coherence size, microstrain values, unit cell parameters, and data fit parameters). A
Mira3 Tescan field emission scanning electron microscope (FE-SEM) (Brno, Czech Republic)
was used for microstructural characterization, operated at 20 keV and 5.00 kx magnification.
Photoluminescence excitation spectra were measured by a Horiba Jobin Yvon Fluorolog
FL3-221 spectrofluorometer (Palaiseau, France) equipped with a 450 W Xenon lamp, TBX-
04-D PMT detector and a double-grating monochromator with 1200 g/mm. The excitations
were performed by monitoring the emission maxima at 612 nm. Lifetime measurements
were performed using the same instrument equipped with a xenon–mercury pulsed lamp.
Photoluminescence emission spectra were recorded by a high-resolution spectrograph
(FHR 1000) (Palaiseau, France) equipped with a Horiba Jobin–Yvon Intensified Charge
Coupled Device–ICCD detector and selectable diffraction gratings of 300 and 1800 g/mm.
Samples were excited by a 365 nm LED (Ocean Optics) and driven by an Ocean Insight
LDC-1C controller.
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3. Results
3.1. Crystal Structure and Morphology

X-ray diffraction measurements confirmed that YNbO4:Eu crystallizes in a monoclinic
Fergusonite-beta-(Y) structure that can be best fitted with the C2/c space group correspond-
ing to pure YNbO4 ICDD No. 01-083-1319, as can be seen in Figure 1 [36]. The isostructural
incorporation of a bigger Eu3+ (rVIII = 1.066 Å) ion instead of a Y3+ (rVIII = 1.019 Å) ion of
YO8 dodecahedra results in a small maximum shift of approximately 0.03◦ to the lower 2θ
values [37]. X-ray diffraction measurements confirmed that LuNbO4:Eu3+ crystallizes in a
monoclinic Fergusonite-beta-(Lu) structure that can be best fitted with the I2/a space group
corresponding to pure LuNbO4 ICDD No. 01-074-6538, as can be seen in Figure 1 [35]. A
slight peak position shift of around 0.1◦ to the lower 2θ values is also observed, resulting
from the isostructural incorporation of a larger Eu3+ (rVIII = 1.066 Å) ion into the Lu3+ (rVIII
= 0.977 Å) position of LuO8 dodecahedra [36].
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Figure 1. Comparison of the powder x-ray diffraction patterns of the YxLu1xNbO4:5%Eu (x = 0, 0.25,
0.5, 0.75, 1) samples with representative SEM images of YxLu1−xNbO4:5%Eu (x = 0, 0.5, 1) with a
10-micron bar.

Table 1 shows the relevant structural characteristics for both final compositions of
YxLu1−xNbO4:Eu3+ (x = 0 and 1), determined by Rietveld refinement of the experimental
data derived from Rigaku SmartLab built-in package software. The YNbO4:Eu3+ (x = 1)
parameters are refined to the C2/c space group, with a higher value of parameter a of the
unit cell around 7.63 Å and a higher β of 138.44◦, whereas LuNbO4:Eu3+ (x = 0) parameters
are refined to the I2/a space group, with a lower value of parameter a of the unit cell of
around 5.24 Å and a lower β of 94.43◦. Both samples have crystallite sizes of roughly
50 ± 3 nm and low strain values. The SEM images of YxLu1−xNbO4:5%Eu (x = 0, 0.5, 1)
materials presented in Figure 1 show irregularly shaped particles ranging in size from 1 to
10 microns. The YNbO4:5%Eu material comprises a higher proportion of smaller, densely
packed particles, whereas the particles in the LuNbO4:5%Eu material are larger and less
densely packed.
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Table 1. Structural parameters obtained by Rietveld refinement of XRD data for YNbO4:Eu3+ accord-
ing to ICDD 01-083-1319, and for LuNbO4:Eu3+ according to ICDD 01-074-6538.

Ref. Parameters YNbO4:Eu3+ (C2/c) LuNbO4:Eu3+ (I2/a)

Crystallite size (Å) 533(6) 479(6)
Strain (%) 0.08(2) 0.11(2)

a (Å) 7.62775(17) 5.23879(13)
b (Å) 10.9636(3) 10.8447(3)
c (Å) 5.30476(15) 5.04724(12)
α (o) 90 90
β (o) 138.4389(11) 94.4267(13)
γ (o) 90 90

Rwp 1 10.28% 10.25%
Rp 2 6.30% 6.55%
Re 3 3.23% 3.32%

GOF 4 3.1833 3.0895
1 Rwp—regression sum of weighted squared errors of fit; 2 Rp—regression sum of relative squared errors of fit;
3 Re—regression sum of relative errors of fit; 4 GOF—goodness of fit parameter.

3.2. Photoluminescence

The luminescence excitation and emission spectra of the Eu3+ (4f 6) ion in YxLu1−xNbO4
(x = 0, 0.25, 0.5, 0.75, 1) hosts clearly show characteristic f -f transitions, as shown in Figure 2.
The excitation spectra of all samples, observed in Figure 2a, as recorded at λem = 612 nm,
show several dominant excitation bands centered at around 540 nm (7F1 → 5D1), 529 nm
(7F0 → 5D1), 466 nm (7F0 → 5D0), 393 nm (7F0 → 5L6), and 365 nm (7F0 → 5D4). The
emission spectra of all samples recorded with λexc = 365 nm excitation are presented in
Figure 2b. Following the 7F0 → 5D4 excitation, the electrons non-radiatively deexcite to the
long-lived 5D0 level, from where the radiative relaxation occurs to the 7FJ ground multiplet.
In the recorded region, five dominant emission bands from the 5D0 level are centered at
595 nm (5D0 → 7F1), 612 nm (5D0 → 7F2), 655 nm (5D0 → 7F3), 710 nm (5D0 → 7F4), and
745 nm (5D0 → 7F5). The possible 5D0 → 7F6 cannot be recorded by the used experimental
setup. As is obvious from Figure 2, the luminescences in all the samples show overlapping
bands characteristic for the Eu3+ ion. The Stark level energies calculated from the recorded
excitation and emission spectra are presented in Table 2.

The intensity of the Eu3+ 5D0→7F2 (∆J = 2) forced electric dipole transition is hyper-
sensitive since it is strongly dependent on the coordinating polyhedron local site symmetry.
Given that the environment of Eu3+ ion is a (Y,Lu)O8 dodecahedron in all samples, small
changes can be expected because of the variation of ion positions governed by the different
ionic radii of Y and Lu ions [36].

The intensity of the parity-allowed Eu3+ 5D0→7F1 (∆J = 1) magnetic dipole transition
is considered as independent to the local symmetry; however, maximum splitting of the 7F1
manifold of the Eu3+ ion is a function of the host [38]. To observe the influence of the host on
the 7F1 manifold, additional measurements were performed using a 1800 g/mm diffraction
grating monochromator. To precisely determine the positions of all three maxima, a
deconvolution is applied, as presented in Figure 2c.

The positions (Peak energies [cm−1]) of the characteristic emission peak maxima of
YxLu1−xNbO4:Eu (x = 0, 0.25, 0.5, 0.75, 1) are presented in Figure 3a. As can be seen,
only small differences of around 10–20 cm−1 are determined, given the similarity of the
Eu3+ ion local environment. Trends of maximum ∆E splitting, the Stark splitting of 7F1
manifold, and the asymmetry ratio R corresponding to the Y/Lu content are presented in
Figure 3b. As is evident, ∆E increases linearly with the increase of the x value (increase in Y
content). For the same site symmetry and coordination number, the positions of the Stark
levels of emissions originating from the 5D0 level of Eu3+ depend on the covalency of the
metal-ligand bond [39].
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Table 2. Calculated energy of Stark levels Y0.5Lu0.5NbO4:5%Eu.

Level Observed Energy [cm−1]
7F0 0
7F1 369
7F2 1200
7F3 1960
7F4 2999
7F5 3799
7F6 N/A
5D0 17,204
5D1 18,921
5D2 21,402
5D3 23,810
5L6 25,253
5L7 26,008

5G2–6 26,420
5L8 27,100

5D4 + 5L9 27,473
5L10 28,531

5H3,4,7 30,722

The asymmetry ratio R, which is the ratio of the two characteristic transitions, is
frequently used to obtain information on the local site symmetry. As the ratio can be
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influenced by the refractive index (n) of the host, experimental R values can be corrected
for n using the following equation [40]:

Rcorr =

[
9n2

(n2 + 2)2

]
I
(
5D0 − 7F2

)
I
(
5D0 − 7F1

) . (1)
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Starting n values for LuNbO4 and YNbO4 were obtained from Ref. [10]. The refractive
index values for the other hosts were then calculated by approximation: n(YxLu1−xNbO4)
= x·n(YNbO4) + (1−x)·n(LuNbO4); and they are given in Figure 4. Characteristic n values
at different wavelengths are clearly marked in Figure 4, and they are used for further
Judd–Ofelt calculations.
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3.3. Judd–Ofelt Analysis

Eu3+ is the only ion with pure magnetic dipole transitions, 5D0→7F1 and 5D1→7F0,
allowing for the self-referenced Judd–Ofelt analysis from the single emission spectrum [5,6,41].
As the magnetic dipole transition strengths are independent of the host matrix, the radiative
transition probability of the magnetic dipole transition (MD) can be used for calibration
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of the spectrum [42]. Then, the Judd–Ofelt parameters can be estimated from the single
emission spectrum (without the traditionally used fitting procedure [43,44]), directly from the
relation [45,46]:

Ωλ

[
cm2

]
=

4.135× 10−23

Uλ

(
νMD
νλ

)3 9n3
MD

nλ

(
n2

λ + 2
)2

Iλ

IMD
, (2)

where λ = 2,4,6 abbreviates 5D0→7Fλ transitions, and Uλ are the squared reduced matrix el-
ements with values of 0.0032, 0.0023, and 0.0002 for λ = 2,4,6, respectively. ν is the emission
barycenter energy, n is the refractive index, and I are the integrated emission intensities (the
employed MD transition here is 5D0→7F1). Equation (2) is given for intensities measured
in counts. In the case where intensities are given in power units, the power to the ratio of
barycenter energies should be equal to 4 [47].

From the Judd–Ofelt parameters, many derived quantities can be estimated directly:
radiative transition probabilities, branching ratios, radiative lifetime, and emission cross-
sections [48]. The radiative transition probabilities for a given λ and MD transition are
given by Equations (3) and (4), respectively [49]:

Aλ

[
s−1
]
= 8.034× 109ν3

λnλ

(
n2

λ + 2
)2

UλΩλ, (3)

AMD

[
s−1
]
= 3× 10−12ν3

MDn3
MD, (4)

The radiative lifetime, branching ratios, and emission cross-sections are estimated by
Equations (5)–(7), respectively [50,51]:

τrad[ms] =
103

∑λ=2,4,6 Aλ[s−1] + AMD[s−1]
, (5)

βλ,MD = 10−3 Aλ,MD

[
s−1
]
τrad[ms], (6)

σλ,MD

[
cm2

]
=

1.33× 10−5

ν4
λ,MDn2

λ,MD

maxiλ,MD

Iλ,MD
Aλ,MD, (7)

where max(i) is the intensity at the transition maximum.
The experimentally measured lifetime values (τobs) of the emissions from the 5D0 level

are given in Table 3, allowing for the calculation of the non-radiative lifetime (τNR) by [52]:

τNR[ms] =
τradτobs

τrad − τobs
. (8)

The Judd–Ofelt parameters and derived quantities were calculated by the JOES appli-
cation software and are given in Table 3 [51]. With the increase of Y content in the hosts
(increasing x), certain trends can be observed: the Ω2 parameter of the hypersensitive
transition 5D0→7F2 increases with x, indicating an increasing degree of covalency and
decrease of Eu3+ site symmetry, and the Ω4 parameter, which relates to the viscosity and
rigidity of the host matrix, shows no significant change [53]. The Ω6 parameter could not
be estimated, as the emission 5D0→7F6 was not observed.

According to the changes in the refractive index and Judd–Ofelt parameters, the
radiative transition probabilities and cross-sections show a monotonic increase with x,
while the radiative lifetime decreases. As the observable lifetime also increases with x, the
non-radiative lifetime is at a minimum in the pure YNbO4, indicating that LuNbO4 is a
more efficient host matrix for the Eu3+ emission.

As the Judd–Ofelt parameters depend on the environment of the ion, the parame-
ters obtained by the semi-empirical method are a statistical average of the Judd–Ofelt
parameters for each ion. Thus, if there is a mix of non-equivalent sites in the host matrix,
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the Judd–Ofelt parameters represent an average value for each site, weighted by their
contribution [49]. Thus, the Judd–Ofelt parameters of the mixture of two hosts can be
predicted from the Judd–Ofelt parameters of the two pure compounds (a,b):

Ωλ = xΩ(a)
λ + (1− x)Ω(b)

λ . (9)

Table 3. Judd–Ofelt parameters of YxLu1−xNbO4:Eu3+, branching ratios (β), radiative lifetimes
(τrad), emission cross-sections (σ), radiative transition probabilities (A), total radiative transition
probabilities (AR), observed lifetime (τobs), non-radiative lifetime (τNR), and intrinsic quantum yield
(ηint). Transitions 5D0→7F1,2,4 are abbreviated with MD, 2, and 4 in subscripts, respectively.

x 0 0.25 0.50 0.75 1

Ω2·1020

[cm2]
6.75 6.88 7.37 7.41 7.48

Ω4·1020

[cm2]
2.69 2.91 2.97 3.01 2.95

βMD [%] 14 14 14 14 14
β2 [%] 73 73 73 73 73
β4 [%] 13 14 14 14 13

τrad [ms] 0.782 0.859 0.916 1.027 1.134
σMD·1021

[cm2]
2.12 1.81 1.64 1.43 1.49

σ2·1021 [cm2] 9.96 9.40 9.71 9.01 8.87
σ4·1021 [cm2] 3.63 3.50 3.64 3.13 3.18

AMD [s−1] 179 163 148 133 120
A2 [s−1] 928 838 795 705 628
A4 [s−1] 171 164 148 136 115
AR [s−1] 1279 1164 1092 974 882
τobs [ms] 0.619 0.643 0.650 0.650 0.652
τNR [ms] 2.970 2.557 2.238 1.771 1.534
ηint [%] 79 75 71 63 57

The estimation of the Judd–Ofelt parameters from the emission spectra inherently
brings an error of about 10%. By fitting the Judd–Ofelt parameters to the linear relations
for each x, the Judd–Ofelt parameters can be refined by the values on the fitted curve,
as the estimate reduces the error of estimation for each by

√
k, where k is the number of

measurements. Thus, in the case of the mixture of YNbO4 and LuNbO4 in five ratios, the
error of each estimated Judd–Ofelt parameter is reduced about 2.2 times, and the more
correct values are on the fitted curve for each concentration (Figure 5).
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4. Conclusions

In this study, we demonstrated how the Y-to-Lu ratio in YxLu1−xNbO4:Eu3+ powder
material influenced the Eu3+ luminescence features. The materials were synthesized using
the solid state reaction method. All of the structures crystallized as beta-Fergusonite, in
which the Eu ion replaced the Y or Lu ion in a large, low-symmetry octahedron. In all
composition hosts, the luminescence excitation and emission spectra of the Eu3+ (4f 6) ion
showed characteristic f -f transitions from which the Stark energy levels were calculated.

The specific features and energy positions of the characteristic 5D0→7F1 magnetic
dipole transition were determined when measured with a higher resolution and when
spectra deconvolution was used. The maximum ∆E splitting of the Stark splitting of 7F1
manifold and the asymmetry ratio R all exhibit Y/Lu content-dependent trends. Calcula-
tions based on the Judd–Ofelt theory were used to estimate specific quantities, concluding
that LuNbO4 is a more efficient host matrix for the Eu3+ emission.

Author Contributions: Conceptualization, V.Ð. and M.D.D.; methodology, M.D.D.; validation, A.Ć.;
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