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Abstract: Among the different methods for orienting liquid crystal (LC) molecules, adding nanopar-
ticles into the matrix of the substrate material towards modifying its surface, is actively pursued. In
this context, the influence of the nanoparticle content on the texture of the surface of polymer film
used as the substrate for the LC orientation is of particular interest. Thus, in the current paper, WS2

nanotubes were used to dope the polyimide (PI) substrate-film in order to modify and control its
surface morphology/roughness and properties. The modified organic surface structure is applied in
order to achieve a new means for controlling the orientation of the LC molecules. This tool adds to the
classical methods for controlling the orientation of the LC molecules, such as the display technique.

Keywords: nematic liquid crystals; orientation relief; sensitization; contact angle; novel way for
liquid crystal display technology

1. Introduction

It is well-known that the doping of organic material by nanoparticles (NPs), i.e., sensiti-
zation, can dramatically influence its fundamental properties [1–10], including the perspec-
tive structures based on nematic liquid crystals (NLC), used generally in display technology,
optical limiting schemes, solar energy harvesting devices, biomedicine, etc. [11–15]. In par-
ticular, it is important to understand the effect induced by the NPs on the NLC properties
and on the structure of their interfaces.

Many types of NPs were considered for this objective. Fullerenes, carbon nanotubes,
quantum dots, shungites, reduced graphene oxides, lanthanides NPs, Janus NPs, WS2,
SiO2, TiO2 NPs, etc., have been used as dopants in NLC matrices. Introducing nanoparti-
cles into the LC mesophases were shown to stimulate supramolecular organization and
photoinduced electron transfer in the LC media [16]. It also led to the modification of the
refractive parameters of the liquid crystal cells used for holographic recording [17–21],
prompting the stability of the liquid crystal phases [22] and increasing the polarizability and
conductivity of the LC structures [23–25], etc. Moreover, the relief at the interface between
the LC mesophase and the solid substrate can have a dramatic effect on the basic features of
the LC structure, especially its orientation [26–30]. This relief can be induced, for example,
by a photo alignment process, which leads to the formation of some polymer networks
or by changing the content of the nanoparticles in the organic substrate film. It should be
noted that different authors reported that the relief structure can affect the orientation of
the LC molecules at the interface from planar to tilted and to homeotropic ones.
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In the current paper, we continue the study of the substrate relief structure in order to
find new ways to orient the LC structures. As an indicator for the change in the orientation
of the LC molecules induced by the NPs, the variation of the contact angle is considered
for the system consisting of polyimide (PI) materials doped with WS2 nanotubes (WS2
NTs). Previously WS2 NTs with the different content were used to dope the LC mixture
in order to increase their polarizability and refractive index via the mechanism proposed
in [23]. Moreover, by adding the nanotubes, the switching time (switch-on and switch-off
parameters) was improved, thus, the speed of the LC cells with the dopant based on WS2
NTs was increased. Therefore, the correlation between the spectral, structural and switching
characteristics of the LC cells doped with WS2 NTs were established. These data were
firstly published in the papers [31,32].

2. Materials and Methods

Photosensitive layers of polyimides with the previously studied chemical formula [33,34]
were used. This layer was sensitized with WS2 nanotubes (NTs), which were chosen for
this purpose due to their high aspect ratio, mechanical strength and semiconductive nature.
Such sensitization provided significant influence on the contact angle. The synthesis and
properties of WS2 nanotubes have been scrupulously studied in the past [35–37].

Figure 1 presents a schematic rendering of the process for the step-by-step preparation
of the polymer films and control of the LC molecule orientation by the relief structure. Here,
1.5% polyimide solution in tetrachloroetane was prepared, to which 0,1 wt.% WS2 NTs were
added. The WS2 NTs-doped polyimide film was deposited on a glass substrate made of
K8 crown material and dried for 12 h at room temperature. A schematic illustration of the
orientation of the LC molecules is shown as the green oblate-shaped fragments overlaid on
the atomic force microscopy (AFM) image of the relief (right-down). A scanning electron
microscope (SEM) image of WS2 nanotube powder is shown in the top right of this figure.
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The OCA 15EC set-up purchased from LabTech Co. (St. Petersburg-Moscow, Russia) 
was used to measure the wetting angle (contact angle) at the doped organic film surface. 

Figure 1. Schematic illustration of the process for preparing the relief structure of the PI film surface
with WS2 nanotubes as dopants, and the subsequent orientation of the LC molecules (green oblate
features overlaid on the surface relief on the right-hand side).

The OCA 15EC set-up purchased from LabTech Co. (St. Petersburg-Moscow, Russia)
was used to measure the wetting angle (contact angle) at the doped organic film surface.
Additionally, the modified surface was analyzed using a Solver Next (AFM) atomic force mi-
croscope (purchased from NT MDT Co., Zelenograd, Moscow Region, Russian Federation).
The AFM instrument was operated in semi-contact mode in air-atmosphere.

In order to check the orientation of the LC molecules on the proposed relief, an LC
mixture of 4-pentyl-4-biphenylcarbonitrile, 98% (Aldrich Co., Karlsuhe, Germany), was
used. Additionally, in analogy with the investigation of WS2 nanotubes, doping of the
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polyimide substrate was done with single wall carbon nanotubes (SWCNTs), type #704121
(Aldrich Co.). Their effect on the orientation of the LC molecules was studied as well.

3. Results and Discussion

Table 1 summarizes the results of the wetting angle measurements for the current
samples and for the benefit of comparison with films studied before.

Table 1. Variation of the wetting angle α with the nanoparticles added for the currently studied
surfaces in comparison with different organic thin films used previously for this aim.

Material Drop Organic Film
Material

Sensitizer
Type

Sensitizer
Content

%

Film
Thickness

(µm)

α before
Sensitization, ◦

α after
Sensitization, ◦ Ref.

Water PI C70 0.5 3 72 89 [38]
Water PI C70 1.0 3 72–73 103 [39]
Water PI WS2 0.1 3 94 104 current
LC * PI WS2 0.1 3 16 29 current

Water PI CNTs 0.1 ~3–4 75–79 101 current
LC PI CNTs 0.1 ~3–4 30 34 current

Water PMPS ** C60 0.83 4 75 81 [40]
Water PVA C60 0.1 50 40 83 [40]
Water PVA CNTs 1 50 39–40 82 [40]
Water NPP C60 1 3 97 102 [40]
Water PNP C70 1 3 90–91 94 [40]
Water PBMA *** C60 0.34 2.5 54 61 [40]

* 4′-Pentyl-4-biphenyl-carbonitrile (Sigma-Aldrich, Karlsuhe, Germany). ** PMPS—poly(methyl phenyl silane).
*** PBMA—poly(butyl methacrylate).

Analyzing the data shown in Table 1, one can testify that the wetting angle is increased
significantly after the sensitization of the polymer film with the WS2 NTs. The same
tendency can be established for the CNTs used for the polyimide sensitization. As shown
in Table 1, this effect is not limited to the nanotubes and occurs also for other nanoparticles
incorporated into the polyimide matrix. Let us briefly discuss, for example, the fullerene
C70, which influences the relief. The fullerene C70 has the form of a rugby ball structure
and it forms a fairly uniform distribution of molecules in the organic matrices. In addition,
it should be taken into account that C70 has, basically, greater electron affinity energy than
an intramolecular acceptor fragment. This allows it to form intermolecular complex with
charge transfer to the polymer in the matrix quite efficiently. The remnants of C70 molecules
can reside on the polymer surface and manifest their ridge on the surface.

Thus, concerning the surface modified with the WS2 NTs, this modification can be
reasoned by the fact that part of the WS2 nanotubes serve as intermolecular acceptors,
interacting with the donor moiety of the conjugated organic materials based on polyimide,
poly(methyl phenyl silane), poly(butyl methacrylate) groups. This donor–acceptor inter-
action provokes a novel reorganization of the polymer lattice and formation of extra free
volume in the nanocomposites. Furthermore, a fraction of the NPs, reside close enough to
the polymer surface and can affect surface relief, which is manifested through the variation
of the contact angle of the liquid droplets. The contact angle with neat and doped polyimide
surface relief is shown in Figure 2. Here, Figure 2a,c show the contact angle for a neat
polyimide surface, while Figure 2b,d show the contact angle in the case of the polyimide
surface doped with the WS2 nanotubes. The variation in the contact angle due to the doping
was estimated using water drops (Figure 2a,b) and LC drops (Figure 2c,d).
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Figure 2. Wetting angle at the surfaces of: (a) pure PI (water drop); (b) PI with WS2 NTs (water drop);
(c) pure PI (LC drop); (d) PI with WS2 nanotubes (LC drop).

One can see that after polyimide sensitization by the WS2 nanotubes, when water
drops were used, the contact angle increased from ~94 degrees up to ~104 degrees, and
from ~16 degrees up to ~29 degrees, when LC drops were applied on the PI surface. It can
be anticipated, therefore, that the orientation of the LC molecules at the polyimide surface
can be modulated by varying the content of the NPs, and WS2 NTs in particular, in the
organic matrix film. Thus, different orientations of the LC molecules can be potentially
obtained, namely, from the planar position, to the tilted and homeotropic ones. It should be
noted here, that this presented method to orient the LC molecules allows modulation of the
LC molecule orientation in addition to the classical methods of aligning the LC molecules
at the interface in order to create the LC cell in the S-, B- or T-mode. Figure 3 illustrates the
use of the classical approach to modulate the orientation angle of the LC molecules, which
can be effectively supported by the contact angle measurements.
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Figure 3. Illustration of the modulated orientation of the LC molecules in the planar (a), homeotropic
(b) and tilted (c) position.

To support the idea, that the contact angle as well as the orientation of the LC molecules
can be modified by doping of the polyimide, AFM analysis of the pure polyimide surface,
and one, which was doped with the WS2 NTs, has been made. The data are presented in
Figure 4. One can verify that the period of the observed grating Λ−1 at the surface is two
times larger for the PI structured with WS2 NTs compared to the neat PI surface.
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Figure 4. The relief obtained on the pure polyimide surfaces (a); the relief obtained at the WS2

NPs-doped polyimide surface (b). The dimensions are equal for both images.

The relief parameters of pure PI and PI doped with WS2 nanotubes (90 × 90 µm2)
is shown in Table 2. It should be emphasized, that different methods to test the material
surface roughness can show somewhat different results, but the relative change due to
the WS2 NTs doping of the polyimide surface is likely to be of similar magnitude. It is
interesting to observe that the WS2 NTs can increase the surface grating pitch (please see
data from Table 2). This effect may be attributed to the fact that the WS2 nanotubes are
stretched along the polymer lamellas, changing their intermolecular spacing, increasing
thereby the pitch.

Table 2. Summary of the relief data for pure and WS2 NTs-doped PI matrix.

Surface Type

Root-Mean
Square

Roughness (Sq),
nm

Average
Roughness

(Sa), nm

Maximum Area
Peak Height,

nm (Sp)

Maximum Area
VALLEY Depth,

nm (Sv)

Pure PI 11.284 8.796 32.149 47.889
PI + WS2 8.480 6.648 24.880 41.674

One could notice from Figure 4, that the average periodicity of the pure polyimide
surfaces (Figure 3a) and the relief obtained at the WS2 NTs-doped polyimide surface
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(Figure 3b) are different. While the pitch distance is larger, the relief structure itself is finer,
i.e., the roughness and the area of the pitch are smaller for the WS2 NTs film. This effect can
be attributed to the fact that the WS2 nanotubes can be placed in the film, not only in same
direction of the polyimide lamellas, but also in an orthogonal direction refining thereby the
relief structure. Possible consideration of this phenomenon is illustrated in Figure 5. The
WS2 NTs are placed inside the polyimide matrix in different directions. Indeed, the effect
of the WS2 NTs arrangement in the organic film, as well as their concentration, should be
studied in greater detail in connection with the relief structure of the PI film in the future.
Other novel 3D local volume features can be possibly established on the polymer film
via the doping process, which will be studied by SEM analysis, as well as a host of other
techniques in future studies.
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the surface texture and the LC drop orientation.

Thus, it can be noticed that the doping of the polymer with nanotubes modifies the
structure of the organic films. Therefore, the sensitization process of the polyimide film
can be used to control the orientation process of the LC molecules. It can extend the range
of methods to align the LC structures, e.g., for optoelectronic device applications. Indeed,
varying the content of the nanoparticles in the organic matrix of the planar, homeotropic or
tilted orientation of the LC molecules can be obtained and modulated according to the NPs
content, which suggests a novel orientation method for display technology. It should be
also mentioned that this process can be used for optical limiting. In this kind of application,
the reflection and the diffraction effects should be considered as additional mechanisms to
attenuate the irradiated light.

4. Conclusions

In summary, organic polyimide films doped with WS2 nanotubes were proposed in
order to align the LC molecules in different directions.

AFM images and contact angle analysis were carried out to visualize the effect of the
WS2 NTs on the structure of the surface relief. Comparison with other polymer matrix
materials doped with fullerenes C60, C70 and CNTs, is presented. The collected data
extended the range of applications of the doped polyimide systems. Technologies such
as display devices, optical limiting and biomedicine can potentially benefit from this
approach in addition to the classically used TN (twist nematic), IPS (in plane switching)
and MWVA (multi walls vertical alignment) technologies used in optoelectronics and
medical technologies.

It is possible, though too early to clearly state, that the method of varying the angle of
inclination (orientation) of LC molecules by varying the concentration of the nano-objects
inside the orienting matrix base, accomplished here via doping of polyimide films with
tungsten disulfide nanotubes, will simplify all currently available methods of orienting LC
molecules for display and modulator technology. This approach is expected to reduce the
number of technological operations required for the fabrication of LC-based optoelectronic
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devices since the photosensitive matrix base will be able to act not only as a recording
layer in the modulation device but also as an orienting electro-optical layer for reading
the information.

For future studies, the nature of the substrate should be taken into account as well. In
the current experiments, neutral glass substrates have been used in order to eliminate the
effect of the symmetry of the materials. In practice, however, crystalline materials such as
KBr, ZnSe, Si, Ge, etc., are used as substrates in the electrically- and optically-addressed
liquid crystal spatial light modulator area, for example.
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