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Abstract: This work is focused on the complex interplay of geometry of I· · ·X halogen bonds (HaB)
and intermolecular interaction energy in two isomorphic cocrystals [CpFe(CO)2X] (C2I4) (X = Cl (1),
Br (2)). Their IR-spectroscopic measurements in solid state and solution demonstrate the blue-shift of
CO vibration bands, resulting from I· · ·X HaB. The reluctance of their iodide congener [CpFe(CO)2I]
to form the expected cocrystal [CpFe(CO)2I] (C2I4) is discussed in terms of different molecular
electrostatic potential (MEP) of the surface of iodide ligands, as compared with chloride and bromide,
which dictate a different angular geometry of HaB around the metal-I and metal-Br/Cl HaB acceptors.
This study also suggests C2I4 as a reliable HaB donor coformer for metal-halide HaB acceptors in the
crystal engineering of hybrid metal–organic systems.

Keywords: halogen bonding; σ-hole; cocrystal; blue-shift

1. Introduction

Two functional groups in tetrahaloethenes, C2X4 (X = F, Cl, Br, I), namely double
bonds and halogen, provide at least two possible types of their coordination in transition
metal complexes: the π-coordination of C=C double bond and donor–acceptor interaction
between the halogen atom and metal centre. Both these types are exemplified by a sufficient
number of crystal structures deposited in the Cambridge Structural Database (CSD). Each
category has its certain specificity: C=C double bond coordination is known only for rather
compact tetrafluoroethene (C2F4) with platinum group metals (Pt, Pd, Rh), while I→M
donation was found only in tetraiodide C2I4 complexes with Ag and Au [1,2]. Recent
advances in the investigation of non-covalent interactions and their use in supramolecular
design revealed two more types of intermolecular interactions between C2I4 and metal
complexes: “regular” halogen bonding (HaB) between iodine functions of C2I4 and HaB-
accepting halide ligands in metal complexes, investigated by the same group [Pt2I6] [3], Ni
bis(2-oxido-N,N-dimethyldiazene-1-carboximidamide) [4] and direct metal-to-iodine dona-
tion, or I· · ·M halogen bonding (HaB), developed by the group of V. Kukushkin [5]. The
former type of “regular” HaB-assisted hybrid metal–organic cocrystals can be considered
as a part of a big family of HaB cocrystals between C2I4 and halide salt HaB acceptors such
as [R4N]+X−, developed mostly by the efforts of the group of W. Pennington [6]. Unlike the
metal-halide supramolecular architectures, such [R4N]+X− C2I4 salt cocrystals feature more
than two (typically four, rarely six) molecules of C2I4 in the “coordination sphere“ of the
halide anion. We were interested in investigating whether such big “coordination numbers”
can be achieved in metal-halide cocrystals of C2I4. On the other hand, in a continuation of
our research of the HaB effect on the electronic structure of transition metal complexes [7],
we were interested in the investigation of the crystal and electronic structure of the hybrid
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metal–organic cocrystal of transition metal carbonyls and C2I4. Therefore, we cocrystallized
CpFe(CO)2X (X = Cl, Br, I) with C2I4 and studied the crystal structure, geometry, energy of
intermolecular interactions, and IR spectra of the resulting cocrystals.

2. Materials and Methods
2.1. Materials

Solvents were purified, dried, and distilled under an argon atmosphere before use.
Commercial C2I4 was used without additional purification. The [CpFe(CO)2X] (X = Cl, Br, I)
cocrystals were prepared using reported procedures [Brauer].

2.2. General Co-Crystallization Procedure

Cocrystals 1–2 were prepared by the slow evaporation of CH2Cl2 solution of coformers.
In a typical experiment, samples of cocrystal 1 suitable for single-crystal XRD investi-

gation were grown in 1.5 mL plastic vial (Eppendorf) containing a solution of [CpFe(CO)2X]
(0.1 mmol) and of C2I4 (0.2 mmol) in 0.25 mL of CH2Cl2, which was closed and left at room
temperature for 48 h. Red crystals of 1 along with some colorless prisms of C2I4 formed.
They were washed with 1 mL of hexane, then dried in a stream of argon.

2.3. X-ray Structure Determinations

A Bruker D8 Venture diffractometer (Bruker, Billerica, MA, USA) equipped with
graphite-monochromated Mo Kα radiation (0.71070 Å) was used for the cell determination
and intensity data collection for cocrystals 1 and 2 and CpFe(CO)2Br. The data were
collected by the standard ’phi-omega scan techniques and were reduced using SAINT
v8.37 A (Bruker: Madison, WI, USA). The SADABS (version 2016/2; Bruker, 2016) software
was used for scaling and absorption correction. The structures were solved by direct
methods and refined by full-matrix least-squares against F2 using Olex2 and SHELXTL
software [8,9]. Non-hydrogen atoms were refined with anisotropic thermal parameters. All
hydrogen atoms were geometrically fixed and refined using a riding model.

2.4. Computations

Theoretical calculations were carried out with the ORCA 5.02 program package [10].
A non-hybrid PBE functional [11] dispersion correction with Becke–Johnson damping
(D3BJ) [12,13] and a def2-TZVP basis set [14] with small-core pseudopotential for I atoms [15]
were used for geometry optimization. Def2/J auxiliary basis [16] was used for Coulomb
fitting. Electron density calculations of the resulting geometries were performed using
ZORA approximation for scalar relativistic effects [17,18], a hybrid functional PBE0 [19] and
an all-electron def2-TZVP basis set reconstructed for ZORA. RIJCOSX approximation [20]
in combination with a SARC/J auxiliary basis set [21] was used to improve computational
speed. MEP values on 0.002 eÅ−3 isosurfaces were evaluated by the Multiwfn program [22].
MEP figures were prepared using VisMap software [23].

Intermolecular interaction energy calculation and subsequent energy framework gen-
eration were performed in Crystal Explorer 17.5 (TONTO, B3LYP-DGDZVP) for all unique
molecular pairs in a molecule’s first coordination sphere (4 Å) using experimental crystal
geometries.

3. Results
3.1. Preparation and Crystal Structure of [CpFe(CO)2X]·(C2I4) (X = Cl, Br)

Cocrystallization of 2:1 C2I4 and CpFe(CO)2X solution in CH2Cl2 in the conditions of slow
evaporation at room temperature afforded isomorphic 1:1 cocrystals of [CpFe(CO)2Cl]·(C2I4)
(1) and [CpFe(CO)2Br]·(C2I4) (2), respectively. A first glance at their crystal structure reveals
the CpFe(CO)2X molecule connected with four C2I4 molecules by I· · ·X HaBs (Figure 1). In
turn, each iodine in C2I4 molecule forms I· · ·X HaB, so that C2I4 molecule is surrounded
by four CpFe(CO)2X molecules (see Figure 2).
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We can note a slight elongation of the Fe-Br bond in 2 (2.430(1) Å) as compared with 
2.4221(4) Å in the native [CpFe(CO)2Br], and Fe-Cl bond (2.295(2) Å) in 1, compared with 
2.251(7) Å in [CpFe(CO)2Cl], trapped in a cyclodextrine cage [24]. 

Figure 1. Fragments of the crystal structure of 1 (a,c) and 2 (b,d) showing the HaB-assisted
supramolecular arrangement around [CpFe(CO)2X] molecules (a,b) and two independent C2I4

molecules, bridging two [CpFe(CO)2X] (c,d). Selected interatomic distances in 1 (Å): Fe1-Cl1 2.295(2),
Cl1· · · I1 3.443(2), I3· · ·Cl1 3.382(2), Cl1· · · I2 3.259(2), Cl1· · · I4 3.261(2); Selected angles in 1 (◦): Fe1-
Cl1· · · I1 114.06(8), Fe1-Cl1· · · I2 113.40(8), Fe1-Cl1· · · I3 100.64(8), Fe1-Cl1· · · I4 130.31(9), C1-I2· · ·Cl1
168.7(3), C1-I1· · ·Cl1 166.4(3), C2-I3· · ·Cl1 162.8(3), C2-I4· · ·Cl1 175.7(3). Selected interatomic distances
in 2 (Å): Fe1-Br1 2.430(1), Br1· · · I1 3.5598(7), Br1· · · I2 3.3717(7), Br1· · · I3 3.4517(8), Br1· · · I4 3.3398(7). Se-
lected angles in 2 (◦): Fe1-Br1· · · I1 112.56(3), Fe1-Br1· · · I2 112.13(3), Fe1-Br1· · · I3 97.03(3), Fe1-Br1· · · I4
134.93(3), C1-I1· · ·Br1 164.3(2), C1-I2· · ·Br1 170.2(2), C2-I3· · ·Br1 161.3(2), C2-I4· · ·Br1 176.0(2).

We can note a slight elongation of the Fe-Br bond in 2 (2.430(1) Å) as compared with
2.4221(4) Å in the native [CpFe(CO)2Br], and Fe-Cl bond (2.295(2) Å) in 1, compared with
2.251(7) Å in [CpFe(CO)2Cl], trapped in a cyclodextrine cage [24].

Tetrahaloethenes C2I4 and C2Br4 tend to reproduce the layered fragments of their
native packing patterns (i.e., in their parent crystal) in their cocrystals such that two of
three lattice dimensions of the native C2X4 (X = Br, I) and their pyrazine adducts are
similar [25–27]. However, close examination of crystal structures 1 and 2 did not reveal any
parallels with the crystal structure of the native C2I4. The σ-holes at each of four iodine
atoms of C2I4 in 1 and 2 are directed towards the halide ligands X of CpFe(CO)2X, forming
I· · ·X HaBs (Figure 2); therefore, short I· · · I interactions (HaBs) between C2I4 molecules
are absent in these cocrystals. Each halide ligand of CpFe(CO)2X in turn forms four I· · ·X
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HaBs (Figure 1). The lengths of these I· · ·X HaBs vary in the range of 3.259(2) Å–3.443(2)
Å in 1 to 3.3398(7) Å–3.5598(7) Å in 2, but in general, they are shorter than the respective
sums of vdW radii, and their Fe-X· · · I angles suggest that all of these HaBs are genuine
(type-II [28]) HaBs.
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As a final structural remark, we can mention that in the same conditions as for
CpFe(CO)2X (X = Cl, Br), the CpFe(CO)2I did not afford any cocrystalline product with
C2I4 and only starting materials were recovered from the reaction mixture. The reluctance
of CpFe(CO)2I in terms of the supramolecular interaction with C2I4 is most likely due
not to the weak properties of the iodide ligand as an acceptor compared with chloride
and bromide, but to its increased demands on the angles at which stable I· · ·X-Fe HaB
can form. As we demonstrated earlier [7], in some cases (against the background of a
fairly stable and flexible I· · ·Cl-M and I· · ·Br-M HaBs), the formation of I· · · I-M HaB
was not observed precisely because of steric factors—the impossibility of placing a HaB
donor in the equatorial plane (of the nucleophilic p-belt) of the iodine ligand due to the
sterically crowded environment around it. For the same reason, the HaB-assisted cocrystals
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of metal-chloride and metal-bromide HaB donors are usually isomorphic, while metal-
I cocrystals with the same HaB donors stay apart [29]. We can assume that since the
Fe1-X1···I4 angles in 1 and 2 (130◦ and 135◦, respectively, Figure 1) are clearly above the
right angle and 106◦–113◦observed before in [Bu4P][Pt2I6] C2I4 cocrystal [3], the same
arrangement for CpFe(CO)2I and C2I4 is not stable. Furthermore, we can speculate that
other arrangements for CpFe(CO)2I and C2I4 may not provide sufficient profit in energy
and packing as compared with the starting materials. Apart from the higher rigidity of
the iodide-centered HaBs and consequent steric problems of achieving the optimal angles,
another contribution to the failure of CpFe(CO)2I to form cocrystals with C2I4 may come
from the lower HaB acceptor properties of the iodide as compared with bromide and
chloride. In particular, the series of studies on halopiridinium salts with halide anions
as HaB acceptors demonstrated that although the nature of the halide anion provides a
secondary effect on the HaB strength, the HaBs with iodide are generally weaker than those
with bromide and chloride as HaB acceptors [30–35].

3.2. Electronic Structure and IR Spectroscopy

Molecular electrostatic potential (MEP) mapping of C2I4 shows a rather pronounced
and equivalent σ-hole on each iodine atom (Vmax = −36.5 kcal/mol, Figure 3).
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Figure 3. Molecular electrostatic potential (MEP) maps for an isolated molecule of C2I4 (0.002 e/A3

electron density isosurface).

The σ-holes in C2I4 are only 5 kcal less “deep” than in 1,4-diiodotetrafluorobenzene
(1,4-DITFB, Vmax = −40.4 kcal/mol [36]), the classic HaB donor, which was successfully
used as a coformer for CpFe(CO)2X (X = Cl, Br, I, TePh) in our earlier study [7].

HaB between the positive area of iodine function of C2I4 and the nucleophilic area of
ligand X in CpFe(CO)2X is sufficient to shift the electron density from the M-X bond and
therefore to reduce M→CO back-donation [37]. The resulting depopulation of the π*C-O
LUMO orbital slightly strengthens the CO bond and consequently shifts its vibrational
band to the higher frequency area. This is also in good agreement with the slight elongation
of Fe-X bonds in 1 and 2 compared with the free molecules of [CpFe(CO)2X] mentioned in
Section 3.1.

The series of [CpFe(CO)2X] (1,4-DITFB) (X = Cl, Br, I, TePh) cocrystals demonstrated
the 5–10 cm−1 blue shift of CO vibrational bands as compared with the respective parent
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CpFe(CO)2X. Therefore, the 5–7 cm−1 blue shifts of CO vibration bands in the solid-state
ATR IR spectra of 1 and 2 (as compared with the parent CpFe(CO)2Cl and CpFe(CO)2Br)
were quite expected (Figure 4).

Crystals 2022, 12, x FOR PEER REVIEW 6 of 8 
 

 

band to the higher frequency area. This is also in good agreement with the slight elonga-
tion of Fe-X bonds in 1 and 2 compared with the free molecules of [CpFe(CO)2X] men-
tioned in part 3.1. 

The series of [CpFe(CO)2X] (1,4-DITFB) (X = Cl, Br, I, TePh) cocrystals demonstrated 
the 5–10 cm−1 blue shift of CO vibrational bands as compared with the respective parent 
CpFe(CO)2X. Therefore, the 5–7 cm−1 blue shifts of CO vibration bands in the solid-state 
ATR IR spectra of 1 and 2 (as compared with the parent CpFe(CO)2Cl and CpFe(CO)2Br) 
were quite expected (Figure 4). 

(a) (b) 

Figure 4. Overlay of the fragments of IR (ATR) spectra of pure CpFe(CO)2Cl (red) and cocrystal 1 
(blue, a); overlay of CpFe(CO)2Br (red) and 2 (blue, b). 

Such less pronounced blue shifts of CO groups in 1 and 2 are in good agreement 
with the longer I⋯Br distances in 2 (3.3398(7)–3.5598(7)Å (Figure 1) as compared with 
3.294–3.311 Å in [CpFe(CO)2Br] (1,4-DITFB) [7]. 

We evaluated the energy of intermolecular interactions between CpFe(CO)2Br and 
C2I4 in 2 (−12.5–−17.0 kJ/mol) and [CpFe(CO)2Br]–1,4-DITFB (−14.6–−15.0 kJ/mol) in the 
respective cocrystal in Crystal Explorer/TONTO–DGDZVP [38]. These values reflect the 
total intermolecular interaction energy, but not specific (e.g., HaB) interactions. Inter-
molecular interactions between C2I4 and CpFe(CO)2Br molecules in cocrystal 2 are not 
limited to I⋯Br HaBs and also include C-H⋯I contacts. The latter may provide a notice-
able contribution to the intermolecular adhesion, and therefore the shorter I⋯Br dis-
tances (say, I2⋯Br1 3.3717(7) Å) in combination with the H8⋯I2 contacts (3.1730) corre-
spond to stronger intermolecular bonding (−17 kJ/mol), while the I⋯Br HaB match the 
longest I⋯Br separation (I1⋯Br1 3.5598(7) Å) and weaker intermolecular interaction 
(−12.5 kJ/mol). It should be noted that I⋯Br distances in 2 are the result of a complex in-
terplay of intermolecular interactions and cannot be directly compared with those in 
[CpFe(CO)2Br] (1,4-DITFB), so we can only generally conclude that the HaB interaction of 
the bromide ligand in [CpFe(CO)2Br] with four C2I4 is comparable to that with two 
1,4-DITFBs. 

4. Conclusions 
C2I4 is a reliable HaB donor coformer for the organometallic halides, particularly for 

CpFe(CO)2X (X = Cl, Br). The strong demand of the iodide ligand to accept the HaB 
strictly in the equatorial plane results in the reluctance of CpFe(CO)2I to cocrystallize 
with C2I4. The formation of four I⋯X HaBs around each X ligand results in 5–7 cm−1 blue 
shifts of CO vibration bands in the solid-state ATR IR spectra of [CpFe(CO)2X] C2I4 (X = 
Cl, Br) cocrystals. 

  

Figure 4. Overlay of the fragments of IR (ATR) spectra of pure CpFe(CO)2Cl (red) and cocrystal
1 (blue, a); overlay of CpFe(CO)2Br (red) and 2 (blue, b).

Such less pronounced blue shifts of CO groups in 1 and 2 are in good agreement
with the longer I· · ·Br distances in 2 (3.3398(7)–3.5598(7)Å (Figure 1) as compared with
3.294–3.311 Å in [CpFe(CO)2Br] (1,4-DITFB) [7].

We evaluated the energy of intermolecular interactions between CpFe(CO)2Br and
C2I4 in 2 (−12.5–−17.0 kJ/mol) and [CpFe(CO)2Br]–1,4-DITFB (−14.6–−15.0 kJ/mol) in
the respective cocrystal in Crystal Explorer/TONTO–DGDZVP [38]. These values reflect
the total intermolecular interaction energy, but not specific (e.g., HaB) interactions. In-
termolecular interactions between C2I4 and CpFe(CO)2Br molecules in cocrystal 2 are
not limited to I· · ·Br HaBs and also include C-H· · · I contacts. The latter may provide a
noticeable contribution to the intermolecular adhesion, and therefore the shorter I· · ·Br
distances (say, I2· · ·Br1 3.3717(7) Å) in combination with the H8· · · I2 contacts (3.1730)
correspond to stronger intermolecular bonding (−17 kJ/mol), while the I· · ·Br HaB match
the longest I· · ·Br separation (I1· · ·Br1 3.5598(7) Å) and weaker intermolecular interaction
(−12.5 kJ/mol). It should be noted that I· · ·Br distances in 2 are the result of a complex
interplay of intermolecular interactions and cannot be directly compared with those in
[CpFe(CO)2Br] (1,4-DITFB), so we can only generally conclude that the HaB interaction
of the bromide ligand in [CpFe(CO)2Br] with four C2I4 is comparable to that with two
1,4-DITFBs.

4. Conclusions

C2I4 is a reliable HaB donor coformer for the organometallic halides, particularly for
CpFe(CO)2X (X = Cl, Br). The strong demand of the iodide ligand to accept the HaB strictly
in the equatorial plane results in the reluctance of CpFe(CO)2I to cocrystallize with C2I4.
The formation of four I· · ·X HaBs around each X ligand results in 5–7 cm−1 blue shifts of
CO vibration bands in the solid-state ATR IR spectra of [CpFe(CO)2X] C2I4 (X = Cl, Br)
cocrystals.
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