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Abstract: Biomass waste is a valuable resource that can be recovered, reused, and is renewable. How-
ever, converting biomass waste to a high degree of order is a bigger challenge, and graphitization
at low temperatures is even more difficult. This paper proposes an improved method (Ni element
catalysis) for highly graphitizing pomelo peel at low temperatures (750–900 ◦C). In this paper, X-ray
diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning elec-
tron microscopy (SEM), Brunauer–Emmett–Teller (BET), and high-resolution transmission electron
microscopy (HRTEM) were used to study the method and the effect of temperature on structural
changes during graphitization. Under the improved method, pomelo peel was transformed into nano-
spherical graphitized material. The degree of graphitization reached 80.23% at 900 ◦C, which was
31.39% higher than that of the traditional method. Furthermore, through HRTEM, the lattice fringe
spacing was observed to be 0.337 nm, which is between pure graphite (0.3354 nm) and amorphous
graphite (0.3440 nm). In this paper, the improved method can obtain highly graphitized nanospheres
at low temperatures, thus reducing energy consumption, reducing environmental pollution, and
promoting sustainable development.

Keywords: pomelo peel; nanospheres; highly graphitized; low temperature

1. Introduction

Pomelo is one of the most consumed fruits in the world. The supply and volume
of pomelo production in China are the largest in the world [1]. Therefore, the fruit also
has a great impact on China’s economy. China consumes a lot of pomelos and therefore
produces many pomelo peels. Pomelo peels account for about 45% of the total weight and
are often treated as agricultural waste [2]. This waste impacts the environment and causes
environmental pollution, so it must be properly managed. Because pomelo peel contains
cellulose, hemicellulose, and lignin, it is a potential carbon precursor material [3]. Therefore,
this paper adopts different methods and temperature regulations to transform pomelo
peels into more valuable materials, such as highly ordered and conductive graphitized
materials.

Graphitic carbon materials, having attractive physicochemical properties (high elec-
trical conductivity, thermal conductivity, and a high melting point), can be used for many
applications, such as supercapacitors, fuel cells, and lithium-ion batteries [4–6], and more
and more people are paying attention. The general methods for graphitization include arc
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discharge method, laser vaporization [7], and plasma and thermal chemical vapor deposi-
tion [8]. However, these methods tend to be complex and require very high temperatures
(>2000–3000 ◦C) [9,10]. Due to various limitations, these methods cannot be widely used, so
it is necessary to simplify the method and lower the temperature of graphitization methods.
In addition, some studies that use non-renewable resources for graphitization, such as
asphalt [11] and coal [12], also raise concerns about sustainable development. Therefore,
there is a need to develop renewable resources. On the other hand, biomass materials are
considered sustainable materials, and they are a good carbon precursor due to their easy
availability and low price [13,14]. At present, catalytic graphitization is a method that can
reduce energy consumption and graphitize biomass. This method can use transition metal
salts (Fe, Ni, Co, Mn, etc.) as catalysts [15–20] to convert amorphous biomass into highly
ordered graphitic nanomaterials using pyrolysis [9,18]. For example, Fredina Destyorini
et al. used NiCl2·6H2O to catalyze coconut peel at 1200 ◦C to obtain a graphitized carbon
material with an IG/ID ratio of 1.16 [21].

This paper adopts different synthesis paths to lower the temperature of synthesizing
graphitized carbon materials and convert waste pomelo peels into highly graphitized
materials. In this paper, by comparing the synthesis effect of the traditional method and the
improved method, it was found that after the improvement of the method, a high degree of
graphitization effect could be achieved at a lower temperature. With the improved method,
the graphitization effect at 750 ◦C was better than that at 900 ◦C with the traditional method.
In exploring the temperature, it was found that after the improved method, graphitic carbon
nanomaterials were formed under treatment at 900 ◦C, which was significantly lower than
that of the conventional method.

2. Materials and Methods
2.1. Material

The pomelo peels in this work were sourced from the vegetable market in Nanning
City, Guangxi Province. Hydrochloric acid (HCl, concentration 37%), sulfuric acid (H2SO4,
purity 98%), and anhydrous ethanol (C2H6O, purity 99.5%) were procured from Guangdong
Guanghua Technology Co., Ltd., Shenzhen, China. Potassium permanganate (KMnO4,
purity ≥ 99.5%) and nickel nitrate (Ni(NO3)2·6H2O, purity ≥ 99%) were sourced from
Tianjin Aopusheng Chemical Co., Ltd, China. Deionized water was provided by Shanghai
Hetai Ultrapure Water System, Shanghai, China. All reagents were analytical grade.

2.2. Method

Wasted pomelo peels were treated with two methods (Figure 1). The collected pomelo
peels were first washed with tap water and then washed with deionized water. Next, they
were dried in an oven at 80 ◦C for 24 h, crushed by a crusher, and powders smaller than
147 µm in size were selected to obtain a relatively uniform fine powder.

Figure 1. Schematic flow diagram of the traditional method and the improved method.
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The first method used impregnated pomelo peel powder in a mixture of nickel nitrate
and 100 mL absolute ethanol (5 mM metal/g powder). This was then dried in an oven at
70 ◦C for 8 h and heated to (750 ◦C/800 ◦C/900 ◦C, 3 ◦C/min) in a tube furnace with N2
atmosphere. Then, the obtained carbon powder was washed with 20% hydrochloric acid
and then condensed and refluxed for 2 h with a mixed solution of H2O/H2SO4/KMnO4
= 1:0.02:0.006 (molar ratio) to purify the biochar. Next, the biochar was washed with 10%
hydrochloric acid to remove MnO2 and then washed several times with deionized water.
The second method was to heat the powder to 500 ◦C (5 ◦C/min, 1 h) in a tube furnace
under N2 atmosphere to obtain carbonized powder. The remaining steps were the same as
method one.

The following nomenclature T-M was used, where T stands for temperature and M
stands for method (see Supplementary Materials Table S1).

2.3. Characterization of the Peel Biomass

The X-ray powder diffraction (XRD) analysis of the samples was conducted on the
Bruker D8 instrument. The operating condition was 40 kV and 30 mA, using Cu Kα

radiation (λ = 0.15406 nm) over the scan angle (2θ) range of 10◦–80◦ (2◦/min). X-ray
photoelectron spectroscopy (XPS) analyzed the surface chemistry and chemical state of
sample elements. XPS was performed on Thermo Scientific. XPS parameters included
analytical capabilities (wide: 75 W, narrow: 150 W) and monochromatic Al Kα. The
data acquisition time was 2 min 16 s. The XPS peaks were fitted by deconvolution using
Avantage software. Raman spectra were taken in a Raman microscope (Via Reflex) with a
laser excitation wavelength of 532 nm to analyze the degree of order of carbon structure. The
scanning range was 500–3500 cm−1, and the data-acquisition time was 10 s. Each sample
was tested at three different points to ensure data accuracy. Analysis of Raman spectra was
performed by peak deconvolution using Peakfit software. Fourier transform infrared (FTIR)
spectroscopy was performed using a spectrometer (Nicolet iS 50) to investigate the changes
of functional groups during graphitization. The scanning range of FTIR was 800–4000 cm−1.
Curve processing was performed by Origin software. Before measurement, samples were
degassed in vacuum at 200 ◦C for 6 h, as determined by nitrogen adsorption–desorption
method using Brunauer–Emmett–Teller (BET) theory to determine the specific surface area
and pore structure. HRTEM was used to observe lattice fringes. HRTEM was performed
on (FEI Talos F200S). All samples for HRTEM analysis were dispersed in ethanol and
sonicated for 10 min to ensure uniform dispersion. They were dropped on carbon-coated
grids followed by drying process at room temperature. This was used to detect images and
lattice fringes of a sample. SAED was used to confirm the degree of graphitization and was
performed on FEI Talos F200S.

3. Results and Discussions

The degree of graphitization of the samples was analyzed by the XRD spectrum. The
order degree of carbon structure was analyzed by Raman spectroscopy. It can be seen
from Figure 2a that there are apparent sharp peaks at (ca. 26◦, 43◦, 54◦, 78◦, 83◦), for the
corresponding (002), (100), (101), (004), and (110) diffraction peaks (PDF#41-1487). This
shows that the waste pomelo peel has good graphitization with the catalysis of the Ni
element. In Figure 2a, it can be seen that the (002) diffraction peaks of 750-1, 800-1, and
900-1 show increasingly sharper degrees as the temperature increases. The pomelo peel
carbonized at 500 ◦C showed a broad hump at 2θ = 23◦ and 44◦, indicating that it was
in an amorphous state (Figure S1) [21]. We can see that the (002) diffraction peak of the
750-2 sample is sharper than that of the 900-1. The 750-2 and 800-2 samples are similar
in sharpness, and the 900-2 sample appears sharper. The following are the criteria for
evaluating the degree of graphitization [22–24]:

D(002)(Å) = λ/2sinθ002 (1)

G = (0.3440 − d002)/(0.3440 − 0.3354) (2)
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where λ is the wavelength of the X-ray radiation and θ002 is the (002) reflection angle; 0.3354
nm is the interlayer spacing of graphite, and 0.3440 nm is the value of carbon without
graphite order.

Figure 2. (a) XRD patterns of the graphitized pomelo peel; (b) Raman of the graphitized pomelo peel;
(c) FWHM of G-band; Deconvolution of Raman spectra for (d) 750-1, (e) 800-1, (f) 900-1, (g) 750-2,
(h) 800-2, (i) 900-2.

According to the XRD spectrum (Figure 2a), the structural parameters of graphitic
carbon were calculated. Therefore, the plane spacing d(002) was calculated by the Bragg
equation to calculate the diffraction peak of (002) (Table 1). The interlayer spacing d(002) of
750-1, 800-1, and 900-1 is significantly larger than that of graphite (0.3354 nm), indicating
that the samples have turbo stacking [25]. The samples synthesized by method two are
highly ordered. The graphitization degree of 750-2, 800-2, and 900-2 is 74.42~80.23%, of
which the 900-2 sample has a high degree of graphitization (80.23%), which is slightly lower
than that of commercial graphite (90.23%) [26]. The degree of graphitization of 750-1, 800-1,
and 900-1 is 19.77–48.84%, and the degree of graphitization of 900-2 is higher than that of
900-1 (31.39%), indicating that method two is more conducive to catalyzing waste pomelo
peel graphitization.

Figure 2b is the graph of Raman spectroscopy, which is used to study the degree
of order of the samples. In the first-order Raman spectrum (1200–1700 cm−1), there are
two strong peaks at ca. 1339 and 1568 cm−1 corresponding to the D-band and G-band,
respectively. At the shoulder of the G band, there is a shoulder at about 1610 cm−1, called
the D′ band [25,27]. The D band represents the disordered graphitic structure and is
associated with defects in the graphitic sp2 carbon structure [28,29]. The G-band is related
to the vibrational mode of E2g2 of sp2-bonded carbon atoms, reflecting the graphitic phase
in carbon [30–32]. Therefore, the intensity ratio of the G-band relative to the D-band is
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widely used to judge the order degree of carbon structure, which is often associated with
an improvement in the degree of graphitization [12,33]. The full width at half maximum
(FWHM) of the G-band indicates in-plane defects and lateral dimensions [34]. As shown
in Figure 2d–i, the Raman spectra of samples in the range of 1100–1800 cm−1 were made
using a Gauss–Lorentzian curve fitting program. The results of the FWHM analysis of
the peak-fitted G-band are shown in Figure 2c. As shown in Figure 2d–i, the Raman
spectrum of the samples is deconvoluted into five components: the TPA band related to
the trans-polyacetylene-like structure, which is responsible for the shoulder on the left
of the D band, the D band; the A-band, which is around 1490 cm−1 and assigned to the
amorphous structure; the G-band; and the D′-band, which is characteristic of defects caused
by the intra-valley double resonance scattering process [28]. As shown in Figure 2c, the
FWHM of the G-band decreases gradually with the increase in temperature. In method one,
the FWHM of 750-1, 800-1, and 900-1 were 53.06, 35.14, and 32.72, respectively. In method
two, the FWHM of 750-2, 800-2, and 900-2 were 35.45, 32.51, and 29.16, respectively. It can
be seen that the FWHM of the G-band of the samples prepared by method two is lower,
indicating an improved crystal structure as the defects disappear, thereby producing an
in-plane homogenization process of ordered graphite. A larger value of IG/ID represents
a higher degree of order. In Table 1, it can be seen that the IG/ID values of the 750-1,
800-1, and 900-1 samples are 1.10, 1.17 and 1.19, respectively, indicating the degree of order
of the carbon structure increases gradually with the increase in temperature. The IG/ID
values of 750-2, 800-2, and 900-2 samples are 1.33, 1.37, and 1.43, respectively, which also
reflected the same rule. The value of ID/(ID + IG + ID’) reflects the degree of disorder,
and as the ratio decreases, the degree of order increases. The ID/(ID + IG + ID’) values
of the 750-1, 800-1, and 900-1 samples are 0.701, 0.655, and 0.641, respectively, which
shows that as the temperature increases, the disorder decreases and the order increases.
The ID/(ID + IG + ID’) values of the 750-2, 800-2, and 900-2 samples are 0.618, 0.591, and
0.509, respectively, indicating the same rule. A distinct peak appears at about 2690 cm−1

corresponding to the 2D band, which is caused by the vibration of the two-phonon lattice,
indicating the typical characteristic peak of graphite [35]. From the comparison of the two
methods, it is obvious that the degree of order that method two can achieve is higher than
that of method one. At the same time, it is proved that method two is more favorable for
catalyzing the graphitization of waste pomelo peel. The degree of order trend of Raman
is consistent with the XRD analysis results, so it shows that the graphitization effect of
method two is better than that of method one.

Table 1. Structural parameters were analyzed from the curve of the XRD and Raman spectrum.

Sample d002 (nm) G (%) IG/ID ID/(ID + IG + ID’)

750-1 0.3423 19.77 1.10 0.701
800-1 0.341 34.88 1.17 0.655
900-1 0.3398 48.84 1.19 0.641
750-2 0.3376 74.42 1.33 0.618
800-2 0.3375 75.58 1.37 0.591
900-2 0.3371 80.23 1.43 0.509

FTIR spectral analysis reflects the functional groups of the sample (Figure 3a). The FTIR
spectrum shows that the characteristic vibrational peak of O-H is at about 3457 cm−1 [36,37].
At about 1635 cm−1, the characteristic vibrational peak of C=C appeared; the characteristic
vibrational peak of C-H appeared at about 1395 cm−1; the characteristic vibrational peak of
C-N appeared at about 1123 cm−1 [38]. Under different treatment methods and different
temperatures, the functional groups of the samples did not change, indicating that other
treatment methods did not affect the functional groups of the samples.

The specific surface area and pore structure of pomelo peel samples were tested by
N2 adsorption–desorption experiments. As shown in Figure 3b, the isotherms of the
samples belong to the typical integral of the IV isotherms. The sample exhibits an H4-type



Crystals 2022, 12, 403 6 of 11

hysteresis loop at a moderate relative pressure (0.4 < P/P0 < 0.9), indicating the existence
of micropores and mesopores in the samples [27]. The volume and area of the micropores
are shown in Table S2. The samples showed an upward trend at high relative pressures
(P/P0 > 0.9), indicating macropores due to the accumulation of carbon particles. The pore
size distribution is shown in Figure 3c, and the existence of micropores, mesopores, and
macropores in the sample is consistent with the results in Figure 3b. The samples 750-1,
800-1, 900-1, 750-2, 800-2, and 900-2 are rich in micropores (pore size < 2 nm), and also have
more distribution in the mesoporous part (2 nm < pore size < 50 nm), but 750-1, 800-2, and
900-2 are less distributed in the macro-porous part [39].

Figure 3. (a) FTIR of the graphitized peel; (b) N2 adsorption–desorption isotherms for the graphitized
peel; (c) Pore size distribution image of the graphitized peel.

To further investigate the morphology of the samples under different conditions,
SEM characterization was performed. Under the different processing methods of method
one and method two, there are great changes in morphology. Under the treatment of
method one, the morphologies of 750-1, 800-1, and 900-1 showed a more and more obvious
etching effect of Ni with the increase in temperature and appeared in the state of small
particles (Figure S2). After the treatment of method two, 750-2, 800-2, and 900-2 appeared
spheroidized (Figure 4a–c). In order to further observe the morphology of pomelo peel
under the treatment of method two, high-magnification characterization was carried out
(Figure 4d–f). With the increase in temperature, the phenomenon of spheroidization became
more and more obvious, the diameter of nanospheres became smaller and smaller, and the
number of particles became more and more. As shown in Figure 4g–i, with the increase
in temperature, the diameter of the nanospheres gradually decreases, and the average
diameters of 750-2, 800-2, and 900-2 are 213.23 nm, 205.32 nm, and 176.8 nm, respectively.

The 900-2 sample showed nanospheres covering the surface of the sample. The
difference between the two processing methods brings about the display of two different
morphologies. The generation of the two different morphologies may be attributed to the
different carbon content. In the carbonized sample, the sample contains a larger proportion



Crystals 2022, 12, 403 7 of 11

of carbon, and the carbon in the sample has more opportunities to contact Ni, so the degree
of graphitization is higher [25,40].

Figure 4. (a,d) SEM images of 750-2; (b,e) SEM images of 800-2; (c,f) SEM images of 900-2; (g–i) Parti-
cle size distribution of 750-2, 800-2, 900-2.

XPS spectroscopic characterization was performed to analyze the surface chemical
composition of the samples. As shown in Figure S3, the XPS spectra of the samples with
binding energies between 0 and 900 eV showed that only three elements, C, N, and O,
were present [41]. The XPS spectrum of C1s was further analyzed, and the C1s spectrum
was deconvoluted into three peaks. The 284.2 eV can be attributed to the sp2-hybridized
carbon in the aromatic C=C bond; 284.8 eV and 287.3 eV can be attributed to the amorphous
sp3-bonded carbon (C-C) and C=O, respectively [26]. For quantitative analysis of carbon
atoms to study the degree of graphitization, it is generally necessary to calculate the ratio
of sp2 to sp3 in the sample [26,42]. As shown in Figure 5a–c, the sp2 to sp3 ratios of samples
750-1, 800-1, and 900-1 are 0.99, 1.06, and 1.09, respectively; Figure 5d,e shows that the sp2

to sp3 ratios of samples 750-2, 800-2, and 900-2 were 1.17, 1.39, and 1.51. It can be seen that
regardless of whether method one or method two is used, the degree of graphitization is
closely related to temperature. Between 750 ◦C and 900 ◦C, the degree of graphitization
increases with the increase in temperature, and the degree of graphitization of method two
is much higher than that of method one. The conclusions drawn from XPS on the degree of
graphitization are consistent with those from XRD and Raman spectroscopy.

In order to further study method two, the structure and graphitization of 750-2,
800-2, and 900-2 samples were further analyzed by TEM combined with selected area
electron diffraction (SAED) (Figure 6). The clear diffraction rings of SAED can be seen from
Figure 6a–c, which are (002), (100), (101), (004), (110), and (112) lattice fringes, respectively.
Diffraction spots and rings appearing in the SAED image prove that crystalline or graphitic
nanostructures formed in the sample. Furthermore, the SAED pictures prove that the
degree of graphitization is already high [5,9]. Figure 6d,e shows the HRTEM images of
750-2, 800-2, and 900-2. It can be seen from the figure that the lattice fringes become more
apparent as the temperature increases. The spacings between the (002) planes are 0.3376 nm,
0.3375 nm, and 0.3371 nm, respectively, and with the temperature rise, the spacing between
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the (002) planes becomes closer and closer to the commercial graphite (0.3362 nm) [26].
TEM and SAED demonstrate the high degree of graphitization of the 900-2 sample, which
is consistent with the results of XRD, Raman, and XPS analysis.

Figure 5. (a) XPS spectrum of C1s for 750-1; (b) XPS spectrum of C1s for 800-1; (c) C1s spectrum for
900-1; (d) C1s for 750-2; (e) XPS spectrum of C1s for 800-2; (f) XPS spectrum of C1s for 900-2.

Figure 6. (a–c) SAED pattern of 750-2, 800-2, 900-2; (d–f) HRTEM images of 750-2, 800-2, 900-2.

Combining the results of XRD, XPS, Raman, TEM, and SAED, it can be seen that
graphitic carbon is produced with the catalysis of Ni. In the first step, Ni2+ is oxidized to
NiO; in the second step, at a specific temperature, NiO reacts with amorphous carbon and
is reduced to Ni; in the third step, during the dissolution and precipitation of metallic Ni, it
reacts with the surrounding amorphous carbon to form graphitic carbon [19,26].
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4. Conclusions

In this paper, we improved the method to achieve low-temperature and highly graphi-
tized pomelo peel to turn waste into a valuable material:

(1) This paper explores the improved methods and traditional methods for graphitization.
With the improved method, the degree of graphitization can reach 80.23% at 900 ◦C,
which is slightly lower than that of commercial graphite (90.23%) and much higher
than that of the sample at 900 ◦C (48.84%) with the traditional method.

(2) With the improved method, pomelo peels can be transformed into highly graphitized
nanospheres at 900 ◦C. It can be seen from TEM that the plane interlayer spacing
of (002) is 0.337 nm, which is very close to the theoretical value of pure graphite
(0.3354 nm).

(3) Whether the traditional method or the improved method is used, the temperature
plays an important role in the catalysis of pomelo peel by Ni.

(4) This work can turn pomelo peels into valuable materials, reduce environmental pol-
lution, and, more importantly, reduce energy consumption and promote sustainable
development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12030403/s1, Figure S1: XRD pattern of carbonization at
500 ◦C; Figure S2 (a–c) SEM images of 750-1, 800-1, 900-1; Figure S3 XPS wide scan spectroscopy of
the samples; Table S1: Sample synthesis method and renaming; Table S2 Cumulative pore volume
and area of micropores for the sample.
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