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Abstract: A concurrent multiscale model coupling discrete dislocation dynamics to the finite element
method is developed to investigate the plastic mechanism of materials at micron/submicron length
scales. In this model, the plastic strain is computed in discrete dislocation dynamics (DDD) and
transferred to the finite element method (FEM) to participate in the constitutive law calculation, while
the FEM solves the complex boundary problem for DDD simulation. The implementation of the
whole coupling scheme takes advantage of user subroutines in the software ABAQUS. The data
structures used for information transferring are introduced in detail. Moreover, a FE mesh-based
regularization method is proposed to localize the discrete plastic strain to continuum material points.
Uniaxial compression tests of single crystal micropillars are performed to validate the developed
model. The results indicate the apparent dependence of yield stress on sample size, and its underlying
mechanisms are also analyzed.

Keywords: discrete dislocation dynamics; finite element method; multiscale model; size effects

1. Introduction

The effect of sample size or shape on material deformation behavior [1–3] has received
attention for decades. For instance, the sample size of concrete influences its kinetics of
external sulfate attack [4]. At the microscale, it has been reported that the deformation
mechanism of crystal materials is different from that of bulk materials [5–7]. It is recognized
that the strength of micro/submicron crystals depends not only on the material itself but
also the sample/grain size. Many efforts have been made to study the size effects of crystal
materials at the micro/submicron scale in order to improve material performance for high-
quality products [8–11]. The size effect is induced by many physical mechanisms, such as
dislocation motion, nucleation, and starvation [12,13]. It remains difficult to capture the
full picture of the deformation behavior of crystal material at the micro/nano-scale only by
experimental tests. Therefore, it is necessary to employ a suitable simulation method to
reveal the underlying deformation mechanisms of crystal materials at the micro/nano-scale.

Computational simulation methodologies have been continuously developed to pre-
dict material deformation behaviors. According to the difference in simulation scale,
the main simulation methods can be broadly classified into the finite element method
(FEM) [14,15], crystal plasticity finite element methods (CPFEMs) [16,17], discrete disloca-
tion dynamics (DDD) [8,18,19], and molecular dynamics (MD) [20]. Based on empirical
constitutive equations, the FEM shows a great advantage in dealing with various complex
boundary problems at the macroscale. Compared to the classic FEM, CPFEMs consider
the material microscopic plastic shear deformation by employing critical parameters that
represent the microstructural state of materials beneath the materials’ macroscopic defor-
mation. Typical examples are the slip systems-based phenomenological CPFEMs and the
dislocation density-based CPFEM. Moreover, by considering the density of geometrically
necessary dislocations (GNDs) in the constitutive equations, it can be used to predict the
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size effect of crystal materials because GNDs are related to the strain gradient and has
been considered in the constitutive equation [21–24]. However, CPFEMs cannot provide an
explicit microstructure evolution during the deformation process, because of the empirical
constitutive equation used. To obtain insight into the physical deformation mechanism,
a microscale simulation model that considers the intrinsic microstructure characteristics
of crystal materials is needed. MD simulation directly depicts the interaction of atoms.
In recent decades, it has been widely employed to investigate the mechanical properties
of single crystals and nanopolycrystalline materials (e.g., nano-polycrystal silicon [25]
and copper [26]) by means of nanoindentation or many other tests [11]. However, MD
simulation is only suitable for nanoscale specimens due to the extremely heavy computa-
tional load. Indeed, the plastic deformation of crystals results from its dislocation activities.
To overcome those limitations, DDD has been proposed by many researchers to capture
the size effect and uncover its underlying mechanisms. It omits the direct atomic interac-
tions and takes dislocation as the intrinsic carrier of plastic strain. DDD modeling is often
employed together with the FEM to deal with complex boundary conditions. The mostly
used coupling schemes are the discrete continuous model (DCM) [27] and superposition
method (SPM) [28].

To solve the boundary value problem of a finite crystal, van der Giessen and Needle-
man [28] first proposed the concept of the SPM. In the SPM, the total stress field in a finite
crystal is the sum of two stress fields. One is the analytical stress field due to the existence
of dislocations in an infinite unbounded crystal and the other is the complementary elastic
stress field calculated by finite element analysis in a finite crystal. The method is able to
capture the short-range dislocation stress field accurately and has been improved by incor-
porating a 3D dislocation mechanism [13,29] and dislocation climb [30]. Nevertheless, the
calculation of the analytical stress field between all existing dislocations is time-consuming.
In addition, there is no explicit introduction of the plastic strain that arises from dislocation
activities. The DCM is another hybrid approach coupling DDD to the FEM. The numerical
calculation in the DCM is straightforward and has clear physical sense. The moving dislo-
cation generates plastic strain along its gliding path, and then the plastic strain is localized
to the Gaussian integration points of the FEM. By making use of the plastic strain, the
equilibrium stress is computed in the FEM module and is used to drive the movement of
discrete dislocations.

Since Lemarchand [27] first proposed the DCM in 2001, it has been widely used to
study the plastic behavior of materials at micron/submicron length scales, for example,
the effect of hard coating [31], low-amplitude cyclic loading [32], temperature [33], and
shock loading [34] on the plastic deformation of micropillars. The dislocation mechanisms
causing the channel size effects of superalloys [12], incipient plastic instability of nanoin-
dentation [35], and strain bursts of micropillars [10] have been investigated using the DCM.
Recently, Cui et al. [31] studied the confined plasticity in coated micropillars using the
DCM and found that the operation of a single arm source plays a key role in the plastic
deformation of coated pillars. Santos-Güemes et al. [36] studied the interaction mechanism
of dislocation and precipitates using a developed multi-scale DCM. The intrinsic hardening
mechanism of a nickel-based superalloy and its dependence on the interfacial dislocation
network and lattice mismatch were reported [37]. By introducing a dislocation climb model
into the DCM, Liu et al. [38] investigated the high-temperature anneal hardening behavior
of an Au submicron-pillar.

Most studies are focused on the application of the DCM in plastic mechanisms at
micron/submicron scales; however, less attention has been paid to its numerical algorithms
for improved computational efficiency. Zbib et al. [39] proposed a simple method of regu-
larizing the plastic strain induced by dislocations to the material points of their localized
elements. Liu et al. [40] introduced the Burgers vector density function to apportion the
discrete plastic strain to the corresponding material points. Vattré [41] and Cui [42] also
discussed the detailed numerical algorithm of localizing the discrete strain to continuum
material points in a 3D DCM simulation. In addition, the strain regularization method
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in a 2D DCM was developed by Huang [30] by considering the interaction of dislocation
with its neighboring inter-phase boundaries and other dislocations. However, the computa-
tional load remains a challenge in computational simulation. There is always a balance of
numerical accuracy and computational efficiency.

In this paper, a concurrent multiscale model coupling DDD to the FEM is developed
to investigate the plastic mechanism of materials at micron/submicron length scales. A FE
mesh-based regularization method is proposed to improve the computational efficiency.
The implementation details of how to apply the DCM principle to couple DDD with FEM
calculation modules during the deformation process are introduced. The optimized data
structure and the achievement of the simultaneous coupling scheme by subroutines are
presented for the first time. The description of the 2D-DCM is provided in Section 2.
Section 3 discusses transfer methods of plastic strain and stress among DDD and FEM
modules. The user subroutines of Abaqus used in the multiscale framework are described
in detail in Section 4. In Section 5, a compression test of a single crystal is performed using
the developed method, and it is followed with some main conclusions drawn in Section 6.

2. Description of DCM Coupling Framework

As schematically illustrated in Figure 1, the multiscale framework consists of two
modules, i.e., DDD and FEM module. The key point of the 2D-DCM is that the plastic
strain calculated by DDD directly participates in the constitutive law of the FEM. The stress
tensor at simulation step n, σn, is expressed as,

σn = [Ce] :
(

εt
n − ε

p
n−1

)
(1)

where ε
p
n−1 is the plastic strain at the last step by DDD, εt

n is the total strain at simulation
step n, and Ce is the elastic moduli tensor. The explicit computation of movement, evolution,
and interaction between dislocations and other defects (e.g., obstacles, dislocation, and
sources) is performed in DDD. In addition, the calculation of the equilibrium stress field in
the FEM module and the coupling algorithm of both modules are discussed.

Figure 1. Schematic of the coupling scheme of DCM (Yellow block represents the single element in
FEM module.).
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2.1. Two-Dimensional Dislocation Dynamics

For the 2D plane strain problem discussed in this paper, only edge dislocations are con-
sidered. The effect of dislocation climb is also negligible compared with that of dislocation
glide. The driving force applied on dislocations can be expressed as

fi = ni·σi·bi, (2)

where ni is a unit normal to the slip plane, bi is the Burgers vector, and σi is the stress tensor
at the position of dislocation i, which is evaluated in the FEM.

Assuming that the edge dislocations can reach a stable velocity instantly, the glide
velocity of dislocation i is

vi =
f i

B
, (3)

where B is the viscous drag coefficient.
Static point sources are distributed on the slip plane randomly to mimic the operation

of Frank–Read sources. A dislocation dipole is generated once the shear stress at the point
source exceeds its critical strength, τnuc, during a time period. The initial distance Lnuc
between two newly generated dislocations is

Lnuc =
µ

2π(1− ν)

b
τnuc

, (4)

where µ is the shear modulus and ν is the Poisson ratio of crystal material.
Two dislocations with opposite Burgers vectors annihilate each other when their

distance is less than the critical annihilation distance Le, which is taken as 6b [43,44].
The motion of dislocations can be impeded by various obstacles, such as small precipi-

tates and forest dislocation. The point obstacles are modeled in 2D-DDD to consider the
effect of the obstacles existing in real crystals [43,45]. If one obstacle lies on the gliding path
of a dislocation, the dislocation is pinned by the obstacle when its resolved shear stress is
less than the strength of the obstacle. Dislocations can be de-pinned or bypass the obstacle
if its shear stress exceeds the obstacle strength.

2.2. Calculation in Finite Element Module

The standard FEM is employed to solve the boundary value problem of a finite crystal
as follows:

[K]{U} = { f a}+ { f p}, (5)

{ f p} =
∫

V
[Ce]εp[B]dV, (6)

where [K] is stiffness matrix, {U} is the nodal displacement vector, { f a} is the applied
force vector, { f p} is the force vector from plastic strain, [B] = grad[N], and [N] is the shape
function vector. The DDD module contributes the plastic strain εp to the unified continuum
mechanics framework.

3. Plastic Strain–Stress Transfer in Coupling Scheme
3.1. Plastic Strain and Stress Transfer Scheme

In this computational simulation model, the plastic strain is explicitly calculated in the
DDD module and is then transferred to Gaussian integration points of the FEM module for
the constitutive calculation. The plastic strain is induced by the glide of dislocation, which
can be calculated as:

ε
p
i =

Ai
2V

(ni ⊗ bi + bi ⊗ ni), (7)

where Ai is the swept area of the dislocation i and V is the representative volume.
The plastic strain ε

p
i obtained from the DDD module should be located at the corre-

sponding integration points as the eigen-strains. Different regularization methods have
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been proposed to solve this problem. In the early work by Lemarchand [27], it was assumed
that a slab with finite thickness h surrounding the glide plane represents the elementary slip
events. The elementary volume associated with each Gauss integration point is taken as
the representative volume. The plastic strain distributed at each integration point depends
on the intersection volume between the slab and elementary volume. Based on the work
of Lemarchand [27], Liu [40] proposed a weight function (i.e., the Burgers vector density
function) to distribute the total plastic strain to each integration point of finite element.
Vattré [41] and Cui [42] also made efforts to improve the regularization method of plastic
strain. For the 2D computational model, Huang [30] presented a detailed regularization
procedure, which is similar to that of Liu [40]. A local domain along the slip plane of dislo-
cation was defined and half of its width was set as a, which is analogous to the dislocation
core spreading radius. The integration points in the local domain would be allocated with
plastic strain, and the allocation proportion of each integration point was decided by its
distance to the slip plane of dislocation. This regularization method can relieve a high
gradient of plastic strain among neighboring elements. However, it causes a heavy compu-
tational burden, especially when numerous dislocations exist in the simulation model, due
to the distances between each integration point, and the slip plane should be calculated.

An efficient regularization method is proposed in this paper by considering the char-
acteristics of meshes of the FEM model. Elements in the FEM model are divided into
elementary domains (i.e., integration point domain), which are associated with each inte-
gration point in the elements. As shown in Figure 2, a dislocation glides along its slip plane
from D to D’. These elementary domains intersecting with the gliding path are regarded as
‘core domains,’ which are shown as the red domains in Figure 2. If the distance from the
integration point of an elementary domain to a core domain is less than the given value a,
the elementary domain k is defined as a ‘secondary domain.’ The hatched and meshed
areas represent the secondary domains in Figure 2. The parameter a has the same meaning
and evaluation as the one used in Huang’s method. The core and secondary domains
together compose the domain Ωi. The localized plastic strain of integration point j, ε

p
ij, in

the domain Ωi is given according to a weight function,

ε
p
ij =

ωj

∑j ωj

Ai
2V

(ni ⊗ bi + bi ⊗ ni), (8)

where ωj is the distribution coefficient for plastic strain caused by dislocation i on integra-
tion point j. The value of ωj, which is selected as the Burgers vector spreading function
developed by Cai [46], can be calculated as

ωj =
1(

r2
j + a2

)3.5 , (9)

where rj is the distance between the integration points of the j-th elementary domain and
its nearest core domain. For the integration point O shown in Figure 2, the distance is
equal to the length of OB, and it replaces the length of OA used by Huang [47]. The
simplification of rj makes it easier to obtain the distribution coefficient. Instead of solving
the formula for the distance from point to line, it only needs the distance between the
integration points of the core and secondary domain. Once the core domains are obtained,
the secondary domains around them can be quickly captured according to the numbering
order of integration points and elements. Figure 3 shows the numbering order of integration
points in different elements. The new method omits the determination of the gliding path
equations of each dislocation by replacing the glide path with the core domain. Thus, with
the present method, it is computationally efficient to capture the influenced domain, Ωi, of
each moving dislocation and calculate the distribution coefficient through directly solving
the distance formula of two points.
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Figure 2. Schematic of distributing plastic strain to integration points of the FEM. The black points
represent integration points. The red areas and the shaded areas are the core domains and secondary
domains, respectively.

Figure 3. The numbering of integration points and nodes in 2D quadrilateral parent elements:
(a) 4-node element, (b) 4-node reduced integration element, (c) 8-node element, and (d) 8-node
reduced integration element. The dashed lines divide the element into integration point domains.
The red dot and black cross represent the node and integration point, respectively.

After FEM calculation, there are two steps to transfer the stress field from the FEM
module to the DDD module, i.e., (i) stress extrapolation from integration points to nodes
by the inverse shape function, and (ii) stress interpolation from nodes to dislocations by
the shape function of the element [41]. In finite element analysis, the numerical integration
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is carried out at the Gaussian points and the stress value at the integration point is the most
accurate. Therefore, in this work, the stress of dislocations is determined by the integration
point domain where dislocations reside. The stress tensor of a dislocation is the same as its
nearest Gaussian integration point. The division of various elements into integration point
domains is illustrated in Figure 3. Each domain contains one integration point and any
point in the domain has the shortest distance to the contained integration point compared
to other integration points in the parent element. The number of integration points in
the parent element is determined by the degree of the integrated polynomial terms in the
element’s stiffness matrix and the desired accuracy of results. According to the number of
integration points required, their locations in the parent element can be obtained by Table 1.

Table 1. Gauss numerical integration constants.

Number of Integration Points (n) Integration Point Location xi

1 x1 = 0
2 x1 = 1/

√
3, x2 = −1/

√
3

3 x1 =
√

0.6, x2 = 0, x3 = −
√

0.6

3.2. Coordinate System Conversion Involved in Coupling Scheme

In order to complete the data exchange between DDD and the FEM module, the
transformation of the coordinate system should be taken into account.

The calculation in the DDD module, such as glide force, dislocation velocity, and
plastic strain, is finished on the local coordinate system whose axes are consistent with
the slip direction and normal direction of the slip plane, as shown in Figure 4a. The FEM
module is constructed in the sample coordinate system, unlike that of the DDD module. To
achieve the coordinate system transformation, the transformation matrix, [R], is calculated
by representing the vector OA in the two coordinate frames, as illustrated in Figure 4b.
Then, the vectors, {g}, and tensors, [M], can be transformed with rules as follows:{

g′
}
= [R]{g}, (10)[

M′
]
=
[

RT
]
[M][R], (11)

where {g′} and [M′] are the transformed vector and tensor, respectively. Superscript T
means matrix transpose.

Figure 4. Schematic of two-dimensional coordinate system conversion. (a) (x, y) and (x′, y′) represent
the position of point A in the coordinate system OXY and O′X′Y′, respectively. (b) The transformation
matrix R can be obtained from the relationship of two coordinate systems.
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4. Subroutines for ABAQUS

The multiscale framework is built by the secondary development of finite element
software ABAQUS. In this section, the implementation details of the DCM model in
ABAQUS are introduced.

4.1. User Subroutines in the Multiscale Framework

Abundant user subroutines are provided in ABAQUS, which allow advanced users to
customize a variety of ABAQUS capabilities [48]. The general workflow for running the
DCM using ABAQUS is illustrated in Figure 5. Three user subroutines are used for the
DCM model, including URDFIL for results processing, UEXTERNALDB for external file
manipulation, and UMAT for the physics-based constitutive law. The functions of these
subroutines in the developed model are discussed below.

Figure 5. The workflow of the multiscale framework coupling FEM and DCM.

A user subroutine called URDFIL is written particularly as a stress relay from the FEM
to DDD module. The subroutine performs two functions: it can access the results file for
stress tensors of Gaussian integration points, nodes coordinates, elements, and its relative
integration point numbers at the end of the increment, and it transfers this new information
to the DDD module by writing them to user-defined COMMON blocks.

The DDD-relative calculations (e.g., the velocity of dislocations, dislocation multiplica-
tion, and annihilation) are implemented by calling the user subroutine UEXTERNALDB.
This subroutine provides flexible points-in-time where other software or codes are able to
communicate with the finite element analysis program (i.e., Abaqus/Standard), and data
information stored in external files can be read in.

After user subroutine UEXTERNALDB is called, a user-supplied subroutine DDCODE
is implemented to specify the DDD-relative calculations. It is constantly called at the
beginning of each increment (i.e., LOP = 1) to update the state of dislocations, obstacles,
and Frank–Read sources and to calculate the plastic strain induced by dislocation gliding.

There are ten self-defined subroutines, STRAINSUB, SOURCESUB, RFRESUB, ABAID-
SUB, DISPSUB, NEWCODSUB, FORCESUB, OBSSUB, PNPLOY, and ANNISUB consisting
of the dominant subroutine DDCODE. These subordinative subroutines implement the dis-
location mechanisms by operating on the data structures of dislocations, dislocation sources,
and obstacles. The data structures used in the model are introduced in the next section. The
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calling sequences of these subroutines are shown in Figure 5. The subroutine FORCESUB
is used to calculate the force applied on dislocations using the stresses transferred from
the FEM module, by Equation (1). Once the force on dislocations is obtained, their velocity
and displacement can be given by Equation (2), as performed in subroutine DISPSUB. The
transformation matrix and equations have been provided in Section 3.2. According to the
displacement of dislocations, new coordinates of dislocations are calculated in subroutine
NEWCODSUB. The subroutine OBSSUB determines if dislocations are pinned or unpinned
by obstacles and it provides the dislocation numbers that are pinned. The subroutine
ANNISUB decides whether the dislocation annihilates with other dislocations according
to the relative positions of dislocations. The subroutine SOURCESUB, which follows the
dislocation-generation rules discussed in Section 2.1, generates a dislocation dipole once all
the conditions (i.e., the critical strength and nucleation time) are met. The subroutine REF-
SUB eliminates the dislocations that annihilate or escape from the simulation model and
re-number the remaining and newly generated dislocations. The subroutine ABAIDSUB,
which calls subroutine PNPLOY, identifies which element and integration point domain
the dislocations belong to. The subroutine PNPLOY is called to find whether a point is
inside or outside a polygon. The last one subroutine STRAINSUB calculates plastic strain
induced by each moveable dislocation and distributes them to corresponding integration
points by the FE mesh-based method introduced in Section 3.2.

The plastic strain tensors at each integration point are saved in a three-dimensional
array. It is important to notice that all the subroutines used in the paper is with FOR-
TRAN language as most user subroutine interfaces in the manual of ABAQUS use it. The
FORTRAN language, unlike other programming languages, stores arrays in column-major
format, as shown in Figure 6a. That is to say, in a two- or multi-dimensional array, the
left-most array index varies the most rapidly and the right-most array index varies the most
slowly. Thus, the index of the first dimension (from left to right) represents the components
of plastic strain and the component order is the same as that in UMAT, as illustrated in
Figure 6b. The second and third indices are the integration point and element number
where the plastic strains are distributed, respectively. This storage means of plastic strain
allows the generation of simple and efficient machine code, to improve the computing and
running speed. The storage format of the multi-dimensional array and the illustration of
the plastic strain array are shown in Figure 7.

Figure 6. The storage format of arrays in Fortran (a), and the plastic strain tensor re-written into the
vector to store in an array (b).
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Figure 7. The data structure of plastic strain tensor at the integration points of all elements.

Moreover, the subroutine UEXTERNALDB is called once at the start of the analysis
(LOP = 0). This is to obtain the reference state for the DDD module. The DDD reference
state consists of the initial information of dislocation, obstacle, and Frank–Read source,
such as the coordinates, critical strength, and nucleation time, before loading is applied.
The data structure of the reference state is given in Section 4.2. The initial information is
stored in external files. At the beginning of the analysis, subroutine UEXTERNALDB reads
data from these files and uses them to initialize the DD module.

The subroutine UMAT, allowing user-defined mechanical material behavior, imple-
ments the above physics-based constitutive law (Equation (1)) by using plastic strain
calculated by DDD. When the subroutine is called, the parameters such as stresses, strain
increments, and state variables (SDVs) are directly passed into UMAT, while the material
parameters defined in the input file are accessed by the variable PROPS. With the variables
passed in, the UMAT subroutine updates the stresses and SDVs at the end of the increment
and generates the Jacobian matrix of the constitutive model. An important note is that the
definition of the material Jacobian affects only the convergence rate, not the simulation
results obtained [48].

4.2. Data Structure for the Coupling Framework

The data structures of dislocations, obstacles, and dislocation sources are shown in
Figure 8. It can be seen that the basic data structure of a dislocation consists of identity
number, location information, its sign (i.e., plus or minus one, representing positive or
negative dislocations, respectively), and the state information. The information of location
includes the coordinate value, the located slip system, and the element and integration
point number where the dislocation resides, as shown in Figure 8a. The preliminary
calculation with user subroutines generates the stress, displacement, and new coordinates
of the dislocation i, and then the state information (i.e., illustrating whether the dislocation
is pinned, annihilated, or newly generated) is obtained. Moreover, as can be seen from
Figure 8b, the data structure related to dislocation sources and obstacles is much simpler
compared to the dislocations. In addition to the location information, the critical strength
and time are added for sources and only strength is added for obstacles, as shown in
Figure 8c. During the deformation process, these data are read and updated continuously
by the self-defined subroutines mentioned in the above section. As shown in Figure 8a,
for the dislocation, its relative element and integration point number are updated by
the subroutine ABAIDSUB, and the driving force, displacement, and new coordinates
are calculated and updated by subroutines FORCESUB, DISPSUB, and NEWCODSUB,
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respectively. The signs of annihilating, newly generating, and pinning are determined by
subroutines ANNISUB, SOURCESUB, and OBSSUB. The data structure of sources is mainly
visited and updated by subroutine SOURCESUB. Similarly, the data structure of obstacles
is accessed by subroutine OBSSUB.

Figure 8. The data structures of dislocations (a), obstacles (b), and dislocation sources (c), and the
relative user subroutines.

The initial data structures of dislocations, sources, and obstacles (i.e., the data struc-
tures before loading is applied) are utilized to describe the reference state of the DDD
module. They are generated by MATLAB and written into text files that are visited at the
start of ABAQUS/Standard analysis to initialize the DDD module.
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5. Uniaxial Compression Simulation for Single Crystal Micropillar
5.1. Computational Model of Micropillars

For verification, the developed simulation model is used to study the deformation
behaviors of crystal materials under uniaxial compression. As shown in Figure 9, micropil-
lars with four different widths are built with a constant aspect ratio of height H to width
L (H/L = 2). An isotropic aluminum single crystal is considered here with Poisson’s ratio
v = 0.3, shear modulus µ = 26 Gpa, Burgers vector b = 0.25 nm, and drag coefficient
B = 10−4 Pa s [28,44,45].

Figure 9. Sketch of micropillar compression. The black T-signs represent dislocations. The red
triangle and green circle represent obstacle and source, respectively.

For face-centered crystal Al, the representative material parameters used in DDD
are the same as the ones used in other research [28,30,43,45]. Two slip systems with
the interaction angle of ±60

◦
relative to the horizontal direction are considered with the

spacing distance of two neighboring slip planes being 10b. This approximates to the active
slip systems of the face-centered crystal in plastic strain problems. The x-axis and y-axis
represent the crystal directions [101] and [010], respectively. Static dislocation sources are
distributed on these slip planes randomly with strength satisfying the Gaussian distribution
with mean value 50 MPa and standard deviation 10 MPa. The critical time for dislocation
nucleation is set as 10 ns. The obstacles in the model are with mean strength 150 MPa and
20% standard deviation.

To mimic the compression experiment, a fixed compressive strain rate
.
ε = 1000/s is

imposed for all samples. Time steps of 1 ns for DD and 10 ns for the FEM are used here [49].
In all the simulations, the bottom boundaries of specimens are fixed as:

ux = uy = 0, at Y = 0, (12)

The upper surface is subjected to a velocity vx such that

vy = L
.
ε, at Y = L, (13)

DCM simulations are performed with the boundary conditions and material parame-
ters as described above. The simulation results are discussed below.

5.2. Effect of Sample Size on Crystal Strength

The computationally obtained σ ∼ ε curves are plotted in Figure 10 for four different
simple sizes L = {0.3, 0.5, 0.8, 1.0} µm. To avoid the potential effect of defect distribution
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(i.e., the distribution of dislocations, sources, and obstacles) on the simulation results, for
each size, three simulations are carried out with different defect distributions. It is found
that the smaller the sample size, the higher the strength, as observed in experimental
investigation [5]. This validates that the present simulation model is capable of capturing
the microscale plastic response. Due to numerous dislocations being greatly active at
L = 1.0 µm, the stress–strain curves oscillate poorly and even fail at small strains. A similar
phenomenon was also found in the compressing simulation of copper micropillars [50].
From these stress–strain curves, we compute the nominal yield stress σ0.2, which is the
stress value at 0.2% plastic strain offsets, and plot it in Figure 11a. The inset of Figure 11a
shows the acquiring of the normal yield stress for the 0.3 µm-wide micropillar. The results
indicate that the yield stress increases with decreasing pillar size. The error bars denote the
range of the values of σ0.2.

Figure 10. Stress–strain curves of micropillars with different widths L = {0.3, 0.5, 0.8,1.0} µm.

Figure 11. The yield stress at 0.2% plastic strain offsets, σ0.2, (a) and average secant hardening
modulus, Have, (b) versus the width of micropillars. The inset in (a) shows the capture of the yield
stress from the one stress–strain curve, and the inset in (b) is the ratio of surface area to volume for
each micropillar.
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In addition, the secant strain hardening modulus, Hsec, is defined as the ratio of stress
to plastic strain from εp = 0.1% to εp = 0.3%, as follows:

Hsec =
σε=0.003 − σε=0.001

0.003− 0.001
, (14)

Then, the average value of Hsec over three realizations for a particular pillar size,
Have, is calculated and plotted in Figure 11b. It shows that the average strain hardening
modulus decreases with sample size and that larger pillars are with the smaller scatter of
Have values. In addition, the ratio of surface area to volume, which is reduced to the ratio of
length to surface area for the plane strain problem, is calculated for each pillar. The inset of
Figure 11b shows that the ratio decreases with sample size, although all the samples have
the same length–width ratio. It indicates that dislocations in small samples have a high
possibility to escape from the sample. The escape of dislocations from the free surface can
result in the dislocation starvation effect [49] in small pillars and the hardening of materials.

6. Conclusions

In this paper, a concurrent multiscale simulation method is developed to shed light on
the material plasticity at the microscale. In this method, the DDD module looks to the FEM
module to solve the boundary conditions and the FEM module turns to DDD for plastic
strain, which determines the constitutive law of the FEM.

The key issue in the DDD-FEM coupling scheme is how to reasonably regularize
the discrete plastic strain to integration points of continuum mechanics. A novel FE
mesh-based regularization method is proposed by using a Burgers vector density function
and the characteristics of a finite element mesh in ABAQUS. It shows high accuracy and
considerably improves the efficiency by avoiding the tedious calculations.

To achieve the concurrent computational model, the DDD module is programmed
into Fortran codes, and then it is incorporated into the Abaqus analysis by calling user
subroutines provided by Abaqus to determine the constitutive law. The stress field is
stored in COMMON blocks and transferred to DDD codes. The realization of the multi-
scale model capitalizes on the secondary development of FEM software Abaqus, and the
implementation details are presented for the first time.

The developed multiscale framework is able to capture the plastic behavior of mi-
croscale crystals. Using this multiscale method, uniaxial compression tests of micropillars
are performed to study the size effect on plasticity and its underlying mechanisms. The
observed secant strain hardening of the modulus and yield stress might be due to the high
probability of dislocations in smaller size to escape from the free surface.

This multiscale framework can be potentially employed in studying the plastic be-
havior of materials with complex microstructures and deeply revealing its underlying
mechanisms. In future work, the developed simulation model will consider a variety of
complex dislocation motions, such as dislocation climb, interactions between dislocation
and grain boundary, and dislocation junction formation.
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