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Abstract: Perovskite–like vanadate–molybdates are interesting from the point of view of their metal–
like conductivity, which combines the correlated and free electron nature. A series of CaV1–xMoxO3–δ

solid solutions was considered near the Mo concentration x = 0.4, where a difficult–to–perceive
structural transition was previously detected. High-resolution transmission electron microscopy
revealed the phase separation of CaV0.6Mo0.4O3–δ into nanoscale regions with different ratios of
V and Mo concentrations, despite X–ray diffraction analysis exhibiting a homogeneous perovskite
structure. The rest of the compositions from the CaV1–xMoxO3–δ series do not show phase separation.
The nonmonotonic behavior of the conductivity and linear expansion of CaV1–xMoxO3±δ was shown
when the oxygen activity in the N2-H2-H2O gas mixture was varied, which is mainly determined
by the partial decomposition of the perovskite phase. Against this background, the behavior of the
electrical properties of the CaV1–xMoxO3±δ individual phase remains unclear.

Keywords: perovskite; vanadate; molybdate; metal–like conductivity; chemical expansion; phase
separation

1. Introduction

Perovskite–like vanadates ((Ca,Sr)VO3) and molybdates ((Ca,Sr)MoO3) represent an
interesting class of materials and are oxides with metal–like conductivity. Overlapping
between neighboring d–orbitals of V or Mo through oxygen 2p–orbitals leads to a strong de-
localization of electrons, which is a source of tunneling electron transfer [1,2]. Orthorhombic
distortions of the crystal structure in CaVO3 and CaMoO3 reduce the Me–O–Me bond angle
to 160◦ [3,4], relative to the ideal 180◦ in cubic SrVO3 and SrMoO3, which is accompanied
by a decrease in the orbital overlap integral and, therefore, leads to a decrease in the transfer
electron bandwidth [1,5,6]. A similar phenomenon is observed for vanadate–molybdates
((Ca,Sr)V0.5Mo0.5O3) [7].

Vanadates are correlated metals, as they exhibit strong electron–electron interac-
tions [2,8], which opens up a number of interesting uses. Vanadium oxides are considered
as promising systems, and undergo a metal–insulator transition (Mott transition) [9] which
makes their use in electronics possible, for example, in components of transistors or re-
laxation oscillators. However, the metal–insulator transition, although expected, was not
previously observed in the bulk form of (Ca,Sr)VO3 [8,10]. It was shown that dimensional
constraints, when in the form of thin films, and epitaxial deformation enhance the correla-
tion effects, which brings these systems closer to the metal–insulator transition [11–13]. In
addition, a new approach to the design of oxide transparent conductors is based on control-
ling the concentration and effective mass of delocalized electrons, in order to achieve high
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conductivity and transparency in the visible region of the electromagnetic spectrum [10,14].
This allows metal–like oxides to be used as transparent electrodes in organic light–emitting
diodes. Finally, high electronic conductivity combined with an oxygen transfer at high
temperatures makes it possible to use partially substituted vanadates as a fuel electrode in
electrochemical power sources [15–17], although their low thermodynamic stability at high
temperatures remains a problem [18,19].

Molybdates, unlike vanadates, do not exhibit electron–electron scattering, and are
similar in behavior to normal metals [1,20,21]. Their use as electrodes in electrochemical
devices is limited due to their low redox stability [22,23], although with partial substitution
of Mo for strontium ferrites, promising results can be obtained [24,25], but with a significant
decrease in the conductivity of the electrode material.

The effect of oxygen nonstoichiometry (δ) on the structure and electronic properties
of CaVO3–δ was studied by Ueda et al. [26,27]. The initially detected transition from a
metallic state to an insulator [28] was associated with a partial oxidation of the ceramic sur-
face [26,29]. A small region of oxygen over–stoichiometry (3 + δ) in (Ca,Sr)VO3±δ vanadates
was shown [30,31], after which oxidation to the phases (Ca,Sr)3V2O8 and (Ca,Sr)2V2O7
was observed [15,16,30]. On the other hand, the use of highly reducing conditions for the
synthesis of perovskite–like vanadates implies a large oxygen deficiency. In perovskite–
like oxides, a transition to domainized brownmillerite–like structures is possible, as is
well–known for strontium ferrite [32], although additions of V and Mo to strontium ferrite
“smooth out” these transitions and reduce domain wall thickness [33–35]. The perovskite–
brownmillerite transition may be preceded by the ordering of oxygen vacancies. Accord-
ingly, Ueda et al. [26,27] showed the formation of oxygen vacancy channels for CaVO3–δ at
different values of oxygen nonstoichiometry. It should be taken into account that even small
structural distortions have a large effect on the electronic structure of perovskite–like vana-
dates. The Fermi surface shape for CaVO3 was investigated by Inoue et al. [36] in the form
of an ideal model only, which does not reflect the effect of oxygen nonstoichiometry and the
related distortions of the crystal structure of the material. The effect of oxygen activity (aO2)
on the electronic structure of vanadates and molybdates has scarcely been studied. The
significant influence of oxygen vacancies has been shown only on the electronic structure
of vanadates [37], while in molybdates their influence is considered insignificant [21].

Perovskite–like vanadate–molybdates (Ca,Sr)(V,Mo)O3–δ are interesting from the point
of view of their electronic properties, as they combine the correlated electron nature of
vanadates and the free electron nature of molybdates [38]. Unfortunately, the effect of
oxygen activity on the properties of vanadate–molybdates has not yet been studied. Ear-
lier, we presented information on the behavior of the electronic properties with temper-
ature of CaV1–xMoxO3–δ (0 ≤ x ≤ 0.6) in a dry hydrogen atmosphere [38]. In addition,
we were puzzled by the previously discovered transition region at the Mo concentra-
tion x = 0.4 [38,39], where some structurally related changes take place. In the current
work, we examine in detail the structure and microstructure of powders and ceramics of
CaV1–xMoxO3–δ (0.3 ≤ x ≤ 0.5), and evaluate the effect of oxygen activity on conductivity
and chemical expansion.

2. Materials and Methods

The CaV1–xMoxO3–δ (0.3 ≤ x ≤ 0.5) powders were prepared via pyrolysis of for-
mate solutions according to the technique from [40]. Stoichiometric quantities of CaCO3,
NH4VO3 and (NH4)6Mo7O24·4H2O were dissolved in formic acid. The obtained solutions
were evaporated and dried at 473 K in air. The resulting powders were sintered gradually at
873 K for 6 h in air to remove organic components. To obtain single–phase materials, a two–
stage annealing process was performed, at 1173 and 1473 K for 3 h in a H2-H2O(3%) gas
mixture. The elemental composition of the prepared samples was characterized by atomic–
emission spectroscopy (AES) with plasma analysis, using a Perkin Elmer Optima 4300 DV
spectrometer (PerkinElmer, Waltham, MA, USA). Powders were pressed at 400 MPa into
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bulk ceramic samples and formed by annealing at 1473 K for 3 h in a H2-H2O(3%) gas
mixture. The heating and cooling rate was 3 K min−1.

The phase composition and structure of as–prepared powders and ceramics were
studied at room temperature via X–ray diffraction (XRD) analysis, using a Rigaku DMAX
diffractometer (Rigaku, Tokyo, Japan) with CuKα radiation with step 2θ = 0.02◦. The
phase analysis was based on the PDF-2 database. Unit cell parameters were calculated
based on interplanar distances using CellRef v.3.0 software. The morphology of ceramic
samples was investigated via scanning electron microscopy (SEM) in a Tescan MIRA 3
LMU microscope (Tescan, Brno, Czech Republic) using secondary electron (SE) and back–
scattered electron (BSE) operating modes. The original surface of ceramic samples was
examined without pretreatment or etching. The maps of elemental distributions were
obtained via energy–dispersive X–ray spectroscopy (EDX), using an Oxford Instruments
X-Max 80 INCA Energy 350 microanalysis system with a non–nitrogen detector (Oxford
Instruments, Abingdon, UK). Measurements of the relative density of the ceramic samples
were carried out according to the Archimedes method, by weighing them in kerosene on
CAS CAUX 220 analytical scales (CAS, Seoul, South Korea). High–resolution transmission
electron microscopy (HRTEM) analysis was used for the refinement of microstructure
of powder samples. HRTEM analysis was performed using JEM-2010 equipment (JEOL,
Tokyo, Japan), operating at a line resolution of 0.14 nm. Microanalysis of elemental compo-
sition by EDX analysis (XFlash, Bruker, Billerica, MA, USA) was used, with an Si detector
at 127 eV resolution. For preparation of the samples for HRTEM observation, a drop of the
specimen in suspension, ultrasonically treated in ethanol, was placed into a holey–carbon
film supported on Cu grids.

The measurements of electrical conductivity, Seebeck coefficient and linear expansion
were performed at 1073 K in a N2-H2-H2O gas mixture with an aO2 range of 10−21 to
10−15 atm. The composition of the N2-H2-H2O gas mixture was set by an electrochemical
pump based on an yttria–stabilized zirconia (YSZ) ceramic test tube. The oxygen activ-
ity (aO2) was controlled using an electrochemical sensor, also based on YSZ. Humidity
was set by bubbling of gas mixture through water at room temperature. Electrical con-
ductivity measurements were performed by 4–probe DC method using a Hioki RM-3542
microohmmeter (Hioki, Nagano, Japan). The samples were rectangular bars with four Pt
electrodes, made of dispersed Pt powder and sintered at 1373 K for 1 h in a N2-H2-H2O
gas mixture. Seebeck coefficients were measured using a state–of–the–art setup based on
L-card 24-bit ADC. Several open circuit voltage (OCV) values were collected at a series of
temperature gradients (∆T = 0–15 K) by means of a built–in micro heater in the measuring
cell. The Seebeck coefficient was calculated by the slope of the OCV = f(∆T) dependency.
The Seebeck coefficient of −18.25 µV K−1 for Pt wires at 1073 K [41] was taken into account.
The linear expansion of ceramics with atmospheric composition (chemical expansion) was
investigated using dilatometry. A quartz dilatometer based on TESA Tesatronic TT-80
equipment with a GT-21HP probe (TESA, Renens, Switzerland) was used. The sample
length at 1073 K and aO2 = 10−19.5 atm (corresponding to the value of OCV = 1 V on the
oxygen electrochemical sensor) was taken as the reference point for the relative expansion.

3. Results and Discussion
3.1. Materials Characterization

Figure 1 shows XRD patterns of as–prepared CaV1–xMoxO3–δ (0.3 ≤ x ≤ 0.5) samples.
A low content of metallic Mo was found in some samples. Also possible are minor impuri-
ties of CaO, monoclinic Ca3V2O8 or Ca2V2O7, which are beyond the XRD detection line. In
general, the chemical composition of the prepared samples conformed to initial reagent
concentration, according to AES analysis.
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Figure 1. XRD patterns of as–prepared CaV1–xMoxO3–δ (0.3 ≤ x ≤ 0.5) powders.

The crystal structure of CaV1–xMoxO3–δ solid solutions is described within the or-
thorhombic perovskite lattice with the Pnma space group, as reported for CaVO3–δ [3] and
CaMoO3–δ [4], as well as for CaV0.5Mo0.5O3–δ [7,42]. With an increase in the Mo concen-
tration in CaV1–xMoxO3–δ, the XRD peaks shift to smaller angles, indicating an increase
in the unit cell parameters as the ionic radii of Mo are larger than V (for the average 4+
state). Figure 2 presents the calculated unit cell parameters of the orthorhombic cell of
CaV1–xMoxO3–δ. A bend on the dependence of the b and c unit cell parameters occurs,
whereas the a parameter behaves linearly. A similar effect in the form of a structural
transition from cubic to tetragonal syngony in SrFe1–xMoxO3–δ at the Mo concentration
x = 0.4 was found in [43]. Subsequently, the authors of [44] found that, with an increase
in the Mo concentration in SrFe1–xMoxO3–δ, the fraction of ordered regions of the double
perovskite Sr2FeMoO6 gradually increases. Merkulov et al. [45] confirmed the ordering
of Fe and Mo at the level of nanosized domains as the double perovskite Sr2FeMoO6,
within a disordered matrix of the orthorhombic perovskite of SrFe0.7Mo0.3O3–δ. However,
Karen et al. [7] showed, via synchrotron X–ray powder diffraction analysis, the absence
of ordering of V and Mo in the B site of CaV0.5Mo0.5O3–δ, thus the formation of a double
perovskite structure Ca2VMoO6 is extremely unlikely. Therefore, XRD analysis does not
provide an understanding of the structural differences in a number of CaV1–xMoxO3–δ
(0.3 ≤ x ≤ 0.5) solid solutions.

Figure S1 in the Supplementary Materials shows SEM images (SE mode) of sintered
CaV1–xMoxO3–δ (0.3 ≤ x ≤ 0.5) ceramic samples. A high porosity of about 35% can be
observed, which is also confirmed by measurements via the Archimedes method. A
high porosity of ceramics is characteristic of such compounds [7,17]. Most of the ceramic
grains under study are approximately a few µm in size, with many grains forming large
agglomerates measuring 5–10 µm in size. Samples CaV0.7Mo0.3O3–δ and CaV0.5Mo0.5O3–δ
show a wide variation in grain sizes, while CaV0.6Mo0.4O3–δ shows a more even distribution
of grain sizes.

The results from a more detailed SEM study of ceramics, with the use of the BSE
mode, are shown in Figure 3. Samples CaV0.7Mo0.3O3–δ and CaV0.5Mo0.5O3–δ shows
a homogeneous image, with the exception of small light grains that are impurities of
metallic Mo, as recorded on the XRD diagrams. On the contrary, sample CaV0.6Mo0.4O3–δ
demonstrates contrast, indicating a difference in the chemical composition of individual
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grains. Unfortunately, the complex relief of the samples does make it possible to obtain an
adequate EDX analysis of elemental concentrations.
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A detailed study of the CaV0.6Mo0.4O3–δ and CaV0.5Mo0.5O3–δ powders was per-
formed via HRTEM. The CaV0.5Mo0.5O3–δ powder sample is present as well crystallized
particles of the perovskite phase, with a size of about 1 µm. The interplanar distance
of 2.165 Å observed in Figure 4a corresponds to the {022} set for the orthorhombic per-
ovskite lattice. For convenience, we have provided real resolution HRTEM images in the
Supplementary Materials. The EDX data on the surface of the observed particles, in gen-
eral, corresponds to the chemical composition established during the synthesis. However,
it should be noted that regions with an increased content of Ca cations are recorded, which
corresponds to the enrichment of the perovskite surface with calcium oxide. Previously, Ca
segregation was detected via X–ray photoelectron spectroscopy [39]. The Cu reflex on the
EDX spectrum is due to the Cu mesh that was used as a powder holder.

Figure 4b shows the HRTEM results for the CaV0.6Mo0.4O3–δ powder sample, which
demonstrates a large scattering in crystallite sizes, from 50 nm to 500 nm. According to EDX
data, crystallites have different chemical compositions; firstly, the contents of V and Mo
differ. Three characteristic regions can be found: enriched in Mo (region 1); with an equal
ratio of V and Mo (region 2); or enriched in V (region 3). In all cases, the sets of interplanar
spacings for CaV0.6Mo0.4O3–δ are well-described within the orthorhombic perovskite lattice,
which is also the case for the CaV0.5Mo0.5O3–δ sample. Thus, the CaV0.6Mo0.4O3–δ sample
is characterized by phase separation into nanosized regions with different cationic compo-
sitions, which have a similar crystal structure. This fact explains the observed single–phase
state of CaV0.6Mo0.4O3–δ, according to XRD (Figure 1), which does not show significant
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peak broadening. The phase decomposition often occurs in solid solutions with limited
component solubility [46], as well as separation of the main crystal lattice into two or
more lattices. For example, such cases of phase separation are observed in disordered
perovskite phases, in the form of partial ordering in nanoscale domains with a double
perovskite structure [45,47]. However, almost nothing is known about phase separation
into completely isostructural phases. It is possible that this phenomenon is caused by a
peculiar distribution of the charge states of V and Mo, by analogy with the effect of Re
in solid solutions of V1–xRexO2 with a rutile structure [48]. Previously, we observed an
anomalous distribution of the charge states of V3+/4+ in CaV0.6Mo0.4O3–δ, according to
X–ray photoelectron spectroscopy analysis [39]. The most surprising fact is that the phase
separation of the material occurs within a very limited region of CaV1-xMoxO3–δ solid
solutions, near the Mo concentration x = 0.4. Further structural clarifications are necessary
in order to understand how CaV1-xMoxO3–δ solid solutions differ above and below x = 0.4.
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3.2. Impact of aO2 on Properties of the Materials

The main course of measurements of electrical conductivity and chemical expansion
was carried out under highly reducing conditions, at aO2 = 10−21 atm with a gradual
increase in oxygen activity up to aO2 = 10−15 atm with reverse for checking thermodynamic
equilibrium. We observed a long equilibration of approximately 20 h for each experimental
point. Taking into account the temperature of 1073 K and the high porosity of the samples,
it is difficult to connect the above fact with the diffusion of oxygen through the sample.
Most likely, the long time taken in reaching equilibrium is due to the diffusion of cations.
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For example, a change in the mutual ordering of V and Mo can be expected, as earlier
studies [7] showed the absence of long-range order between V and Mo in the crystal lattice
of CaV0.5Mo0.5O3–δ.

Figure 5a shows the conductivity dependencies on aO2 of CaV1–xMoxO3–δ (0.3 ≤ x ≤ 0.5)
ceramic samples at 1073 K. The dependences are nonmonotonic and have a maximum in
the region of aO2 = 10−19 atm. At the same time, the Seebeck coefficient for CaV1–xMoxO3–δ
at 1073 K is nearly independent of aO2 (Figure 5b). As the main charge carriers in
CaV1–xMoxO3–δ are delocalized electrons [7,38], the change in the conductivity of materials
with varying aO2 should primarily be associated with their concentration and mobility.
The electron mobility depends on the type of electron scattering. Earlier, we showed the
mixed character of electron scattering in CaV1–xMoxO3–δ, which is intermediate between
electron–phonon and electron–electron [38].
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It is known that in conventional metallic conductors, the concentration of free electrons
is nearly independent of external conditions. At the same time, for oxide materials in the
region of small aO2 values, Brower’s model assumes the formation of oxygen vacancies
(VO

••) from oxygen in crystal lattice sites (OO
×) with the generation of two n–type electrons

(e−) per vacancy, according to the equation

O×
O = V••

O +
1
2

O2 + 2e−. (1)

In this case, the slope of the logarithmic dependence of the concentration of electronic
defects on aO2 will correspond to –1/6, in the case of the electronic type of disordering [49].
In Figure 5a, it can be seen that the slope of the logarithmic dependences of conductivity in
the aO2 region from 10−15–10−19 atm is less than the expected value (–1/6), which might
be associated with a decrease in the electron mobility. The authors of [29] came to a similar
conclusion when studying the effect of oxygen nonstoichiometry on the conductivity of
CaVO3–δ, assuming additional scattering of electrons by oxygen vacancies. Likewise, a
similar suggestion was given in [50] while studying the conductivity of SrV1–xNbxO3–δ
systems. The effect of oxygen vacancies on the electronic structure of SrVO3 was recently
discussed in [37], where it was demonstrated that the shape of the Mott–Hubbard band
changes under the influence of created oxygen vacancies.

The presence of a clear maximum of conductivity at aO2 = 10−19 atm (Figure 5a),
with a subsequent decrease in conductivity at lower aO2, is difficult to correlate with the
influence of one type of electron scattering. Similar dependencies of conductivity with
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a maximum were observed by Macias et al. for SrVO3–δ [16] and substituted strontium
vanadates [15,17,50], where the behavior of conductivity under highly reducing conditions
was explained by the transition of vanadium from V3+ to V4+. In addition, the observed
phenomenon is similar to the data reported by Hui and Petric [18] for the MoO2–Mo
transition at 1073 K (dashed line in Figure 5a). In the region of aO2 less than 10−19 atm,
the behavior of CaV1–xMoxO3–δ can be described by the equilibrium of the main per-
ovskite phase with the phase of metallic Mo. This is confirmed by the XRD pattern of
CaV0.5Mo0.5O3–δ (Figure 6) obtained after holding for 54 h at aO2 = 10−21 atm, which shows
an admixture of metallic Mo. At the same time, after holding at aO2 = 10−19 atm, we can
observe the disappearance of the Mo impurity and the appearance of XRD reflections of
the tetragonal phase of CaMoO4. After holding at aO2 = 10−17 atm, the concentration of
the CaMoO4 tetragonal phase increases. The high metal–like conductivity of the material
remains up to aO2 = 10−15 atm. A long process of the degradation of electrical conductivity
of CaV0.5Mo0.5O3±δ begins at aO2 >10−15 atm. Figure 6 shows XRD patterns of the surface
of the ceramic sample after 54 h of exposure at aO2 = 10−14.7 atm, where the complete
decomposition of the perovskite–like phase into CaMoO4 with a tetragonal structure and
Ca3V2O8 with a monoclinic structure can be observed. Thus, the decrease in the conductiv-
ity of CaV0.5Mo0.5O3±δ in the region near aO2 > 10−19 atm occurs due to the progressive
decomposition of the metal–like phase into two insulating phases, which is clearly seen
from the evolution of XRD patterns in Figure 6. For comparison, an XRD pattern of the
CaV0.5Mo0.5O3–δ powder after oxidation in air at 1473 K is shown, in which only the
calcium molybdate phase with a tetragonal structure remains; whereas, Ca3V2O8 with a
monoclinic structure can transform into Ca2V2O7 with a pyrochlore structure, which, at
temperatures above 1273 K, transforms into an amorphous form [42]. Figure 7 shows SEM
images of the surfaces of oxidized samples. One can see the higher density of the oxidized
ceramics relative to the originals, which indicates sintering during the decomposition of
the perovskite phase. Unfortunately, the resolution of the EDX detector does not allow
us to estimate the distribution of elements, although some uneven distribution of V and
Mo is observed for sample CaV0.5Mo0.5O3±δ. The aO2–boundary for CaV0.5Mo0.5O3±δ,
where high metal–like conductivity is found, can be considered as the aO2 region near
approximately 10−16 atm, which is in agreement with [42], and is also in good agreement
with [16] for SrVO3–δ.

Figure 8 demonstrates chemical expansion and electrical conductivity dependencies
on aO2 for CaV1–xMoxO3–δ (x = 0.4 and 0.5) at 1073 K. An increase in aO2 from 10−21 up
to 10−19 atm causes a linear compression of the CaV0.5Mo0.5O3–δ ceramic sample, due
to a decrease in the ionic radii of V and Mo with an increase in their oxidation state,
which is consistent with conventional concepts [51,52]. In the region of aO2 = 10−17.5 atm,
a minimum of chemical expansion can be observed, after which the sample begins to
expand up to aO2 = 10−16 atm, and finally an intensive expansion of the sample occurs.
This is due to the partial decomposition of CaV0.5Mo0.5O3–δ according to the XRD results
(Figure 6). Figure 8b shows the dependencies of conductivity and linear expansion of
CaV0.6Mo0.4O3–δ on aO2 at 1073 K, which differ significantly from the behavior of the
CaV0.5Mo0.5O3–δ sample. The conductivity of CaV0.6Mo0.4O3–δ shows nonmonotonic
changes at aO2 < 10−18 atm and has a local minimum at aO2 = 10−19 atm. The chemical
expansion of the CaV0.6Mo0.4O3–δ ceramic sample demonstrates a difficult–to–explain
relationship that does not agree with conventional concepts. Taking into account the phase
separation in the CaV0.6Mo0.4O3–δ sample into nanoscale regions with different chemical
compositions, as detected via HRTEM, it can be assumed that the defect structure of the
material will show a composite nature.

Figure 9a demonstrates the long–term relaxation of the chemical expansion of CaV1–xMoxO3–δ
over several tens of hours. Upon a change in aO2 from 10−16.7 to 10−16.2 atm for the
CaV0.5Mo0.5O3±δ sample and from 10−15.8 to 10−15.3 atm for the CaV0.6Mo0.4O3±δ sample
there is a long process of expansion, during which there is a significant change in its linear
dimensions. The absorption of oxygen is accompanied by the formation of monoclinic
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Ca3V2O8 and tetragonal CaMoO4 phases from perovskite–like CaV1–xMoxO3–δ, which
leads to intense chemical expansion. A small difference in the aO2 values is associated with
different concentrations of the V–Mo pair. The mechanism of kinetics of chemical expansion
relaxation was investigated using a dependency approach of degree of transformation
((∆L/L)normalized) on reduced time (t/t0.5) [53]. Several basic mechanisms of solid–state
reactions were considered: diffusion of components controlled reaction, solid–state reaction
following first order kinetics, phase boundary controlled reaction, and Avrami–Erofeev
kinetic equation under limitations, due to the nucleation stage of the reaction. The form of
typical dependences of (∆L/L)normalized = f(t/t0.5) for various mechanisms of solid–phase
reactions with experimental data is shown in Figure 9b. It can be concluded that the closest
correspondence to the relaxation dependence of the chemical expansion of CaV1–xMoxO3±δ

samples is related to the solid–phase reaction mechanism, in good agreement with the
observed decomposition of the perovskite–like CaV0.5Mo0.5O3–δ into tetragonal CaMoO4
and monoclinic Ca3V2O8.
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The behavior of the electrical properties of the individual CaV1–xMoxO3±δ perovskite
phases from aO2 remains poorly understood against the background of the phase decompo-
sition. The positive sign of the Seebeck coefficient (Figure 5b) indicates that the delocalized
electrons in CaV1–xMoxO3±δ are p–type electrons (electronic holes) in the entire studied
area of aO2. In addition, small changes in the conductivity and Seebeck coefficient indicate
a small effect of aO2 on the concentration and mobility of delocalized p–type electrons in
CaV1–xMoxO3±δ, although the opposite was expected. Apparently, CaV1–xMoxO3±δ has a
very small region of oxygen nonstoichiometry, which causes its progressive decomposition
with an increase or decrease in aO2. Accordingly, significant changes in the crystal and
electronic structure of the CaV1–xMoxO3±δ perovskite phase itself are not expected.
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4. Conclusions

Solid solutions CaV1–xMoxO3-δ with an orthorhombic perovskite structure near the
structural transition at x = 0.4 were considered, and showed a bend in the dependen-
cies of b and c unit cell parameters on the Mo concentration. The phase separation of
CaV0.6Mo0.4O3–δ into nanoscale regions with different contents of V and Mo was observed.
It is noteworthy that phase separation occurs within a narrow range of V and Mo concentra-
tions. We see no reason to classify the regions of CaV1–xMoxO3–δ solid solutions before and
after x = 0.4 as fundamentally different types of solid solutions, although further structural
refinements are needed.

The article considers the behaviors of conductivity and chemical expansion of CaV1–xMoxO3±δ

at 1073 K depending on the activity of oxygen in the gas phase (aO2), under the reducing
conditions of a N2-H2-H2O gas mixture. Both types of dependencies exhibit nonmonotonic
behavior. Despite the expected significant effect of aO2 on the concentration and mobility
of delocalized p–type electrons in CaV1–xMoxO3±δ, the phase decomposition causes major
changes in electrical conductivity and chemical expansion of the materials under study. In
the reduction region at aO2 less than 10−19 atm, there is a phase equilibrium with metallic
Mo, while the oxidation of materials at aO2 > 10−19 atm is accompanied by the progres-
sive decomposition of the metal–like perovskite V–Mo phase into insulating tetragonal
calcium molybdate and monoclinic calcium vanadate, and at aO2 = 10−15 atm, complete
decomposition is observed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12030419/s1. Figure S1: SEM images (SE mode) of the
surface of sintered CaV1–xMoxO3–δ (0.3 ≤ x ≤ 0.5) ceramic samples; Figure S2: Real–resolution
HRTEM image supported by FFT diffraction patterns for CaV0.5Mo0.5O3-δ sample; Figure S3:
Real–resolution HRTEM image supported by FFT diffraction patterns for CaV0.6Mo0.4O3-δ sam-
ple (region 1); Figure S4: Real–resolution HRTEM image supported by FFT diffraction patterns for
CaV0.6Mo0.4O3-δ sample (region 2); Figure S5: Real–resolution HRTEM image supported by FFT
diffraction patterns for CaV0.6Mo0.4O3-δ sample (region 3).
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