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Abstract: In our review, we have presented a summary of the research accomplishments of nanos-
tructured multimetal-based electrocatalysts synthesized by modified polyol methods, especially the
special case of Pt-based nanoparticles associated with increasing potential applications for batter-
ies, capacitors, and fuel cells. To address the problems raised in serious environmental pollution,
disease, health, and energy shortages, we discuss and present an improved polyol process used
to synthesize nanoparticles from Pt metal to Pt-based bimetal, and Pt-based multimetal catalysts
in the various forms of alloy and shell core nanostructures by practical experience, experimental
skills, and the evidences from the designed polyol processes. In their prospects, there are the mi-
cro/nanostructured variants of hybrid Pt/nanomaterials, typically such as Pt/ABO3-type perovskite,
Pt/AB2O4-type ferrite, Pt/CoFe2O4, Pt/oxide, or Pt/ceramic by modified polyol processes for the
development of electrocatalysis and energy technology. In the future, we suggest that both the polyol
and the sol-gel processes of diversity and originality, and with the use of various kinds of water,
alcohols, polyols, other solvents, reducing agents, long-term capping and stabilizing agents, and
structure- and property-controlling agents, are very effectively used in the controlled synthesis of
micro/nanoparticles and micro/nanomaterials. It is understood that at the levels of controlling and
modifying molecules, ions, atoms, and nano/microscales, the polyol or sol-gel processes, and their
technologies are effectively combined in bottom-up and top-down approaches, as are the simplest
synthetic methods of physics, chemistry, and biology from the most common aqueous solutions as
well as possible experimental conditions.

Keywords: Pt nanocatalysts; nanoferrites; nanoperovskites; electrocatalysis; alloy and core-shell
nanostructures; modified polyol processes; modified sol-gel processes

1. Introduction

At present, fuel cells (FCs), proton exchange membrane fuel cells (PEMFCs), and direct
methanol FCs (DMFCs) using excellent Pt electrocatalysts have played an increasing role
for engineering, science, technology, and industry [1,2]. An FC provides electricity via
the generation of ion carriers by electrocatalysis at the electrodes as well as a positive or
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negative ion transport mechanism and direction of motion through electrolyte membranes.
In many recent years, modified polyol methods have played an important role in the
controlled synthesis of various kinds of crystal nanoparticles used as the nanostructured
catalysts applied in energy and environment [3–9]. Firstly, we must clarify the very huge
need for the systematic study and synthesis of metal, oxide, and alloy nanomaterials by
the polyol process, and their enormous applications [10–15]. Secondly, we must make
discussion with a typical Pt nanomaterial. As far as we all know, Pt nanomaterials are
used in the catalytic layer components of low-temperature FCs associated with the clean
H2 fuel industry, which are the most successful and typical examples of generating clean
electric energy and power [16,17]. In addition, clean water (H2O) and heat are generated
in the output end [16,17]. Thirdly, other metal, bimetal, multimetal, oxide, glass, and
ceramic-based nanomaterial systems are the same: they have the different industrial ap-
plications in solid FCs, which are also very important in various related industries. An
FC is a power generation system used to produce electricity using hydrogen fuel with an
electrode membrane assembly, which is considered an ion conductor. The electrocatalyst
layer involved in the purely so-called standard Pt nanocatalyst, or the special nanocatalyst
layer was equivalent relatively to Pt nanocatalyst standard [10–15]. It is explained that their
catalytic and electrocatalytic characterizations originated from high surface-to-volume ratio
and quantum size [3]. The various types of Pt-based, Pd-based, Pd-free, Pt-free multimetal
nanocatalysts have been being studied as promising candidates to replace the standard
Pt catalyst because of its very high cost for low temperature FCs. Here, Pt-group metals
(PGM) consist of Ru, Rh, Pd, Os, Ir, and Pt, which means that Pt-M bimetal catalysts for
FCs can be synthesized by modified polyol methods. It is known that Pt electrocatalysts are
widely used for studying hydrogen evolution reaction (HER), oxygen reduction reaction
(ORR), and oxygen evolution reaction (OER) processes in cyclic voltammogram (CV) cycles.
In the key points, ORR/OER and HER/OER of Pt- and Pd-based alloy and core-shell
nanoparticles electrocatalysts are crucial in order to improve catalytic materials for low
temperature FCs. The most important advantages of Pt-based core-shell nanoparticles
are applied for reducing the high cost of FCs, DMFCs, and PEMFCs using Nafion® mem-
branes or the hydrophobic perfluorocarbon backbone of -(CF2)n-groups and the chains
(–SO3H) [1,2]. In various works, Ni-, Co-, and Fe-based oxide micro/nanosized particles
with grain and grain boundaries were prepared because they showed high structural dura-
bility and stability [18–23]. In particular significance, they can be used as the oxide supports
for noble metal and multimetal nanocatalysts. They are very promising candidates for
FCs, DMFCs, PEMFCs, and high-temperature solid oxide FCs (SOFCs) as well as batteries
and capacitors [1,2]. However, the inexpensive cost and long lifetime of PEMFCs and
DMFCs are very importantly required [10–17]. In researchers’ successful processes, they
have experimentally proved that the achievements of synthesis of metal, bimetal, and
oxide nanoparticles by the modified polyol processes with the use of polyols have been
achieved [24–59]. The main role of PVP is to cover all the crystal surfaces of the prepared
nanoparticles and protect the nanosystems but PVP is also not necessary to use for this pur-
pose [60,61]. Here, Pt-based catalysts were prepared to enhance availability, stability, and
durability of DMFCs and PEMFCs [14]. Clearly, Pt-based core-shell catalysts show the most
competitive advantages of reducing the high cost of next FCs with significant enhancement
of catalytic activity, sensitivity, and selectivity because of synergistic effects between the
thick core (metal) and the thin shell (Pt) [27,29,39]. On the basis of the experimental results
of catalytic selectivity, stability and stability, the high weight of Pt loading in the catalytic
layers by bimetal and multimetal catalysts will be significantly reduced. In the operation of
PEMFCs and DMFCs, the high catalytic active surface area [34], i.e., ECSA = QH/0.21 × LPt
of Pt catalyst corresponding to the high current density, i.e., J(V) must be fully achieved in
their FCs applications. In the processes, the researchers show that in-expensive Fe-based
oxide nanoparticles and microparticles with the new structures of grain and grain boundary
were produced in large amounts in the µm range for the electrodes of batteries in energy
conversion. As such, they can be used as good supports for noble metal nanoparticles for
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DMFC, PEMFC, and SOFC, respectively [18–21]. Low temperature FC converts chemical
energy directly by chemical reaction into electricity, which is different from multi-stage
conversion from chemical energy to thermal energy, and then from mechanical energy
to electrical energy generated by engines, which pollutes the environment seriously and
heavily today [11–17]. Essentially, thermal power plants produce electricity by burning
fuels such as gasoline, crude oil, diesel, coal, natural gas, and other fossil fuels to produce
thermal energy that is converted into mechanical energy by gas or steam turbines and
eventually convert to electrical energy. Consequently, the various kinds of by-products
from fuel combustion have caused serious environmental pollution from the exhaust gases
of heat engines, and diesel engines as well as possible pollution from nuclear energy. In this
review, we focus on how the low utilization of Pt- or Pd-based nanocatalyst on inexpensive
Fe-, Ni-, and Co-based bimetal and multimetal micro/nanoparticles, as well as oxides and
ceramics micro/nanosized particles, can be achieved in various FCs [10–14]. Therefore, the
well controlled composition, size, shape, structure, and morphology of Pt- and Pd-based
catalysts with the Pt or Pd or Pt- and Pd-based alloy atom-monolayers shells are necessary,
which leads to prepare a combination of Pt-based metal, Pt-based bimetal, and multimetal
alloys and oxide catalysts in multifunctional electrocatalysis. Briefly, the polyol process
and its successful evidences will provide a new, cheap, effective-cost mixture multimetal
electrocatalysts for all the various kinds of FCs, DMFCs, and PEMFCs using Pt-based
electrocatalysts in catalytic nanomaterials’ needs and challenges, respectively.

2. The Use of Pt Nanocatalyst in Low Temperature FCs

In summary, low temperature FCs using the preferred Pt- or Pt-free based electrocata-
lysts include the typical types as follows. FCs use polymer electrolyte membranes, which
are PEFCs or PEMFCs, phosphoric acid fuel cells (PAFCs), carbonate fuel cells (MCFCs),
SOFCs using yttria-stabilized zirconia (YSZ) or ABO3 (A: La; B: Mn, Fe, Co, and Ni) that
can be synthesized by the polyol or sol-gel processes [1,2]. A typical PEMFC has bipolar
plates, gas diffusion layers, polymer memberanes as Nafion®, and the two electrodes with
anode catalyst layers and cathode catalyst layers. On the other hand, in PEMFCs running
on H2/O2 fuel, chemical reaction of hydrogen and oxygen occurs and produces electricity
directly. This is a new, effective, and interesting way of producing electricity. Their principle
and operation are illustrated with promisingly potential applications on land, in air, and at
sea according to technological convergence (Figure 1).
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Figure 1. Operation of PEMFCs, and promisingly potential applications for electrical charger in
mobile phones, FC cars, FC boats, FC ships, FC airplanes, FC homes and offices, and FC plants in
integration with electricity from electric power sources, batteries, and capacitors.

In the operation of PEMFC and DMFC, the catalytic mechanisms of ORR and MOR
are the most important keys for their high performance. At the anode catalyst layer,
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2H2 → 4H+ + 4e− , and at the cathode catalyst layer, O2 + 4H+ + 4e− → 2H2O, electric-
ity is generated with clean water and heat via 2H2 + O2 → 2H2O. In its operation, the
common appearance of CO-poisoning or catalyst degradation at the catalytic Pt layer
reducing PEMFC performance can be reduced by a Pt-based bimetal and multimetal cata-
lyst [10–15]. The operation of PEMFC takes place at low temperature (70~90 ◦C), and the
fuel is hydrogen, with a power generation efficiency of about 30–40% [1]. These PEMFCs
can be very suitable for compact power supplies, power chargers used for mobile phones
(new generation smart phones), military applications, FC vehicles, and new and future
generation FC bicycles and motorcycles [16]. It is known that FC vehicles use 0.4 mg of
Pt per square centimetre (mg Pt cm−2), enough for a period of about 6–7 months in their
operation or more on the cathode [1]. Clean water and heat are generated as by-products
of the process of generating electricity in FC motorcycles, and FC vehicles in the protection
of environment and nature. There are various kinds of FCs, classifying into PEMFCs,
PAFCs, MCFCs, SOFCs, DMFCs, and AFCs according to their operation principle and ion
carriers. The catalytic layers consisting of Pt catalysts are used in both the electrodes listed
in Table 1 [1,2,18–21]. The low Pt loading leads to reduce the high cost of the FCs. Therefore,
non-noble metal catalysts using the Pt metal group or alternate electrocatalysts free from
PMG have been recently developed. In short, the key is the catalytic layers of Pt nanocata-
lyst for the high-performance operation of FCs using Pt according to working temperatures.
The global large-scale commercialization of FCs has high scientific and practical significance,
which meets the huge needs of clean energy for our lives. FCs can be potentially used to run
various kinds of stationary plants, unmanned aerial vehicles (UAV), large trucks, household
power sources, and charge power for portable laptops and mobile phones, which are the
typical kinds of PEMFCs [16,17]. Particularly, PEMFCs offer significant energy efficiency
and decarbonization benefits to a wide range of industries and technologies—including
automotive and heavy transport. This is reason why large companies are investing in
mature FC propulsion systems for the aviation market [16,17]. In the future, AFCs may
potentially be used for practical applications in submarines and spaceships. By replacing
hydrogen with methanol, i.e., CH3OH, a direct methanol-based liquid FC, i.e., a DMFC, was
formed. At present, the hydrogen and methanol production industries are fully developed.
In general, the components and operation of a low-temperature FC using hydrogen and
liquid fuels, such as alcohol, are based on three main components: the anode, the cathode,
and the membrane electrode assembly (MEA) [16]. Table 1 shows the most typical FCs
with the use of negative and positive ions for their potential applications in electronics and
telecommunications [1,2]. In this context, the Pt catalyst layer is used at both the anode and
cathode of a FC. These are the components that use fuel between the two electrodes and
the polymer electrolyte membrane or ion conductor. The Pt nanocatalyst layer is the most
important kind, and is the most expensive core catalyst layer used on the electrodes. Thus,
both researchers and manufacturers want to reduce the cost of the most expensive fuel cell
system, i.e., the high cost of Pt catalyst nanomaterial. Therefore, the research and synthesis
of Pt-based catalytic nanomaterial systems with low cost and applications for the catalytic
layer in electrodes are important for the development of the next FCs. From applications as
a source of electricity for smart residential areas, green-energy FCs, and FC trucks to the
most compact FC charging applications, FC’s operating principle is proven to be relatively
simple. It is really simple, but it has great feasibility and commercialization, and has a
strong impact and influence on people’s lives. The exhaust gas of the FC vehicle is water
(H2O) that is completely harmless to the environment, animals, and people. The basic
research on this material system has been fully invested and developed [11–17]. Clearly,
batteries, FCs, capacitors, supercapacitors, and their common uses and combination in
conventional electricity can evolute energy science and technology in our life. On the
other hand, the present technologies to produce oxygen, hydrogen, alcohol, ethanol, and
methanol fuels are fully developed. Thus, the current catalytic layers of FCs are described in
a combination of electrocatalytic Pt nanomaterials with commercial carbon nanomaterials,
acting as an ion conductor, which has a large catalytic area to enhance electrocatalytic
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efficiency for the Pt-free catalytic material catalysts on their surfaces. The uniform distribu-
tion of the Pt nanoparticles on the designed catalytic layer is very essential to obtain the
highest catalytic properties. In our current review, Pt-based nanomaterials prepared by
improved polyol processes are attractive to prepare electrocatalytic nanomaterials used in
FCs using methanol, alcohol, and different liquid fuels. Although the polyol method has
been applied recently, Pt and Pt-based electrocatalytic bimetallic nanomaterials, typically
such as PtPd, PtCu, PtNi, PtCo, FePt, and binary and ternary Pt-based nanocatalysts fabri-
cated by conventional nanochemistry or the improved polyol methods [11–14], which have
produced the electrocatalytic layers that are important for practical application for use in
low-temperature FCs, i.e., DMFCs and PEMFCs using methanol or other industrial liquid
fuels. The use of a second metal with the precious metal Pt to reduce the cost of FCs in the
catalytic layer is a very hard problem predicted by scientists. Instead of using a standard Pt
catalyst, it is clear that a Pt3Ni alloy can be used, wherein the cost will be possibly reduced
by about 1/3 to the alloy catalyst layer in the FC system [23]. In the preferred case of using
an electrocatalyst as bimetallic shell-core Ni3Pt nanoparticles, the cost can be significantly
reduced around 2/3, which shows the outstanding advantages of core-shell structure with a
very thin Pt shell of few atomic monolayers of about 1–3 nm, which is a challenge to science
and a new catalyst. The CO-poisoning reducing mechanism on the electrodes containing
the nanostructured catalysts has also been introduced by using other metal atoms (second
metal atoms) in the preferred Pt-M (M: Ru or Pd) electrocatalysts [13,14], increasing the
efficiency and stability of PEMFCs and DMFCs, and reducing the very high cost of the
whole system of FCs. Due to crises and disasters from atomic energy sources in nuclear
power plants, deadly heavy pollution generated from fuel combustion processes in heat
engines, internal combustion engines from petroleum-based energy sources, coal fossils, the
generation of greenhouse gases such as CO2, CH4, N2O, O3, chlorofluorocarbons (CFCs), or
refrigerants, we have to develop new energy sources that do not pollute the environment
in developed countries, and especially in developing countries [16,17]. To meet the large
demand for clean and safe energy, it is very necessary to develop single metal, bimetallic,
and multimetal alloy nanomaterial systems based on the various types of single-metal Pt
nanoparticles, and combine these with carbon nanomaterials for FC applications. On this
topic, the particle size of Pt nanoparticles should be controlled in the range of 10 nm in size
for a high quantum effect. Scientists have proposed various methods of chemical synthesis
for Pt catalyst materials. The resolution allows using low Pt material as a cost-effective
way of creating the electronic catalyst layer in the electrodes of FCs, PEMFCs, and DMFCs,
reducing the total cost of the system by about 30–40%, and shows high economic signifi-
cance [1,2,16,17]. It is found that the practical application of fuel cell use is the practice of
providing clean energy as well as taking advantage of clean energy sources from solar cells,
biomass energy, ocean energy such as tidal energy, solar energy, ocean wave energy, and
wind energy, are very meaningful in terms of clean and green living environment when
fossil energy sources are gradually depleted as well as polluting environment. For PEMFCs,
their electrodes normally consist of anode and cathode containing an electrocatalytic layer
with the required Pt-based nanocatalyst, the principle of operation is mainly based on the
electrochemical reactions on the electrode surfaces.
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Table 1. FCs, working temperature, and their catalytic mechanisms at two electrodes, both anode and
cathode. In addition to the use of Pt catalyst, FCs of high costs must be decreased in the optimization
of whole systems and components. Pt-based catalysts or alternative catalysts can be used in both the
anode and the cathode of PEMFC, DMFC, and PAFC.

FCs Input/Output Anode Electrolyte Ion Cathode

PEMFC
WT: 60–120 ◦C
H+ transport

In: H2, O2 (Air)
Out: H2O, heat,

extra gases

H2 → 2H+ + 2e−

Pt catalyst

Membrane
H+ →Membrane→

Cathode
H+

1/2O2 + 2H+ + 2e−

→ H2O; Pt catalyst;
Air as oxidant

DMFC
WT: 60–120 ◦C
H+ transport

In: CH3OH, O2 (Air)
Out: CO2, H2O, heat,

extra gases

CH3OH + H2O→
CO2 + 6H+ + 6e−

Pt catalyst

Membrane
H+ →Membrane→

Cathode
H+

3/2O2 + 6H+ + 6e−

→ 3H2O; Pt catalyst;
Air as oxidant

AFC
WT < 100 ◦C

OH− transport

In: H2, O2 (Air)
Out: H2O

H2 + 2OH− → 2H2O
+ 2e−

Electrode material

KOH
Anode← KOH←

OH−
OH−

1/2O2 + 2H2O + 2e−

→ 2OH−

Electrode material

PAFC
WT: 160–220 ◦C

H+ transport

In: H2, O2 (Air)
Out: H2O, heat,

extra gases

H2 → 2H+ + 2e−

Pt catalyst

H3PO4
H+ → H3PO4 →

Cathode
H+

1/2O2 + 2H+ + 2e−

→ H2O; Pt catalyst;
Air as oxidant

MCFC
WT: 600–800 ◦C
CO3

2− transport

In: CHx, CO, H2
Out: H2O, heat,

extra gases

H2 + CO3
2− →

2H2O + 2e−

Electrode material

Molten carbonate
Anode←Molten

carbonate← CO3
2−

CO3
2−

1/2O2 + CO2 + 2e−

→ CO3
2−; Electrode

material; Air as
oxidant

SOFC
WT: 800–1000 ◦C

O2− transport

In: CHx, CO, H2
Out: H2O, heat,

extra gases

H2 + O2− → H2O +
2e−

Electrode material

Ceramics
Anode← Ceramics

← O2−
O2−

1/2O2 + 2e− → O−2

Electrode material;
Air as oxidant

DCFC
WT: 500–1000 ◦C

O2− transport

In: Carbon, CO
Out: CO, CO2, heat,

extra gases

C + 2CO3
2− →

3CO2 + 4e−

Electrode material

Ceramics
Anode← Ceramics

← O2−
O2−

C + CO2 → 2CO
Electrode material;

Air as oxidant

For the use of hydrogen fuel, ORR at the cathode: 1/2O2 + 2H+ + 2e− → H2O, hy-
drogen oxidation reaction (HOR) at the anode: H2 → 2H+ + 2e− , and the whole reaction
of PEMFC using H2: 1/2O2 + H2 → H2O or O2 + 2H2 → 2H2O. For DMFCs, under the
effect of electronic catalytic layer on the basis of Pt electrocatalyst on the electrodes, the
principle of its operation is based on the chemical reaction on the electrode surface. In
acidic solutions, the catalytic processes and mechanisms occurred at the electrode surface
of the Pt-based electrocatalysts exhibiting the seven specific regions of HOR and ORR in
CVs in the kinetics of electrochemical reactions [1,2,33,34]: (1) Pt−Hads → Pt + H+ + e− ;
(2) QDL(Charge)↔ QDL(Discharge) ; (3) Pt + H2O → Pt−OH + H+ + e− ; (4) PtOH
+H2O → Pt(OH)2 + H+ + e−; (5) Pt− (OH)2 → PtO + H2O; (6) 2PtO + 4H+ + 4e− →
Pt − Pt + 2H2O; (7) Pt + H+ + e− → Pt−Hads . For methanol fuel, ORR at the cath-
ode as 3/2O2 + 6H+ + 6e− → 3H2O, methanol oxidation reaction (MOR) at the anode:
CH3OH + H2O→ CO2 + 6H+ + 6e− , and the whole reaction of DMFC as CH3OH +
3/2O2
→ CO2 + 2H2O. [33,34]. In the most effective MOR in acidic solutions, researchers show
that electrocatalytic activity of Pt catalysts to methanol oxidation occurs at (111), (110), (100)
and (hkl) low-index crystal planes of Pt nanoparticles as follows: (1) Pt + CH3OH→ Pt−
(COH)ads + 3H+ + 3e−; (2) Pt− (COH)ads + H2O→ Pt + CO2 + 3H+ + 3e− . The cat-
alytic mechanisms of both ORR and MOR are also presented in Scheme 1, which only leads
to show CH3OH oxidation into CO2 experimentally. In recent years, PtRu-based electrocat-
alytic bimetal nanomaterials have been studied in the effective reduction of CO poisoning by
Ru according to bifunctional catalytic mechanism, i.e., Ru + H2O→ Ru−OH + H+ + e−,
and Ru−OH + Pt−CO→ Pt + Ru + CO2 + H+ + e− . However, the cost of Pd and Ru
is relatively high to PtRu electrocatalyst. We need to select other inexpensive, non-noble,
non-rare metals, such as Au, Ag, Cu, Fe, Co, Ni, Sn, Mo, Pb, W, etc., rather than Pt metal
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group (PMG) bimetal catalysts, such as PtPd, PtRh, PtRu, PtIr, PtOs [11–13]. There have
been published works related to the synthesis of single metal Pt and bimetallic Pt-based
nanomaterial catalysts so that they are elements of PMG, such as Ru, Rh, Pd, Ir, and Os, but
their cost is high There are also Pts with another inexpensive metals, such as Cu, Ni, Co,
and Fe, and their Pt-based or Pt-free multi-component, alloy, multimetal electrocatalysts by
improved polyol processes with a strong reducing agent (NaBH4 or KBH4) [13] or other
strong reducing solid compounds (CaH2) or reducing gases (H2) in heat treatment [59].
In future, the application of the improved polyol method is suitable for all the popular
laboratories. This is a chemical process popular in laboratory that can be easily applied to
create electrocatalytic Pt-based nanomaterials, which is a very necessary composite material
in the electrocatalytic layers of PEMFCs and DMFCs today, with increasingly scientific
and practical significance. Therefore, the polyol process is one of the focuses discussed
in order to address the synthesis of single metal, bimetal, and multimetal nanoparticles,
especially for shell-core bimetallic nanostructures. In the synthesis of metal, oxide, and
alloy nanostructures, especially instead of using inexpensive precious metals, bimetallic
alloys, multimetal alloys, or multi-component materials for catalyst of FCs, and magnetic
nanoparticles for practical applications in medicine and biology, issues of size, shape, struc-
ture and composition are of great importance. Therefore, these parameters must be studied
and controlled. In order to confirm that Pt-based nanocatalyst materials can be applied
to FCs (PEMFCs and DMFCs), such nanomaterials must be intensively studied for the
electrochemical properties of the used catalytic materials on the surfaces of the electrodes.
The important electrochemical reactions of using oxygen, methanol, ethanol, or other fuels
are ORR, MOR, and ethanol oxidation reaction (EOR) [10–14]. It is certain that Pt-based
catalysts are used in the anode and cathode of low-temperature fuel cell systems. For
catalytic applications, other nanoparticles (Au, Ag, Cu, and their related oxides), iron oxide
particles (iron and their compounds), spinel oxide particles, and ABO3-type perovskite
oxide particles could potentially be used in the future [1,2,11–17]. In addition, multi-
component, multi-metallic particle catalysts, or functional catalytic oxide particles need to
be studied with regard to their practical applications and commercialized products [16].
Scientific research methodology and theoretical and experimental research methods of other
nanomaterials are applied as for the special case of Pt nanoparticle materials. The polyol
method is a good solution for the comprehensive fabrication of platinum nanoparticles.
Over the past ten years, there have been the intensive studies on the successful synthesis
of Pt-based catalysts by polyol method by researchers in laboratories which have been
presented, reported and published. Therefore, it is believed that the nanomaterials capable
of replacing Pt catalysts, such as bimetal catalysts, i.e., PtCu, PtAg, PtAu, PtFe, PtNi, PtCo,
and other catalytic alloys that are much cheaper in order to replace expensive Pt that can
be used for applications of low-temperature FCs [13]. The two kinds of FePt and CoPt
magnetic nanomaterials have been also used in hard disk drives. The deep discussion
of research results on the successful synthesis of Pt nanoparticles by nanochemistry has
been carried out on published works, typically for modified polyol methods or nanochem-
istry [3–9]. It is known that Pt nanoparticles have been successfully fabricated by the
chemical methods. Given the scientific implications of current research on Pt nanoparticles,
precious metals, inexpensive metals, oxide materials, and alloys nanoparticles are very
necessary to be mainly focused on their structures and properties. Up to the present time in
2021, Pt nanoparticles, and Pt-based shell-core nanoparticles have been applied in energy
technologies, typically such as FC technology, allowing the fabrication of creating mobile
phones, transport vehicles, and clean energy sources for households in remote places. Many
energy projects have mainly focused on Pt nanomaterials as well as PGM-free catalysts
and alternative electrocatalysts [1,2,16,17]. In a number of present studies, it is possible to
synthesize Pt nanoparticles in the range of 10 nm, and Pt-based bimetallic nanoparticles in
the range of 30 nm or up to hundreds of nm in size. Thus, the successful synthesis of metal,
bimetal, and multimetal nanoparticles has very high scientific and practical significance
for potential application in new technologies of electronic catalysis, photocatalysis, energy,
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medicine, and biology [45,46]. At present, a large number of Pt single-metal nanostructures
are also researched and developed by chemical methods. Through the polyol process,
scientists have successfully fabricated Pt simple-metal nanoparticles for catalysis, but Cu,
Au, and Ag nanoparticles are commonly applied in medicine and biology [2–4]. Accord-
ingly, the research results have only focused on Au and Ag nanoparticles by modified
polyol methods for medical and biological applications. It is obvious that the more com-
plex Pt-based metal nanostructures, typically such as bimetallic and multi-component
nanoparticles with alloy or mixing structures, Pt bimetallic shell-core nanostructures, and
multi-component nanostructures by modified polyol methods, have not been researched
yet, due to the use of much more complex synthesis technologies [14,15]. The catalytic
mechanisms and oxidation of methanol by the crystal planes of Pt nanoparticles were
revealed in acid and alkaline electrolyte, changing methanol in to CO2 [15]. Thus, the
successful synthesis of Pt-based core-shell nanoparticles with Pt shells of 1–10 nm in new
promising properties will open up new and excellent applications that are not available to
single-metal nanostructures. Therefore, the as-prepared Pt nanostructures and Pt-based
core-shell nanostructures are of particular interest because of their very high practical
importance. The main reason is that metal, bimetal, and alloy nanoparticles are potentially
used to provide a large extent, and have a wide range in interdisciplinary sciences, typically
such as physics, chemistry, electronics, biomedicine, pharmaceuticals, optics-photonics,
and catalysis. Typically, Pt-Pd core-shell nanostructures are also nanomaterials that exhibit
their outstanding properties. The synergistic properties can be discovered from the Pt shell
catalytic property, from the core property, or generated from the co-electrocatalytic proper-
ties of both the core and the shell when the Pt-based core and shell nanoparticles are the
different catalytic nanomaterials. By changing the shape, structure, size, and composition
of the metal core or shell, the electrocatalytic properties of Pt-Pd core-shell nanostructure
system can be well controlled. The atom-monolayers shell is an alloy of Pt with another
element that also reduces the high cost of the FC system, typically such as Pt3Co, Pt3Ni,
Pt3Fe, and Pt3Cu [22]. This means that the price of the Pt catalyst material layer has been
reduced by one-third compared with only Pt-based nanostructured catalysts. On that
basis, the core-shell nanostructures of the different types of Pt atom-monolayers shells can
be studied and developed by physical and chemical methods, such as modified polyol
methods. For example, expensive metallic nanoparticles (typically such as Au, and critical
elements, such as Pt) are used in order to coat with inexpensive nanoparticles (such as Co,
Cu, Ni, Fe etc), leading to the amount of Pt being greatly reduced, but the electrocatalytic
properties of the Pt-based catalytic nanoparticles are not less, or even much better. To
confirm the catalytic activity of Pt catalyst in the CV cycles, the HER involved in the (111),
(100), (111) crystal planes, and other crystal planes of the pure Pt catalyst followed the
key reactions of Volmer, Tafel, and Heyrovsky that must be clearly measured as follows.
It is simply emphasized that the electrocatalytic properties of Pt catalyst in acid solution
are Pt−Hads → Pt + H+ + e− (the region is characterized by double–layer charging and
discharging), QDL(Charge)↔ QDL(Discharge), Pt + H2O → Pt−OH + H+ + e−, PtOH
+H2O→ Pt(OH)2 + H+ + e−, Pt− (OH)2 → PtO + H2O, 2PtO + 4H+ + 4e− → Pt− Pt
+2H2O, and Pt + H+ + e− → Pt−Hads , respectively [32,33]. During the catalytic mech-
anisms and processes, it is confirmed that the Pt catalyst has shown the two peaks of
catalytic activity of CH3OH electrooxidation in the CV cycles. Above all, the selectivity,
durability, stability, and catalytic activity of multimetal Pt electrocatalysts should need
to be certainly verified by a very large number of the CV cycles in order to address the
applications of FCs. The high electrochemically active surface area of Pt nanocatalysts, the
relationship of high current density vs voltage, the chronoamperometric measurement, or
that of current density vs time for a long time must be clearly measured in order to prove
in the detail. Similarly, Pt-based multimetal, alloy, and core-shell multimetal nanoparticles
need to be intensively confirmed in their high and stable electrocatalytic activity, enough
for the applications of FCs.
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In this context, it is certain that Pt-based multimetal catalysts are promising candi-
dates for electrodes, which significantly reduces the high cost of Pt standard catalysts.
It is important that the standard electrolyte solutions for CV measurements to the sur-
vey of catalytic activities of Pt-based catalysts are 0.5 M H2SO4 or 0.1 M HClO4, 1.0 M
CH3OH, etc., (Figure 2) [32,33]. Their systematic comparison of catalytic activity of be-
tween standard Pt nanocatalysts and Pt-based multimetal nanocatalysts will lead to finding
an inexpensive, effective, and highly active catalyst for PEMFC and DMFC [10–14]. A
wide variety of Pt core-shell nanoparticles can be synthesized by modified polyol meth-
ods from inorganic core nanoparticles with thin Pt shells on their defined nanostructured
cores. Depending on the properties of the as-prepared nanoparticles fabricated by different
methods, nanoparticles of core-shell nanostructures are definitely classified into several
types, including inorganic-inorganic shell-core nanostructures, organic-inorganic shell-core
nanostructures, and shell-core nanostructures (organic shell-organic core nanoparticles
for the pharmaceutical-medical industry) [10–14]. Moreover, the core-shell (inorganic-
inorganic) nanostructure is one of the most important nanostructures because it shows
great practical applicability that leads to the synthesis of multimetal core-shell and alloy
nanoparticles. This capability allows optimal and thorough exploitation of the superior
properties of nanostructures in various applications such as catalysis, biomedicine (MRI
imaging agent in cancer therapy), and nanomagnetism (hard drives using Fe-Pt and Co-Pt
nanomaterials) [47]. The chemical synthesis of multimetal nanomaterials mainly focuses
on new research and fabrication technologies that allow the size and shape of the fabri-
cated nanoparticles to be controlled. Therefore, in addition to performing basic studies,
the research results of nanochemistry will be very meaningful in practice through the
creation of new generations of catalytic nanoparticles by modified polyol methods with
promising applications. In particular, the synthesis of metal or bimetallic nanostructures
with sizes in the sized ranges of 10 nm, 100 nm, and 1000 nm is of great significance in
the field of catalysis and aims to apply for FCs [13,14]. Specifically, Pt-based bimetallic,
Pt-based multi-metallic alloy, or Pt-based core-shell nanostructures are structures of dura-
bility and stability with multifunctional new applications. These Pt-based bimetal metal
and multi-metal nanoparticle alloy nanostructures and shell core nanostructures in relation
to the cheap metal and multimetal cores, the thin Pt or Pd shells are the types currently
being researched by the leading research research groups and incorporations. Scientists
intensively focus on fabrication research and explore the electrocatalytic properties of
new next-generation Pt-based nanomaterials by modified polyol methods. In this respect,
recently, a group of authors has researched and devised a new synthesis process, initially
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successfully fabricating a bimetallic shell core structure [27,29,39]. The thickness of the shell
is several nm, consisting of monolayers of Pd or Pt atoms. The main results of our research
groups have shown that it is necessary to continue researching and mastering the synthetic
technology of nanoparticles with desirable crystal structures systematically, and with high
repeatability of new metal nanoparticles, bimetallic alloy particles, and multi-component
alloy particles. The designed nanoparticle has a novel structure such as core-shell con-
figuration, or Pt-based alloy configuration with a reduction in the amount of Pt-catalyst
loading used on the electrodes [27,29,39]. Then, thee are applications for alloy-structured
and core-shell-structured nanoparticles, as well as magnetic alloy and oxide nanoparticles,
in catalysis for chemical production, catalysis, FCs, capacitors, and batteries for energy and
environment, drug carriers, and markers in biomedicine in the integration of technologies.
In the polyol process, the fabrication of metal- and Pt-based metal, bimetallic, multimetal,
and multicomponent nanoparticles to bring about applications in catalysis, medicine, and
biology [10,46,47], there are four major problems that need to be solved, which are the
characteristics of the size, shape, structure, and composition of the nanostructures. Thus,
an important focus of the researchers is the need to develop various kinds of nanocatalysts
by modified polyol methods with strong catalytic activity and high strength and stabil-
ity on the basis of Pt. The key of nanoelectronic catalysis technology applied in PEMFC
and DMFC is the polyol process to produce catalytic Pt nanoparticles. On the basis of
investigating the pure Pt nanoparticles (single metal particle and its application) leading
to Pt-based multimetal alloy and core-shell nanoparticles, it has been seen that the great
power of the application of the ultra-narrow size Pt nanoparticle less than 10 nm is very
large, and has high value in science. Other types of multimetal nanoparticles replacing of
Pt nanoparticles can also be synthesized and fabricated by chemical polyol processes, and
also have other special applications in many key areas. Multimetal alloy and core-shell
nanocatalysts are also studied for similar applications to the various structural kinds of Pt
nanomaterials; when using each expensive metal or cheap metal, their application range
will expand. The high cost of the Pt catalyst layer on the two electrodes of low temperature
FCs will be significantly reduced.
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Figure 2. (a) Cyclic voltammogram of Pt nanoparticles in electrolyte solution of 0.1 M HClO4 (scan
rate: 50 mV/s, N2 bubbling time: 30 min). (b) Cyclic voltammogram of Pt nanoparticles the solution
of 0.1 M HClO4 and 1 M CH3OH (scan rate: 50 mV/s, N2 bubbling for 30 min prior to catalytic
measurement [33]).

3. Synthesis of Pt- or Pd-Based Multimetal Nanoparticles by Modified Polyol Methods

The polyol process begins in the reaction flask, where metal nanoparticles are produced
through reduction reaction of metal precursors by water, alcohol or/and polyol, or a mixture
of water/alcohol or water/polyol in the protection of polymers or copolymers with the
additions of controlling-structure agents according to the stages under mixing and stirring
the homogeneous mixture continuously at the various speeds [3,4]. As such, the size, the
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shape, the morphology, the structure, the composition, and all the related properties of
nanoparticles are driven through a modified polyol process [3–10].

To synthesize single-metal nanoparticles effectively for catalysis, it is necessary to
use the synthetic reaction equations in solvents such as ethylene glycol (EG) and polyEG
(PEG). Simply, the various nanoparticles can be effectively synthesized in the flask in
water, alcohol, or EG (or various polyols) with PVP (or protective agents and controlling
agents) according to time and temperature. To synthesize Au nanoparticles by modified
polyol methods, experimenter needs to control the following reaction carefully in a detailed
process (Figure 3a–c). Both EG and PEG solvents are effectively used in all of the synthetic
processes because of their availability as clearly shown in our polyol process and experi-
mental design [24–59]. It is a fact that HO−CH2 −CH2 −OH→ CH3 −CHO + H2O;
6(CH3 −CHO) + 2HAuCl4 → 3(CH3 −CO−CO−CH3) + 2Au(0) + 8HCl (the crystal
formation of Au nanoparticles) [42]. Similarly, Ru nanoparticles can be synthesized by
modified polyol methods. It is a fact that HO−CH2 −CH2 −OH→ CH3 −CHO + H2O;
6(CH3 −CHO) + 2RuCl3 → 3(CH3 −CO−CO−CH3) + 2Ru(0) + 6HCl (the crystal for-
mation of Ru nanoparticles). Here, Pt nanoparticles with the most typical crystal structures
can be synthesized by modified polyol methods. In many cases, the small content of AgNO3
is added to be a structure-controlling agent to control the size and the shape in the crystal
formation of Pt nanostructures at about 160 ◦C [24–28].

With the mentioned polyol process, researchers can put their ideas into nanoparticles
with desirable sizes and shapes in nanochemistry. It is a fact that HO−CH2−CH2−OH→
CH3−CHO+H2O; 6(CH3 −CHO)+ 2H2PtCl6 → 3(CH3 −CO−CO−CH3)+ 2Pt(0)+
6HCl (the crystal formation of Pt nanoparticles) [26]. Similarly, Pd nanoparticles can be syn-
thesized by modified polyol methods. It is a fact that PdCl2 +CH3CH2OH→ Pd(0) +CH3
−CHO + 2HCl; H2PdCl4 + C2H5OH → Pd + CH3CHO + 4HCl; HO − CH2 − CH2 −
OH → CH3 − CHO + H2O; 6(CH3 −CHO) + 3Na2PdCl4 → 3(CH3 −CO−CO−CH3)

+ 3Pd(0)+ 6NaCl+ 6HCl; PdCl2 +Na2CO3 + 2H2O→ Pd(OH)2 +H2CO3 + 2Na+ + 2Cl− ;
Pt(OH)2 + H2 → Pd + 2H2O (the crystal formation of Pd nanoparticles) [23]. Therefore,
the polyol process is a very efficient way to synthesize PGM or PGM-free catalysts. The
problem is which researchers can apply it empirically in future research. In a similar
way, Rh nanoparticles can be simply synthesized by modified polyol methods. It is a fact
that HO−CH2 −CH2 −OH→ CH3 −CHO + H2O; and 6(CH3 −CHO) + 2RhCl3 →
3(CH3 −CO−CO−CH3)+ 2Rh(0)+ 6HCl; 2RhCl3 + 3CH3OH→ 2Rh+ 3HCHO+ 6HCl
(the crystal formation of Rh nanoparticles) [28]. In a similar way, Cu nanoparticles can be
simply synthesized by modified polyol methods. It is a fact that HO−CH2−CH2−OH→
CH3 −CHO + H2O, and then 4(CH3 −CHO) + 2CuCl2 → 2(CH3 −CO−CO−CH3) +
2Cu(0) + 4HCl (the crystal formation of Cu nanoparticles) [41].
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Figure 3. To prepare new multimetal electrocatalysts successfully, we must successfully synthesize
single-metal catalysts in a controlled polyol process. The formation and mechanism of crystal struc-
tures of metal, bimetal, multimetal alloy and core-shell nanoparticles must be intensively discussed
in the detail. The stepwise strategies of modified polyol methods are used in order to fabricate
Pt-based multimetal alloy and core-shell nanostructures with the thin Pt shells. (a–f) Synthesis of
metal, bimetal, and multimetal nanoparticles in the special flasks of alcohols, polyols, i.e., EG or PEG
by modified polyol methods. High resolution TEM image of Pt nanoparticles from [26].
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The successful synthesis of various types of the Pt, Pd, Cu, Ag, Au, and single metal
nanoparticles by modified polyol methods has become very important, especially leading
to the as-prepared precious Pt nanoparticles, leading to Pt nanocatalysts, which leads
to the alloying ability of the above species, and leads to the diversity of their Pt-based
nanostructures, leading to the creation of Pt-based multimetal alloy and core-shell catalysts
(Figures 3 and 4). Thus, we only need to use the smallest weight of Pt (low Pt loading) for
designed core-shell multimetal catalysts for the catalytic layers of low-temperature FCs [14].
It is known that acetaldehyde (CH3CHO) is the mediated agent for the formation of metal
nanoparticles by reduction of the metal precursors. The additions of small contents of the
structure-property-controlling agents or the addition of various reducing agents, such as
H2, NaBH4 have led to modified polyol methods for over 30 years (Figures 3 and 4, and
Scheme 2) [3–13,24–59]. A highly experienced experimenter can easily and quickly create
nanosystems with a uniform distribution of particle size. It is known that the typical simul-
taneous reduction of two precursors in EG or PEG in existence of protective agent can lead
to forming their alloy nanoparticles. The typical successive reduction two metal precursors
in EG or PEG can also lead to forming their core-shell nanoparticles with the very thin
shell as follows. In fact, it typically shows 6(CH3 −CHO) + 2H2PtCl6 + 6(CH3 −CHO) +

3Na2PdCl4 → 3(CH3 −CO−CO−CH3)+ 2Pt(0)+ 6HCl+ 3(CH3 −CO−CO−CH3)+

3Pd(0) + 6NaCl + 6HCl (the crystal formation of Pt-Pd alloy nanoparticles in simultaneous
reduction) [21,27,31,39]. To make core-shell nanoparticles for economic purposes, and to
reduce the high cost of PEMFC and DMFC, we can make a thin shell of Pd or Pt as follows.
First, we can use a typical chemical reaction, such as 6(CH3 −CHO) + 3Na2PdCl4 →
3(CH3 −CO−CO−CH3) + 3Pd(0) + 6NaCl + 6HCl to make the core. Then, we can use
a typical chemical reaction: 6(CH3 −CHO) + 2H2PtCl6 → 3(CH3 −CO−CO−CH3) +

2Pt(0) + 6HCl to make the shell. Finally, we synthesized Pt-Pd core-shell nanoparticles with
thin Pt shells. The fabrication of homogeneous nanoparticles used as the defined thick cores
for the formation of the atomic monolayers shells must be experimentally based on the
foundation of chemical synthesis. It is supposed that the large nanoparticles were formed
by the assembly of a certain number of smaller nanoparticles. It is clearly evidenced that
the assembly of Pt or Pd nanoparticles was clearly presented in the nucleation, growth,
and formation of the larger particles, respectively [29,34]. In the reverse order, we can
make Pd-Pt core-shell with a thin Pd shell. Therefore, inexpensive or common metals can
be potentially used with very thin shells of the Pt group. The Pt-monolayer shells can be
made to be a few nanometers thick at the atomic level. The one atomic monolayer is a
very big challenge to scientists in nanochemistry or nanophysics. In this complex subject,
this is a general principle to synthesize effectively bimetal and multimetal nanoparticles as
electrocatalysts that are widely used for catalytic chemical reactions or synthesis of various
kinds of new chemical compounds. This leads to the effective synthesis of multimetal
electrocatalysts without much difficulty for FCs, PEMFCs, and DMFCs in H2-based FC
technology as well as our urgent energy challenges and demands.
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Figure 4. TEM images of Au nanoparticles by modified polyol methods [41]. (a) There are the
different ranges of the sizes and the shapes of Au nanoparticles synthesized by a simple polyol
process. (b) The rods, spherical and polyhedral shapes are observed. Scale bars: 50 nm.
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Scheme 2. The polyol process over 30 years. See more: Synthesis of Pt-free or Pt-based electrocatalysts
in Figure 3. The combined polyol and sol-gel processes are new, improved, modified, highly efficient,
and easy to apply.

4. Development of Pt- or Pd-Based Bimetal and Multimetal Catalysts

Recently, researchers have presented key research discoveries of the synthesis of
noble metal, bimetal, and alloy particles [11–14], especially for the case of Pt nanopar-
ticles. Through modified chemical polyol methods, shaping expensive (Au, Ag, Pt, Pd,
etc.) and cheap (Fe, Co, Ni, Cu, etc.) metal nanoparticles has been simply realized, i.e.,
nanosystems for electrocatalysis in FCs, and studies of surface plasmon resonance (SPR),
surface-enhanced Raman scattering (SER), and tip-enhanced Raman scattering. In order to
synthesize Pt nanoparticles effectively, PVP protected polyhedral Pt nanoparticles were
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synthesized by the reduction of H2PtCl6 in EG using AgNO3 as a structure-controlling
agent at 160 ◦C. The uniform size and morphology of the spherical and polyhedral Pt
nanoparticles was precisely controlled by the addition of AgNO3 in the ranges of 10 nm,
20 nm, etc., which can be used as the best catalytic layers for fuel cell technology, typically
such as PEMFC and DMFC. The crystal surfaces of the Pt nanoparticles are very important
to nanocatalysis. Polyhedral Pt nanoparticles typically exhibit mainly low-index crystal
facets of (100), (110), and (111), although they do include high-index crystal facets [13,14].

Nevertheless, in the typical TEM method, a certain number of the (hkl) planes of
the low-index crystal planes or the certain number of the high-index crystal planes were
determined in the selection rule for the various types of fcc crystal structures. In this context,
Pt-Pd core-shell nanoparticles were synthesized by a simple synthetic method. The main
results demonstrated the homogeneous nucleation and growth of the Pd metal shell in the
size range of 10 nm on the definite Pt core in the size range of 20 nm [14]. The synthesized
Pt-Pd core-shell nanoparticles in the size range of 30 nm exhibit the sharp and polyhedral
shapes and morphologies (Figures 5 and 6). The epitaxial growth of the controlled Pd shells
on the Pt cores via a polyol method was observed [27]. The main discoveries led to Frank-
van der Merwe and Stranski-Krastanov growth modes coexisting in the nucleation and
growth of Pt-Pd core-shell nanoparticles. It was found that the size effect is not as strong
as the nanostructuring effect on the catalytic properties of the researched nanoparticles.
The catalytic synergistic effect of the Pt-Pd core-shell nanoparticles was evidently found
in electrochemical measurements, i.e., the CVs at the prepared electrodes. Therefore,
various kinds of Pt-Pd alloy and core-shell nanoparticles with nanostructures have been
successfully synthesized by modified polyol methods [29,34,39]. This discovery can be
true to most of catalytic core-shell nanoparticles with various core and shell forms (metals,
multimetals, oxides, mixtures etc.). In order to reduce the high cost of FCs, PEMFCs, and
DMFCs, the thick cores can be oxides, alloys, etc., in the core-shell structures and shapes by
the modified polyol processes. This will lead to understand that the very thin noble metal
and alloy shells can be produced in the form of monolayers of Pt, PtPd, PtRh, PtRu, and
PtRhRu as Pt-group multimetal catalysts, etc., on the defined inexpensive thick metal, alloy,
ceramic and oxide cores. The nanosized core nanoparticles need to be synthesized first, and
then the thin Pt or Pd shells are synthesized. The thin shells can be prepared in the various
forms of the bimetallic thin shells, typically such as the thin shells of PdPt, PtRu, PtRh,
PtPd, etc., formed as the atomic monolayers on the previous prepared Pt-based multimetal
alloy nanoparticles. In addition, the critical roles of heat treatment to the prepared particle
products led to particle deformation, i.e., the levels of the deformation of size, shape,
morphology, surface, internal structure, composition, and other crystal parameters during
sintering and final densification [48], leading to plastic, elastic, and inelastic deformation on
both the crystal surface and inside the particles leading the undiscovered new properties
for various practical applications in electrocatalysis. In correct comprehension, the high
crystallization or atom-by-atom growth was clearly confirmed in the the great beauty of
the arrangement of atoms on the surfaces of nanocrystals as shown in Figure 6.
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nanoparticles by modified polyol method; their nanostructures with the thin Pd shells with several
Pd atomic monolayers [39]. Pt or Pd atomic monolayer is a challenge to science and nanochemistry.
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Figure 6. (a–f) To explain the crystal formation of core-shell structure, the mechanisms, growth,
and formation of the thin shell in the shell-core bimetallic nanostructures include Vomer-Weber,
Frank-Van der Merwe, and Stranski-Krastanov [27]. (g) The crystal core is Pt nanoparticle, exhibiting
its crystal surface [38]. (h) The thin crystal shell shows several atomic monolayers of 1–3 nm. The
Pd-based PGM thin shell with one atomic monolayer is a challenge to surface science, which is the
limitation in bottom-up and top-down synthetic processes.
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5. Development of Hybrid Pt/AB2O4-Type Ferrite, ABO3-Type Perovskite, Oxide, and
Ceramic Catalysts

It is known that the synergic core-shell effects of Pt or Pd based bimetallic catalysts
as well as dealloying effects of Pt based core-shell catalysts are important to create new
Pt- or Pd-based catalysts for developing sustainable and renewable energy via various
FCs [29,34,39]. In main contribution, they have shown the self-attachment, elastic and
inelastic self-collision, self-aggregation, and self-assembly phenomena of the nanoparti-
cles according to chemical synthetic processes [35]. The very complex issues of atomic
arrangements in order or disorder inside metal, bimetal, and alloy nanoparticle with de-
fects, stacking fault, dislocation, twin planes, etc., at 10 nm by HRTEM/STEM combined
methods possibly lead to improve the polyol processes for electrocatalysts, and achieve
the robust high performance of Pt-free or Pt-based bimetal and multimetal electrocatalysts
in the future [29,33,38]. The durability, stability, and strength of the particles after heat
treatment at high temperature significantly enhanced are all the best chemical and physical
properties of the as-prepared particles with both micro- and nanostructures. These impor-
tant improvements and modifications are the gold keys for discovering new functional
nanoparticles. Researchers have also presented the key research discoveries of the Fe metal
and oxide-based particles, especially for the crystal formation of grain and grain boundary
structures (Figure 7) and nano/micro metal, bimetal, multimetal, and oxide structures [49].
In the testing and preparation of thermoelectric materials, the researchers discovered new
methods for making various multimetal nano/microsized α-Fe2O3 particles with modi-
fied polyol methods with NaBH4 and heat treatment at high temperature by chance from
research and experimental skills (Figures 8 and 9).

To develop inexpensive catalytic and magnetic particles, typically such as Fe, Ni,
Co, and their alloys possibly used at the electrodes of FCs, the researchers have very
successfully developed large magnetic PVP-Fe-based particles in the size range of 5 and
10 µm with polyhedral or spherical shapes and morphologies that led to produce various
kinds of iron oxide nanostructures with potential applications for the electrodes of batteries
in energy conversion, gas sensors, and the environment as well as devices using soft
magnetic materials. In simplification approach, Fe oxide and alloy microsystems can be
synthesized by chemical methods and heat treatment, which leads to produce various kinds
of oxides, alloys, superalloys, micro/nanosized particles, etc., which can use inexpensive
core materials. The various kinds of normal and inverse spinel ferrite particles with various
grain and grain boundary structures can be facilely created (Figure 8). In the discovery,
the special case of the as-prepared spherical CoFe2O4 oxide microparticles with grain and
grain boundary structures was prepared with high-performance synthetic processes in
the laboratory. The definition of the best inverse spinel structures AB2O4 was proposed
by an idea of the best tetrahedral and octahedral locations occupied by A and B ions (i.e.,
Co and Fe atoms) from experimental according to theory [48–53]. So, we suggest that
CoFe2O4 or ZnFe2O4 or ZnCoFe2O4 materials will be easily prepared by this process as
well as ZnCoFe2O4 by sol-gel process [61], Pt/CoFe2O4-C hollow ball namomaterials [62],
NiCoIr oxide and NiCoRu oxide nanomaterials for the promising application in PEMFCs
and DMFCs [63]. Recently, Co0.5Zn0.5Fe2O4 has also become a new superior catalyst for
ORR to replace noble metal catalysts of high cost in microbial fuel cell [64].
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Figure 8. The great possibility in the controlled synthesis of metal, alloy, and AB2O4- or ABO3-type
based oxide micro/nanostructures by both modified polyol methods and heat treatment. The polyol
process opens a good opportunity of synthesizing multimetal nanoparticles for catalysis. In structural
modifications, crystal structure of CoFe2O4 spinel was clearly discussed in the tetrahedral sites and
octahedral sites [52].
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Figure 9. (a) The controlled synthesis of AB2O4-type CoFe2O4 micro/nanostructures by modified
polyol methods [56]. (b) CoFe2O4 micro/nanostructures with heat treatment at high temperature in
a range of 900–1100 ◦C (SEM data in our new experimental). It is clear that Pt nanoparticles can be
potentially integrated in a ferrite matrix of CoFe2O4 for electrocatalysis.
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In the interesting topics, non-noble metal catalysts or alternative catalysts for ORR
have been reviewed in PEMFC [65]. For replacing Pt group metal electrocatalysts, PGM-
free electrocatalysts were discussed in HOR and ORR mechanisms. There are the various
kinds of transition metal-nitrogen-carbon (M-N-C) catalysts, TM oxides, nitrides, carbides,
oxynitrides and chalcogenides [66] as well as carbon and graphene metal-free electro-
catalysts. The classes of new nano/microstructured AB2O4-type ferrites or ABO3-type
perovskites are potentially used SOFC, batteries, capacitor, and supercapacitor. In one
research, Pt/CoFe2O4-C was used as bifunctional or multifunctional electrocatalyst for
Zn-air batteries [62]. So, the potential applications of AB2O4-type ferrites or ABO3-type
perovskites are the key electrical components and devices in electronics, photonics, opto-
electronics, and telecommunications.

In modeling and simulation, the models of grain and grain boundary structures of
large oxide, alloy, and mixture particles are very crucial to optimize structures and proper-
ties of new magnetic materials according to their complexity of their development and final
formation mechanisms. The above nano/microsized oxide systems can be used for the
catalytic layers of SOFC technologies in future (Figures 8 and 9). At present, soft and hard
magnetic oxides and alloys with grain and grain boundary are challenging to the experi-
mental scientists and researchers. So far, researchers have presented their modified polyol
methods can lead to new key research discoveries of soft and hard magnetic alloy particles,
i.e., rare earth magnet nanomaterials [50,55,59]. At present, we suggest that two-phase soft
and hard magnetic nanomaterials were synthesized with high impact on new magnetic
nanomaterials and technologies [48,55]. Researchers have proposed the modified chemical
methods with heat treatment for synthetic processes at liquid-phase, solid-phase with a
strong reducing like Ca, CaH2, and interface or internal chemical reactions for making hard
magnetic materials with rare earth, such as NdFe, SmFe, SmNdFe, NdFeB, SmNdFeB, and
their magnetic alloys, which are different from physical and chemical metallurgy technolo-
gies, and other conventional methods and approaches [50,55,59]. The research methods
will open new ways of making soft and hard magnetic nanomaterials with grain and grain
boundary in both nano and microscale ranges by chemical methods and approaches. The
products of the nano and microparticle powders will introduce for practical applications
for catalysis. To confirm catalytic activity, electrochemical reactions of the surfaces of the
electrodes must be studied in detail. There have been the various works in the details
of Pt-based electrocatalysts and alternative catalysts for FCs [66–76]. The critical reviews
have demonstrated the electrocatalytic activity of novel kinds of PGM-free electrocata-
lysts [66–76]. At present, non-Pt metal nanoparticle catalysts have been studied in the
catalytic ability of ORR or other catalytic mechanisms in the comparison with Pt catalyst.
In addition, alternate electrocatalysts (PGM-free nanoparticle catalysts) or Pt-free metal
catalysts have been developed for this purpose. Recently, carbon nanomaterials doped with
N, B, P, and S can be promising alternative electrocatalysts for ORR in low temperature FCs.
Recently, the catalytic investigations of TMO oxide electrocatalysts (TMO: Transition metal
oxide) or TMO multimetal and oxide electrocatalysts doped with C for electrode materials
of PEMFCs and DMFCs have been reviewed [66–76]. In addition, oxynitride and nitride
electrocatalysts will potentially become the new kinds of promising electrocatalysts.

6. Discussion

Specifically, the following important issues of metal, bimetal, and multimetal nanopar-
ticles by modified polyol methods with great advantages for electrocatalysts are of very
interest to research. Firstly, we must understand that particle size of multimetal or core-shell
nanoparticles is important to electrocatalysis. In general, the particle size of as-prepared
has to be controlled within the nano/microsized ranges, for example, 10 nm, the nm and
µm ranges, and so on [12,13].

The researchers demonstrated that metal nanoparticles were successfully synthesized
by an improved polyol synthesis process that could precisely control the size. When
nanoparticles are used as catalysts for chemical production processes, the smaller the parti-



Crystals 2022, 12, 375 22 of 29

cle size and the more homogeneous the particle system is, the more valuable it is because it
allows increasing the catalytic surface area as in the case of Pt or Pd nanoparticles [12,13].
The controlling of Pt nanoparticles with the uniform size particles in the nanosized range
of 10 nm is scientists’ desirable thing, which is being continuously researched in the field
of catalytic applications. In particular, some types of nanoparticles such as Au and Ag
nanoparticles or nanoparticles smaller than 50 nm or smaller than 20 nm suitable for
promising applications in the fields of medicine and biology or nanomedicine have been
strongly developed more than the past 30 years. For example, in very potential application
of cancer therapy, single-metal, bi-metal, and multi-metal nanoparticles, magnetic oxide
nanoparticles can also be studied and realized by modified polyol methods and nanochem-
istry. Secondly, we must control the particle shape of multimetal or core-shell nanoparticles.
The shape of the Pt-based multimetal nanoparticles is also important in applications, such
as polyhedra, sphere, rod, wire, and typical shapes and morphologies [12,13]. In catalysis,
it is known that polyhedral shapes in the ranges of 10, 20, and 30 nm in sizes are most
of the desired shapes that were made by scholars and researchers. Thirdly, we must con-
trol the particle shapes and morphologies of multimetal or core-shell nanoparticles. The
morphology of a Pt-based multimetal particle refers to a rough or flat crystal surface with
particles of different shapes. The particle is a polyhedron, and particle morphology will
have more ordered flat atomic surfaces than other types [12,13]. The crystal surface of a
particle containing many atoms exhibits high convexity, which is one of the very interesting
research problems of researchers today. Fourthly, we must understand the particle struc-
ture of multimetal alloy or core-shell nanoparticles. The Pt-based multimetal core-shell
nanoparticle structure is currently a very interesting new topic for scientists [66,67]. Finally,
utilizing a few nm-thick Pt- or Pd-based shells (or the Pt- or Pd-based atomic monolayers)
and the shell properties a few atomic monolayers thick in the field of catalysis opens up new
possibilities [12,13]. For example, the controlled synthesis and use of catalytic materials
layers, Pt core and Pd shell core-shell nanostructures, or Pd core and Pt shell core-shell
nanostructures have led that the significant enhancement of catalytic properties is much
greater than using only Pt nanocatalysts, even the actual size of the bimetallic shell-core
nanostructure system is much larger than that of Pt single-metal nanostructures [13]. In
addition, the bimetallic shell core structure system is considered to have outstanding ad-
vantages more than the single-metal nanoparticle structure system because it is more stable
and more stable than the characteristics of the single metal nanoparticle configuration.
However, the proliferation of the shell on the cores to form a homogeneous core-shell
nanostructure system is a challenge in current nanoscale research. In addition, the superior
properties of catalytic core-shell nanostructures are becoming an urgent research topic for
many researchers because of their high practical applications, especially in many industries
related to material and production cost savings. Through the overall survey of multimetal
nanostructured electrocatalyst by nanochemistry, and modified polyol methods, this is the
hot trend in the scientific research of leading scientists [3–14]. We have presented the polyol
processes for the successful synthesis of bimetal core-shell systems with the Pt or Pd thin
shell as shown in Figure 10. It is evident that these core-shell-structured nanoparticles have
great significance and potential for applications in the fields of catalysis, electronics and
telecommunications, biomedicine and many other important applications. Thus, research
on applying the polyol process will have a wide range of micro/nanostructures for practical
applications and catalytic technologies in laboratories without the very large need for ex-
pensive investments. In addition, we must control the particle composition of multimetal or
core-shell nanoparticles. The composition of nanoparticles also has important applications
in electronic catalysis, electronics, medicine and biology. The composition can be Pt-based
single-metal, bi-metal, multimetal and multi-component electrocatalysts [12,13]. To reduce
the cost of FCs systems, the good idea of using multimetal alloys is a very possible and
economical resolution in the scientific interest. Here, researchers also need to understand
the functionalization of the surfaces of engineered multimetal or core-shell nanoparticles.
The functionalization of the nanoparticle surface will lead to biomedical applications, ex-
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perimental properties will be promisingly applied in medicine [46,53]. In surface science, it
is needed to understand the theoretical calculation of multimetal or core-shell nanoparticles.
Modeling and simulation of Pt-based or Pd-based nanosystems at the most important
10 nm size, especially for nanoclusters (clusters of atoms) at sizes < 5 nm to predict the new
or abnormal properties and technological breakthroughs compared with experiment [77].
It is likely that researchers must understand the other physical and chemical phenomena
of multimetal alloy or core-shell nanoparticles for better catalytic stability and durability.
The investigation of atomic arrangement on the surface and inside the cleanly prepared
nanoparticle to explore fully in a broad sense when evaluating the properties of a particular
nanoparticle or a particular particle system. The synthetic studies have been discussed
in the main focus on Pt nanomaterials, bimetallic Pt nanoalloys, and multicomponent Pt
alloy nanomaterials, respectively [77–80]. The Cu-, CuPt-, Cu-based alloy, and Cu-based
nanomaterials were widely discussed as an electrocatalyst in PEMFCs [81]. On the basis
of the standard Pt catalyst, the experimental comparisons of electrocatalytic properties of
Pt and Pt-based multimetal catalysts are done, which is to find ways to gradually reduce
the cost of single-metal Pt-catalyzed standard catalyst. In comparison with the standard Pt
electrocatalyst, researchers have also investigated the types of electrocatalytic materials of
free-Pt or low-Pt or non-Pt nanoparticles (non-noble metal catalyst) or Pt-free multimetal
electrocatalysts on the carbon support layers, which are reviewed in various works [82–88],
according to the mechanisms of ORR/HOR for PEMFCs and DMFCs, such as various kinds
of commercial carbon or graphene nanomaterials with the layers of atomic monolayers
used in the engineered catalytic layer of low temperature FCs. For ORR, Pt, Pt catalytic
alloys, Pt-based alloy, and core-shell electrocatalysts need to be developed and investigated
to select new multimetal electrocatalysts or alternative electrocatalysts. Similarly, for ORR,
the wide various kinds of PGM-free oxides-, chalcogenides-, carbides-, Fe-N-C-based-,
metal-free-, single-atom-, and carbon-based electrocatalysts have been developed to re-
place Pt electrocatalysts at the core catalytic layers of the cathodes and the anodes in the
future [1,2,10–23,82–89].
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Figure 10. The typical models of the cubic Pt-Pd core-shell nanoparticles with the thin Pd shells with
several Pd atomic monolayers on the thick cores. This is also a challenge to science. The thin shells of
Pt or Pd on the thick metal, bimetal, multimetal, alloy and oxide cores can be realized by modified
polyol methods using agents added during the designed process effectively.
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In the component modification of acid or alkaline electrolytes, researchers show that a
new kind of membrane using phosphotungstic acid/phosphomolybdic acid/SiO2 glass
was studied for the development of H2/O2 FCs [90–92]. In the future, the new kinds
of Pt-free multimetal electrocatalysts by modified polyol processes will be predicted as
inexpensive alternative electrocatalysts for the development of FCs, PEMFCs, and DMFCs
as well as hydrogen and FCs technologies [93]. Their very high costs of Pt catalysts would
be greatly decreased in the technological convergence, nanomaterials (metal, alloy, and
oxide), and other components derived from the modified polyol processes. The scientific
exlanation of nucleation, growth, and formation of as-prepared nanoparticles from the
precursors can be intensively understood [93–104]. It is certain that the electronic, magnetic,
optical, electrocatalytic, photocatalytic properties of as-prepared micro/nanomaterials by
modified polyol processes should be further investigated. We believe the modified polyol
process plays a major role in research and application advancement.

7. Conclusions

In our understanding of electrocatalytic ideas, it is increasingly important to under-
stand that Pt is the standard catalyst for the study of its PGM-free electrocatalytic alloys,
ceramics, C-based materials, and alternative electrocatalytic compounds [24–59]. These
recent trends, Pt-nanoparticle-based electrocatalysts used as the standard catalyst have been
successfully prepared by modified polyol methods effectively combined with microwave
methods as well as physical and chemical methods in the various experimental approaches
from the most typical reactants and reagents, which lead to Pt-based alloy and core-shell
nanoparticles multimetal electrocatalysts being synthesized. In the future perspectives, this
modified polyol method greatly offers a good way of synthesizing Pt-based multimetal
nanocatalysts that will be used in the catalytic layers of FCs, PEMFCs, and DMFCs. In the
background, Fe or Pt-based alloy and oxide nanoparticles are effectively synthesized by
modified polyol methods. In this way, water, alcohol, and polyol or their mixtures can be
potentially used as both solvents and reducing agents in a sol-gel process, i.e., a so-called
polyol process. Over 30 years of synthesis of nanoparticles by the polyol process [4,7,8], and
modified polyol processes for the controlled synthesis of nanomaterials, it is suggested that
the modified polyol processes [13,14,24–59,80] can be very potentially used to synthesize
effectively the various forms of the Pt-based metal, bimetal, alloy, and multimetal nanopar-
ticles as well as AB2O4-type or ABO3-type oxide micro/nanomaterials and their products
for use in the area of catalysis. In experiments, researchers start from the fact that the polyol
process provides unique and indispensable advantages to synthesize various classes of
nanoparticles for catalysis compared to other physical and chemical synthetic methods.
Over time, more widespread use of core-shell configurations of nanoparticles with the
thin shell of Pt atomic monolayers from 1–3 nm formed on the thick core of alloy, ferrite,
perovskite, glass, oxide, and ceramic will possibly be realized. In the targeted synthesis, the
selection criteria of metal salt precursors were used with dissociation constant and the high-
est occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO)
values of polyols derived from molecular orbital theory (MOT) calculation [101]. Major
developments are anticipated in the modified polyol methods and ease of use of the polyol
processes at various scales, and similar to sol-gel processes that make them ideal routes for
controlled synthesis of functional engineered nanoparticles that depend strongly according
to the expertise and experimental skills of most the researchers. They are the future tech-
nologies for synthesis of nanoparticles and nanomaterials in all the inexpensive laboratories
without modern equipment, and without much special difficulty at universities [94–102].
Therefore, the very special concerns are not only focused on the original polyol process
but also the modified polyol processes of synthesizing nanoparticles as well. Therefore,
the size-shape-composition-structure-property-controlling agents are very important for
achieving the noncrystal or crystal formation of nanoparticles and nanomaterials [94–102].
The synthesis of Au, Ag, and Pt nanoparticles were controlled in the designed exprimental
conditions with the most typical flask or a popular reaction system [103,104]. Finally, it is
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certain that nanoparticles and nanomaterials in the various forms of metals, alloys, oxides,
ceramics, and their nanostructures in the various forms of alloy structure, core-shell, and
multivalent multifunctional features, doped at the single-atom level and possibly fabricated
by the modified polyol process, will be new materials with new properties that scientists
and researchers will have to study and understand in detail. A person who follows the
experimental methods of chemistry, physics, and biology has to carry out experiments
every day for his or her lessons from past, present, and the future.
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