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1. Introduction

The discrete element method (DEM) [1] has been widely used by researchers and
engineers to research the mechanical characteristics of brittle materials, such as granular
material and rock [2–6]. Considering the material failure properties and various kinds of dis-
continuities, DEM can simulate and analyze the fracture mode and large deformations [7–9].
When constructing the DEM model, the contact models are adopted to describe the me-
chanical behaviors in real materials. Generally, the contact model contains a number of
microparameters, which reflect the behavior of the material at the micro-level. It is essential
to identify these input parameters to perform DEM computations. In other words, the
success of DEM calculation depends on the accuracy of these microparameters.

One crucial challenge of DEM is how to accurately determine the microparameters.
Some parameters can be identified directly from experimental tests, while it is difficult
to determine others as the measured results from the experiment are macro-responses.
Traditionally, a “trial and error” method is utilized to identify these parameters through
an iterative way of varying the value of parameters until the DEM computational results
match the experimental results [10,11]. Although this method is simple, it has several
obvious disadvantages. It may be time-consuming to run a number of DEM calculations
to obtain the desired results. Furthermore, it may be full of randomness and experience
is needed for parameter identification with this approach. Additionally, as the number of
parameters increases, the accuracy of the identified results and the efficiency may be much
lower. In order to handle these obstacles, it is necessary to seek an appropriate method to
determine the DEM parameters.

With the great progress in research on inverse problem and intelligent algorithm, the
method based on inverse technique gets more and more suitable to identify the model pa-
rameters [12–14]. In this method, the research in parameter identification is transformed to
an optimization research and then the parameters are identified by using an optimization al-
gorithm to minimize the objective function, which usually describes the deviation between
the computational results and experimental data. Many researchers have presented the in-
verse approach to determine the DEM microparameters [15–18]. Yoon [19] used the design
of experiment (DOE) method and optimization algorithm to determine some microparam-
eters of the DEM model for rock with uniaxial compressive tests. Tawadrous et al. [20]
utilized an artificial neural networks (ANN) method to determine DEM microparameters
for a uniaxial compressive model for rock material. Kazerani [21] combined the central
composite design (CCD) method with statistical analysis to estimate the DEM input param-
eters of Augig granite under a compressive test and tensile test, respectively. Do et al. [22]
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adopted a genetic and DIRECT optimization algorithm to obtain the microparameters
of the DEM model for quartz sand. Simone et al. [23] adopted the CCD method and
genetic algorithm to identify the DEM microparameters under uniaxial compression. These
identified results indicated that the DEM input parameters were determined quickly and ef-
fectively by these methods. In these studies, the microparameters were usually determined
with one kind of experimental condition, in which single-objective optimization was used.
However, when only considering a single experiment during parameter identification, it
may cause these parameters to be valid for one case (e.g., compression test) but fail for
another (e.g., tensile test); especially for rock-like materials, the mechanical characteristics
are very complex under different loadings. Hence, it is of great significance to identify the
input parameters of DEM for rock by considering different experimental conditions.

In recent years, many multi-objective optimization algorithms have been presented to
deal with multi-objective optimization problems with good performances [24–26]. It can
obtain the optimal solutions under different conditions and has been applied to parameter
identification. Milani et al. [27] proposed a weighted multi-objective identification tech-
nique to determine the key parameters of the Johnson–Cook constitutive model for metal
materials with split Hopkinson pressure bar tests and a quasi-static test. Papon et al. [28]
utilized the multi-objective genetic algorithm to identify the parameters of the Mohr–
Coulomb model and elaso-plastic model for soil. Consequently, in order to overcome the
abovementioned problem, a multi-objective identification method is developed to identify
the DEM microparameters. In this method, the identification problem for the DEM input
parameters is converted into a multi-objective optimization research and the micro-multi-
objective genetic algorithm (µMOGA) is utilized to solve this problem. Firstly, a set of
experiments are carried out to provide input and output data, and then the corresponding
DEM models are constructed. Secondly, sensitivity analysis is done to investigate the
influence of the input parameters on the computational responses and then the inversed
parameters are obtained. Moreover, the approximation model technique is employed for
replacing the actual DEM computations to improve computational efficiency. Finally, the
inversed microparameters are identified by µMOGA and the validations are performed.

The structure of this paper is as follows: Section 2 presents an overview of the multi-
objective identification technique. Section 3 provides detailed solution steps. Section 4
gives the results and discussion of the solution, and Section 5 provides the conclusion.

2. Multi-Objective Identification Technique

This study aims to identify the DEM microparameters with different material exper-
iments by a multi-objective identification technique. The flowchart of this identification
technique is showed in Figure 1. First of all, it is essential to investigate the physical and
mechanical characteristics of the material, then different experiments are carried out to
obtain the corresponding responses, which are the input values and validation data for
parameter identification. Secondly, on the basis of these experiments, the corresponding
DEM numerical model is built and an appropriate contact model is selected to describe
the material properties, which is considered as the establishment of the forward problem.
In order to reduce ill-posed elements and ensure high sensitivity between responses and
the inversed parameters, the microparameters sensitivity analysis of the contact model is
performed and then the inversed variables are obtained. Furthermore, the approximation
model technique is adopted to replace the DEM calculations for improving the computa-
tional efficiency. Based on the computational results and experimental measurement, a
multi-objective function is built and a multi-objective optimization problem is constructed.
Moreover, µMOGA is employed as an inverse operator to solve this optimization problem.
In this study, the multi-objective optimization problem aims to minimize the relative devia-
tion between the DEM computational results and the experimental data under different
experimental conditions, which can be expressed as follows:

Min
{

f1(x), · · · , fm(x)
}

(1)
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fi(x) =
n

∑
j=1

∣∣∣yc
j − yex

j

∣∣∣
yex

j
i = 1, · · · , m (2)

where fi stands for a single-objective function, which describes the relative deviation
between the DEM computational results and experimental data under one experimental test.
x is the vector of the inversed input parameters and m is the total number of experimental
cases. yc

j is the DEM computational responses, yex
j is the experimental measured responses,

and n is the number of response variables.
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While solving this problem, the convergence criteria should be set and the results
could be obtained by meeting the convergence criteria. If they are not met, new samples
should be added to reconstruct the approximation model and repeat the previous steps.
Then, the inversed parameters could be initially determined by solving the inverse problem.
Finally, verification and validation should be performed to verify the effectiveness and
reliability. Given this, a set of DEM computations with the inversed results for different
conditions are carried out and the comparisons between the DEM computed results and
the experimental measurements are conducted. If the requirements are satisfied, the values
of the inversed parameters are outputted. Otherwise, the approximation model should
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be reconstructed by adding new samples and then repeating the previous steps until the
optimal results are obtained. Consequently, the DEM microparameters can be identified
by the presented technique, which mainly consists of material experimental tests, DEM
computation, a sensitivity analysis, and an approximation model and multi-objective
optimization algorithm—the details of each part will be presented in later sections.

3. DEM Microparameters Identification for Granite

In order to demonstrate the performance of the developed multi-objective identifica-
tion technique, the identification of DEM microparamters for granite material is performed.
In this study, three different experimental tests for granite (uniaxial compression, Brazil-
ian splitting, and the three-point bending test) are conducted for providing input and
verification and validation data. The uniaxial compression test and Brazilian splitting
test are utilized to determine and verify the DEM microparameters by comparing macro-
responses on the Poisson’s ratio, Young’s modulus, and the maximum uniaxial tensile
strength and maximum uniaxial compressive strength obtained from the DEM calculation
and experimental measurements. Then, the three-point bending test is used to validate
the inversed parameters through fracture toughness obtained from DEM computation
and experimentation.

3.1. Experimental Measurement

As shown in Figure 2, granite specimens with three different sizes were made for
the tests. The cylindrical specimens with ϕ50 mm × 100 mm and ϕ50 mm × 25 mm were
used for the Brazilian splitting and uniaxial compression tests, respectively. The cylindrical
specimens with a single-edge notch (the dimensions of the specimen are ϕ50 mm× 200 mm
and the dimensions of the notch are 18 mm in length and 2 mm in width) were used for
the three-point bending tests. In the tests, A, B, and C denote the uniaxial compression,
Brazilian splitting, and three-point bending test, respectively. The Instron 1346 hydraulic
servo-controlled machine was used to conduct the uniaxial compression tests, as shown in
Figure 3. Additionally, the Instron 1342 hydraulic servo-controlled machine was used to
conduct the Brazilian splitting and three-point bending tests, as shown in Figures 4 and 5.
In the three-point bending test, the crack opening displacement (COD) transducer is used
to measure the crack opening displacement occurring within the gauge on the surface.
Furthermore, the measuring accuracy of the transducers is 0.001 mm.
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The measured results from the three different kinds of experiments were given in
Figures 6 and 7. From these figures, it can be seen that the experimental measured data
have a good reproducibility and the results have a fine reliability. Then, through the
processing of the experimental data, several macro-responses of granite can be obtained
and the value of the variable is the average of the measured results. Hence, the basic
mechanical property parameters of granite were listed in Table 1, which include Poisson’s
ratio ν, uniaxial compression strength σc, density ρ, Young’s modulus E, fracture toughness
KIC, and uniaxial tensile strength σt.
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Table 1. The basic mechanical properties of Granite.

ρ
(kg/m3)

E
(GPa) ν

σc
(MPa)

σt
(MPa)

KIC.
(MPa·m1/2)

2622 41.5 0.23 138.8 9.5 1.057

3.2. DEM Model and Its Microparameters

In this study, as the uniaxial compression test and Brazilian splitting test were applied
to determine the DEM model parameters, the corresponding DEM numerical model was
built, as shown in Figure 8. For the purpose of improving the computational efficiency,
the 2-dimension discrete element model was built. The geometric dimensions and the
boundary and loading conditions of the DEM models were the same as those of the actual
experiments. Additionally, the number of particles is the key issue for the DEM model.
Generally, the more the number of particles there are, the higher the model accuracy is. In
this work, the number of particles for the DEM models under uniaxial compression and
Brazilian splitting were 12,952 and 6100, respectively. Furthermore, the minimum radius
for the particle and the maximum-to-minimum radius ratio for the DEM models were
0.25 mm and 1.66, respectively.
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The bond particle model (BPM) is one of the most commonly used contact models in
DEM, which represents the various mechanical properties of rock-like materials, including
elasticity and fracturing [29]. In BPM, there are two forms, including parallel bonds and
contact bonds. The parallel bond is not only able to transmit the tension and shear force
between the particles, but also to transmit the moment and torque between the particles. In
this study, the parallel bond of the BPM was adopted to describe the mechanical behaviors
of granite.

As described in reference [29], there were eight microparameters in the BPM model,
containing the normal-to-shear stiffness ratios of the ball Kn/Ks, the bond effective mod-
ulus Ec, the ball effective modulus Ec, the parallel bond radius multiplier λ, the shear
strength of the parallel bond τc, the particles friction coefficient µ, the tensile strength of the
parallel bond σc, and the normal-to-shear stiffness ratios of the parallel bond Kn/Ks. Some
researchers [29,30] have investigated these parameters and pointed out that the stiffness
ratio of the ball can be equal to the stiffness ratio of the parallel bond; the ball effective
modulus can be equal to the bond effective modulus; and the radius multiplier of the
parallel bond λ is set to 1 to produce a material with cement that completely fills the throat
between the cemented particles. Consequently, there were five unknown microparameters
(Ec, Kn/Ks, σc, τc, and µ), which were very difficult to be directly determined from their
values from the experiments.

3.3. Parameter Sensitivity Analysis

During parameter identification by the inverse method, the inversed parameters
should have a high sensitivity to the output responses for reducing any ill-posed elements.
Given this, a sensitivity analysis of the unknown parameters combined with numerical
calculations was carried out to estimate the relationship between the inversed parameters
and responses.

In this work, a series of DEM computations under uniaxial compression and Brazilian
splitting conditions were performed for the sensitivity analysis. Firstly, the initial values
for the unknown parameters should be set (Ec is 25 GPa, Kn/Ks is 2, σc is 40 MPa, τc is
100 MPa, and µ is 0.5). Then, four values for each parameter were given, as listed in Table 2.
For the sensitivity analysis of one parameter, the values of this parameter were varied and
the other four parameters’ values were still set to the initial values. Given this, the DEM
calculation could be performed five times for one parameter’s sensitivity analysis under
one experimental condition.
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Table 2. Four values of each parameter for sensitivity analysis.

No. Ec (GPa) kn/ks σc (MPa) τc (MPa) µ

1 15 1 20 80 0.3
2 20 1.5 30 90 0.4
3 30 2.5 50 110 0.6
4 35 3 60 120 0.7

The results of the parameters’ sensitivity analysis under the uniaxial compressive
case and Brazilian splitting case were shown in Figures 9 and 10. It can be seen that
the variation trend of macro-computational responses was similar to the change of each
parameter’s value both under the uniaxial compressive and Brazilian splitting case. It is
also found that the responses varied greatly with parameters Kn/Ks, Ec, and σc varying
dependently, which meant that Kn/Ks, Ec, and σc were highly sensitive to the responses.
However, the changes in the values of parameters τc and µ had little effect on the responses,
which indicated that τc and µ were lowly sensitive to the responses. Based on these
results from the sensitivity analysis, the three unknown parameters Kn/Ks, Ec, and σc are
defined as inversed parameters. Furthermore, based on the experimental measurements,
the range of these parameters could be obtained. The ranges of Kn/Ks, Ec, and σc were[

1.5 3.0
]
,
[

20 GPa 30 GPa
]
, and

[
20 MPa 40 MPa

]
, respectively. Furthermore,

when combined with the above analysis and previous research results [19,30,31], τc and µ

were set to be 90 MPa and 0.5, respectively.
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Figure 9. Sensitivity analysis for unknown microparameters in uniaxial compression test. (a) Parame-
ter Ec; (b) Parameter Kn/Ks; (c) Parameter σc; (d) Parameter τc; and (e) Parameter µ.
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3.4. Approximation Model Technique

Generally, it should repeatedly use the computations for the forward problem during
parameter identification, which may perform thousands of numerical calculations and
then result in high costs. For the purpose of improving computational efficiency, the
approximation model method was employed to substitute the real numerical calculations.
Among the many approximation models, the support vector regression (SVR) model was
adopted due to the strong capability for processing nonlinear problems, its high accuracy
with a small number of samples, and its fine stability [32]. The Latin hypercube design
(LHD) method [33], which is a widely used design of experiment (DOE) method and
a space-filling design method based on a constrainedly stratified sampling, is used to
generate the samples to construct the SVM model.
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To construct a reliable approximation model, 30 samples for input parameter vector x
were generated in the inverse space by the LHD method and the corresponding computa-
tional responses yj(x), j = 1, . . . , 4 were obtained by performing DEM calculations under
uniaxial compression and Brazilian splitting conditions, as listed in Table 3.

Table 3. Samples by LHD method and corresponding computational responses.

Number
Input Parameter xi Computational Responses yi (x)

Ec (GPa) kn/ks σc (MPa) E (GPa) υ σc (MPa) σt (MPa)

1 20.03 2.92 36.30 35.14 0.300 119.37 14.4
2 26.00 2.87 28.24 45.94 0.296 99.08 11.47
3 29.18 2.77 21.64 52.07 0.298 79.61 8.93
4 27.86 1.85 24.85 53.83 0.224 100.2 11.24
5 21.51 2.39 22.32 39.5 0.267 84.93 9.56
6 23.74 1.51 25.34 47.6 0.186 103.55 12.22
7 25.23 2.19 29.19 47.07 0.252 110.9 12.66
8 29.41 1.94 31.26 56.37 0.231 122.75 13.91
9 21.18 1.77 29.93 41.14 0.214 116.3 13.62
10 28.99 1.83 38.62 56.04 0.221 145.69 17.27
11 27.61 2.13 30.40 51.91 0.247 117.2 13.34
12 24.09 1.67 39.03 47.38 0.205 146.03 18.07
13 21.84 2.41 32.42 39.93 0.268 115.52 13.55
14 24.95 2.23 39.49 46.26 0.257 141.31 16.89
15 25.55 2.62 23.58 46.2 0.282 86.47 9.8
16 20.80 2.68 34.82 37.16 0.288 119.87 14.24
17 26.94 2.51 26.04 48.77 0.277 97.78 10.9
18 22.09 1.56 33.35 44.08 0.193 130.77 15.84
19 24.59 1.64 35.87 48.65 0.201 137.11 16.87
20 26.03 1.97 21.24 49.63 0.232 86.87 9.47
21 22.58 2.27 24.20 41.71 0.258 92.09 10.38
22 23.08 2.57 23.27 41.79 0.279 85.65 9.7
23 27.27 2.06 32.98 51.43 0.243 125.93 14.45
24 22.90 2.84 37.65 40.45 0.297 128.38 15.17
25 28.64 2.73 26.76 51.15 0.289 97.3 11.02
26 29.81 2.99 37.01 52.15 0.303 125.06 14.73
27 28.11 2.30 34.40 51.81 0.260 127.06 14.61
28 23.48 2.02 20.22 44.53 0.237 81.45 8.96
29 26.52 1.73 31.51 51.86 0.211 123.04 14.55
30 20.45 2.47 27.65 37.08 0.272 100.86 11.53

Given the four computational responses obtained from DEM calculations, four SVR
approximation models ỹj(x), j = 1, . . . , 4 were constructed. For verifying the accuracy of
these approximation models, another 15 random samples in inverse spaces of inversed
parameters were used to estimate the responses based on these constructed approximation
models and then the results were compared with the corresponding results by DEM
calculations, as shown in Table 4 and Figure 10. It can be found that the estimated responses
by the SVR models were in good agreement with those from the DEM calculations; this
indicated that the constructed approximation models were available and reliable.

Table 4. 15 random samples for verifying the SVR models.

Number
Input Parameter xi

Ec (GPa) kn/ks σc (MPa)

1 25.67 1.62 34.20
2 26.37 1.97 21.07
3 20.90 2.75 27.67
4 26.86 2.53 23.18
5 24.16 2.91 24.70



Crystals 2022, 12, 387 11 of 15

Table 4. Cont.

Number
Input Parameter xi

Ec (GPa) kn/ks σc (MPa)

6 20.48 2.10 38.20
7 22.21 1.55 32.23
8 23.56 2.69 28.55
9 28.56 2.89 39.27
10 29.25 2.27 21.44
11 21.67 2.42 31.62
12 29.36 2.37 29.66
13 27.77 1.82 35.00
14 22.94 2.08 36.83
15 25.18 1.71 25.91

3.5. Micro Multi-Objective Genetic Algorithm (µMOGA)

Based on the approximation models, a multi-objective optimization problem formu-
lated in Equations (1) and (2) should be updated and specifically expressed as

Min
{

f1(x), f2(x)
}

(3)

f1(x)uniaxial =
3

∑
j=1

∣∣∣ỹj(x)− yex
j

∣∣∣
yex

j
, f2(x)brazilian =

∣∣ỹ4(x)− yex
4

∣∣
yex

4
(4)

s.t. 20 MPa ≤ Ec ≤ 30 MPa
1.5 ≤ kn/ks ≤ 3

20 MPa ≤ σc ≤ 40 MPa
(5)

where the inversed parameters vector x = [Ec, Kn/Ks, σc], the responses y = [E, ν, σc, σt],
the responses from the SVR model ỹj(x), and the responses from experiment yex

j j = 1, . . . , 4.
In this study, the micro-multi-objective genetic algorithm (µMOGA) [34] was utilized

to solve this optimization problem. This algorithm has been validated to be an efficient
multi-objective optimization method and has a small population size. In this algorithm,
a non-dominated sorting and a crowded-comparison technique were adopted to clas-
sify the non-dominated levels and assigned fitness of each individual. Furthermore, it
has a fine convergent performance and efficiency. In this work, the size of the popula-
tion and the maximal generation used as the stopping criterion are set to 5 and 160 for
µMOGA, respectively.

4. Results and Discussion
4.1. Results

Using the above multi-objective parameter identification technique, the Pareto optimal
points of the inversed parameters were obtained through the proposed method after
223 point evaluations, as shown in Figure 11. If the approximation model had not been
used in this method, the Pareto optimal points could be obtained by µMOGA after more
than 4000 point evaluations. This indicates that the proposed method for parameter
identification has good efficiency. Additionally, the four optimized parameter sets A, B,
C, and D, which are closest to the line with 45◦, are selected to be the initial identification
results, as listed in Table 5.

Then, the DEM calculations with these parameter sets were carried out to verify these
results. Simultaneously, the corresponding values of the objective function were obtained
by using Equation (4), as listed in Table 6. It can be found that the values of f1(x)uniaxial
and f2(x)brazilian listed in Table 6 are very close to those listed in Table 5, which further
indicates that the construction of the SVR models in Section 3.4 have a fine accuracy. It also
can be found that the computational responses of individual B have a good consistency
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with the experimental data and the total relative error is smaller compared with the others.
Furthermore, the material fractures of the DEM calculation from individual B under the
uniaxial compression and Brazilian splitting tests coincide with those from the experiments,
as shown in Figures 12 and 13. Consequently, the parameter values of individual B are
considered as the inversed results for the three microparameters.
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Table 5. Initial identification results.

Parameters A B C D

Ec (GPa) 23.3 20.9 21.7 22.2
kn/ks 2.43 2.09 2.23 2.19

σc (MPa) 32.5 33.4 34.5 32.5
f1(x)uniaxial 0.258 0.224 0.196 0.175
f2(x)brazilian 0.113 0.118 0.128 0.141

Table 6. Verification results for parameter identification.

Responses A B C D Experiment

E(GPa) 42.3 39.3 40.4 40.4 41.5
ν 0.248 0.244 0.249 0.249 0.23

σc (MPa) 117.2 125.5 125.2 115.4 138.8
σt (MPa) 10.47 10.51 10.66 10.78 9.5

f1(x)uniaxial 0.254 0.213 0.209 0.194
f2(x)brazilian 0.102 0.107 0.122 0.135
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4.2. Validation

The validation for the inversed result is performed by DEM calculation under the three-
point bending test. Firstly, according to the three-point bending test, the corresponding
DEM model is established, as shown in Figure 14. In this model, the basic model parameters
are the same as those in Section 3.2 and the parameter values of individual B are utilized.
The boundary condition and loading are consistent with the experiment.
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The result of the DEM calculation under the three-point bending test is given in Table 7.
The computational response is very close to the experimental response and the relative
error is 8.98%. Then, the fracture from the DEM calculation is shown in Figure 15, which
compared with the experimental measurement. It can be found that the DEM simulation
agrees well with the experiment. These results validate that the inversed results based on
the present multi-objective identification technique are effective and reliable.

Table 7. Comparison of discrete element simulation results with experimental results.

Response DEM Calculation Experiment Relative Error

KIC (MPa·m1/2) 1.152 1.057 8.98%
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5. Conclusions

In this work, a multi-objective identification approach is proposed to determine the
DEM microparameters for brittle materials. This approach is combined with different kinds
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of experiments, numerical calculations, and multi-objective optimization algorithms. In
this method, parameter identification is converted to solve a multi-objective optimization
problem, which aims to minimize the relative deviations between the responses from
the DEM calculation and those from the experiments. During the identification process,
the uniaxial compressive test and Brazilian splitting test are directly used to determine
the parameters and the three-point bending test is used to validate the identified results.
Furthermore, a sensitivity analysis is carried out to obtain the inversed variables and
ensure the inversed parameters are sensitive to the responses. The SVR approximation
technique combined with LHD is utilized to construct an approximation model to improve
the computational efficiency. µMOGA is employed as an inverse operator to solve the
multi-objective optimization problem. Finally, the DEM microparameters for granite are
successfully identified by the developed inverse method. The results indicate that the
presented multi-objective identification method provides a useful tool for identifying DEM
microparameters for brittle materials with fine accuracy and efficiency, and it can be applied
to parameter identification of other materials.
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