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Abstract: Cyclohexylammonium hexaisothiocyanatonickelate(II) dihydrate,
(C6H11NH3)4[Ni(NCS)6]·2H2O, was synthesized, for the first time, by a four-step method in a
yield of 95%. The compound was fully characterized by elemental microanalysis, Fourier trans-
form infrared (FTIR), ultraviolet-visible-near infrared (UV-Vis-NIR), and nuclear magnetic resonance
(NMR) spectroscopy and thermogravimetry. A single crystal X-ray diffraction (SXRD) gave the mon-
oclinic space group P21/c with a = 15.8179 (5) Å, b = 10.6222 (3) Å, c = 13.8751 (4) Å, β = 109.362 (1)◦,
V = 2199.45 (11) Å3, Z = 2 (T = 293 K) for this novel hybrid organic–inorganic compound. The title
compound was employed as a single-source precursor for the synthesis of mesoporous, high surface
area nickel oxide (53 Å; 452 m2/g) and nickel sulfide (46 Å; 220 m2/g) via pyrolysis under air at
550 ◦C or helium atmosphere at 500 ◦C, respectively. X-ray powder diffraction (XRPD) demonstrated
the nanocrystalline nature of both NiO and NiS with an average crystallite size of 16 and 54 nm,
respectively. Scanning electron microscope (SEM) indicated the formation of agglomerated, quasi-
spherical particles of nickel oxide and agglomerated flake-like structures of nickel sulfide. The high
surface area, porosity, and nanocrystallinity of both NiO and NiS, obtained via this approach, are
promising for a wide spectrum of applications.

Keywords: cyclohexylammonium; hexaisothiocyanatonickelate(II); pyrolysis; nickel oxide; nickel
sulfide

1. Introduction

For more than 100 years, the triatomic linear thiocyanate [SCN]− or isothiocyanate
[NCS]− ligand has captured the attention of many researchers due to its low toxicity and
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varied coordination modes to metal ions. It can bind to the metal center as a terminal
monodentate linker via N- or S-atom, according to Pearson’s hard-soft acid-base (HSAB)
classification concept. Furthermore, it binds to metal cations in bridging mode through
nitrogen and sulfur atoms, M—NCS—M [1,2]. These different modes of coordination lead
to the formation of compounds with major diversity in chemical, physical, and structural
properties. Therefore, in the context of correlating thiocyanate complex structures with their
properties, Christian et al. prepared manganese, cobalt, and nickel thiocyanate complexes,
which exhibited cooperative magnetic phenomena. Such complexes dramatically changed
their magnetic properties upon thermal decomposition [3]. In addition, manganese, iron,
and nickel thiocyanate complexes with 4-ethylpyridine, as a co-ligand, were synthesized
and investigated to show cooperative magnetic phenomena [4]. In another application, the
[Ni(SCN)4(2-methylpiperazine)2] complex was effective against the activities of bacteria
such as E. coli, S. typhimurium, E. feacium, and C. albicans [5]. The complex of [Ni(NCS)2(para-
phenylpyridine)4] showed remarkable isomeric selectivity for ortho-xylene over meta- and
para-xylene from a ternary mixture, and a similar selectivity for meta- over para-xylene
from a binary mixture [6].

Hybrid organic–inorganic compounds, based on the bulky anionic complex of hex-
aisothiocyanatonickelate(II), [Ni(NCS)6]4−, have also drawn considerable attention due
to their promising applications [7–13], depending on the identity of the organic cation.
For instance, when the organic cation was 1-butyl-3-methylimidazolium, BMIM+, the
resultant compound exhibited ionic liquid nature and reversible thermochromic behav-
ior [7]. However, when the organic cation was tetrakis(triethylammonium), the eventually
produced compound was a useful precursor for the synthesis of anhydrous nickel thio-
cyanate [8]. The piperidinium cation resulted in a new compound, which could be used for
the preparation of nickel sulfide via thermal decomposition under nitrogen [9]. Incorpora-
tion of triphenylmethylphosphonium cation in a compound with [Ni(NCS)6]4− produced
ferroelectric, piezoelectric material, which was suitable for harvesting energy upon its
integration, 15 wt.%, in thermoplastic polyurethane [10]. On the other hand, introducing
trimethylammonium gave a suitable material for a dielectric switch, tuned by frequency, as
a result of phase transition [11].

On the basis of the organic cation, cyclohexylammonium is a unique building block
due to its capability to form various dimensional structures, depending on the identity of
its counter anion and the presence of solvent of crystallization molecules, via its hydrogen
donor nature [14–37]. Another attractive feature of cyclohexylammonium is its usefulness
as a soft organic template for the creation of mesopores, after its thermal decomposition,
within the produced ceramic [26,38,39].

Metal sulfides have received high attention as semiconductors and for other appli-
cations. Dithiocarbamate of general formula (R2CNS2

−) was extensively reported as a
single-source precursor (SSP) for metal sulfides [40–44] in the form of thin films or nanopar-
ticles [45,46]. Although there have been thorough investigations of several thiocyanate
or isothiocyanate metal compounds, none of them has been utilized as an SSP for metal
sulfides or oxides [3,8,12,13,47–53]. Recently, we have reported cyclohexylammonium
tetraisothiocyanatocobaltate(II) as an SSP for cobalt sulfide (CoS) and tricobalt tetraoxide
(Co3O4) nanoparticles [26], while cyclohexylammonium hexaisothiocyanatochromate(III)
sesquihydrate as an SSP for nanocrystalline chromium sulfide (Cr2S3) and chromium oxide
(Cr2O3) [38].

In this work, cyclohexylammonioum hexaisothiocyanatonickelate(II) dihydrate,
(C6H11NH3)4[Ni(NCS)6]·2H2O was synthesized, characterized, and utilized as an SSP,
via its thermal decomposition under two different atmospheres, for high surface area,
mesoporous, nanocrystalline nickel sulfide (NiS) and nickel oxide (NiO).

2. Material and Methods

Nickel nitrate hexahydrate [Ni(NO3)2·6H2O; purum p.a.; crystallized; ≥98.0%, Sigma-
Aldrich, St. Louis, MI, USA], sodium thiocyanate (NaNCS; pure; 99%; Riedel-de Haën
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AG, Seelze, Germany), cyclohexylamine [C6H11NH2; >99.0%(GC); TCI], hydrochloric acid
(HCl; 37%; certified AR for analysis; Fisher Chemical; Fisher Scientific, Waltham, MA,
USA), and ethanol absolute (EtOH; GRG, Shibuya-ku, Japan; 99.9%; PETROCHEM) were
commercially available and were used without further purification.

Synthesis of (C6H11NH3Cl): cyclohexylammonium chloride (C6H11NH3Cl) was pre-
pared by the direct reaction of 110 mmol of cyclohexylamine (12.6 mL), dissolved in 100 mL
of water of 110 mmol of hydrochloric acid (~9.2 mL of 37% HCl), diluted to 100 mL, in an
ice bath, was added gradually to the cyclohexylamine solution over a period of 30 min. Col-
orless crystals of cyclohexylammonium chloride (14.9 g; quantitative yield) were obtained
by evaporation of water solvent at room temperature.

Synthesis of (C6H11NH3NCS): cyclohexylammonium thiocyanate (C6H11NH3NCS)
was obtained from the metathesis reaction between cyclohexylammonium chloride and
sodium thiocyanate in ethanol medium, as it was described in the literature [26,34,38]. The
synthesis of C6H11NH3NCS was the second step in our approach. In a typical reaction, a
solution of sodium thiocyanate NaSCN (8.107 g; 100 mmol) in EtOH (350 mL) was added
to a solution of cyclohexylammonium chloride (C6H11NH3Cl;13.563 g; 100 mmol) in EtOH
(350 mL) with stirring at room temperature. Afterward, a precipitate of NaCl byproduct
was filtered off, while the filtrate was left for slow evaporation at room temperature to
obtain the desired product of C6H11NH3NCS, which was purified by recrystallization with
a yield of 99%.

Synthesis of Ni(NCS)2: A solution of sodium thiocyanate (1.6214 g; 20 mmol) in EtOH
(50 mL) was poured, with stirring, into a solution of Ni(NO3)2·6H2O (2.908 g; 10 mmol)
in EtOH (50 mL) at room temperature. Then, a clear, light green ethanolic solution was
obtained after the filtration of the precipitated sodium nitrate (NaNO3) with a yield of
1.68 g (99%).

Synthesis of (C6H11NH3)4[Ni(NCS)6]·2H2O: cyclohexylammonium hexaisothiocyana-
tonickelate(II) dihydrate was prepared by a ligand addition reaction, where 40 mmol (6.3304 g)
of C6H11NH3NCS crystals was added to [Ni(NCS)2](EtOH) under continuous magnetic stir-
ring until the completion of the reaction, as it was indicated by the complete dissolution
of C6H11NH3NCS. Green crystals of the target compound were obtained by the room-
temperature evaporation of EtOH over a period of a week. The crystals were purified by
dissolving them in the minimum amount of EtOH, followed by filtration of the undissolved
white crystals of NaNO3 (proven by XRD analysis), and then by the room-temperature evapo-
ration of EtOH to give 8.0174 g of the target compound crystals (95% yield). The overall yield
of the multistep reactions of the new target compound was 93%. The synthesis procedure is
illustrated in Scheme 1.
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Scheme 1. Schematic diagram for the synthesis of (C6H11NH3)4[Ni(NCS)6]·2H2O.

Our preparation method of (C6H11NH3)4[Ni(NCS)6]·2H2O is straightforward and
cost-effective because it is performed at room temperature. On the other hand, ther-
mal methods are required for the preparation of the reported hybrid organic–inorganic
compounds of [Ni(NCS)6]4− [7,9]. Moreover, our method gave excellent yield, while
the synthesis procedures of [(C2H5)4N]4[Ni(NCS)6] [18], [(C6H5)3PMe]4[Ni(NCS)6] [10],
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[(H3C)3NH]4[Ni(NCS)6] [11], and (BMIM)4[Ni(NCS)6] [7] resulted in yields of 36%, 55%,
80%, and 93%, respectively.

2.1. Elemental Microanalysis

A PerkinElmer Series II CHNS/O analyzer was used to quantify carbon, hydrogen,
nitrogen, sulfur, and oxygen in the novel organic–inorganic hybrid compound. On the
other hand, an Agilent 700 series inductively-coupled plasma-optical emission (ICP-OE)
spectroscopy was used to quantify the nickel content.

2.2. Fourier Transform Infrared (FTIR) Spectrophotometry Analysis

A PerkinElmer Spectrum GX was used for FTIR analysis. All samples were ground to
a fine powder before they were mixed with 10–15 weight times of FTIR-grade potassium
bromide (KBr). The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)
analysis was recorded in the range of 400–4000 cm−1.

2.3. UV-Visible-Near Infrared Absorbance Spectrophotometry (UV-Vis-NIR)

A Perkin Elmer Lambda 950 UV/Vis/NIR spectrophotometer was used to record
the liquid-state UV-Vis-NIR absorbance spectrum for the new compound in the range of
350–1100 nm.

2.4. Nuclear Magnetic Resonance (NMR) Spectroscopic Analyses

Proton and carbon NMR analyses were carried out on a Joel 600 MHz by using
deuterated methanol.

2.5. Single Crystal X-ray Diffraction Measurements

The data collections were carried out at 293K and 120K, on a Bruker D8 Venture
diffractometer by using MoKα radiation. Single crystals of (C6H11NH3)4[Ni(NCS)6]·2H2O,
suitable for X-ray diffraction, were selected on the basis of the size and the sharpness of
the diffraction spots. Data processing and all refinements were performed with the Jana
2006 program package [54]. A multi-scan-type absorption correction was applied by using
SADABS in Apex3 software package Bruker 2012 and the crystal shape was determined
with the video microscope.

2.6. Thermal Gravimetric Analysis (TGA)

The Q50 thermal gravimetric analyzer (TGA) was used to study the thermal decompo-
sition of the new compound under two different atmospheres: air and helium. Both TGA
analyses were carried out at a 5.0 ◦C/min ramping rate from room temperature to 800 ◦C.

3. Results and Discussion
3.1. Elemental Analysis

Satisfactory elemental analyses were obtained for all the elements present. Calculated
and found values are compiled in Table 1. Furthermore, crystal structure determination by
single-crystal X-ray diffraction (SCXRD) resulted in the same molecular formula.

Table 1. Elemental microanalysis for (C6H11NH3)4[Ni(NCS)6]·2H2O.

Element Theoretical (wt/wt%) Experimental (wt/wt%)

C 42.70 42.57
H 7.17 7.12
N 16.60 16.58
S 22.80 22.65
O 3.79 3.68
Ni 6.95 6.86
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3.2. FTIR Analysis

The FTIR spectrum in Figure 1 shows different vibrational frequencies for νO—H,
νN—H, νC—H, νC=N, νC—N, and νC=S. These frequencies represent the cation, anion, and
crystallization water molecules within the crystal of the synthesized novel, hybrid organic–
inorganic compound. The spectrum displays two broad, medium intensity bands at 3555
and 3438 cm−1, which might correspond to the stretching of νO—H for the crystallization
water molecules. The broadness of these peaks indicates their participation in forming in-
termolecular hydrogen bonds. This assumption regarding hydrogen bonds was confirmed
by a careful analysis of the crystal structure, which was determined by SCXRD. The strong
sharp band at 1585 cm−1 could be ascribed to the water bending mode. The strong, broad
peaks in the range of 3150–3000 cm−1 might be attributed to the asymmetric stretching
vibrations of νN—H of the cyclohexylammonium cations. This bathochromic shift in the
asymmetric stretch of νN—H could be owing to the positively charged nitrogen atom and
to the hydrogen bonds with the other moieties in the compound, as it was verified by
SCXRD. We could observe the N—H scissoring at 1585 cm−1 (strong), wagging at 1321 and
1282 cm−1 (medium), and twisting at 919 cm−1 (medium). The peak at 2936 cm−1 would
be assigned to the asymmetric stretching of νC—H, while the peak at 2858 cm−1 might be
assigned to the symmetric stretching of νC—H of the cyclohexylammonium [55]. The C—H
deformation could be ascribed to the bands at 1495 and 1448 cm−1, while its wagging at
1227 cm−1, its twisting at 1120 and 1065 cm−1, its bending at 869 cm−1, and its rocking at
841, 792, and 546 cm−1. The stretching vibrations of νC—N might be assigned to the bands
at 1034 and 1000 cm−1, while its bending at 495 cm−1 [56–58]. The ring deformation could
be observed at 1174, 890, and 790 cm−1. On the other hand, the ring breathing could be
detected at 956 cm−1. The band at 2235 cm−1 might be an indication for some absorbed
atmospheric CO2 [59,60]. The ligand of N=C=S exhibited strong asymmetric stretching
vibrations for νN=C at 2091 and 2063 cm−1 [61], which were evidence for the binding of
the N-terminal of NCS ligands to Ni(II) ion center, while the splitting of the band at 2091
and 2063 cm−1, circled in Figure 1, might indicate the distortion of the octahedral structure
of the anionic complex of [Ni(NCS)6]4−. On the other hand, the symmetric stretching
of the NCS ligand could be observed at 921 cm−1, with weak stretching vibrations for
νC=S at 774 and 786 cm−1, and bending at 475 cm−1 [3,62]. These observed bands of NCS
ligand, shifted towards lower wavenumbers, implied some loss of CN triple bond character
(2091 cm−1) and coordination to nickel ion center via N-terminal, while the shift towards
higher wavenumbers for the CS bond implied some gain of C=S double bond character [63].
Thus, FTIR spectrophotometry verified the formation of the target hybrid organic–inorganic
compound, which was also confirmed by UV-Vis-NIR absorbance and SCXRD.

3.3. UV-Vis-NIR Analysis

Figure 2 shows the UV-Vis-NIR absorbance spectrum of (C6H11NH3)4[Ni(NCS)6]·2H2O,
in methanol, at room temperature, as a function of energy and wavenumber. The spectrum
exhibited three distinguished peaks at 1.22 eV (9842.25 cm−1; ν1), 1.97eV (15,898.25 cm−1;
ν2), and 3.17 eV (25,575.45 cm−1; ν3), where all these peaks were assigned to spin-allowed
transitions. The ν1 peak corresponds to the 3A2g(F) → 3T2g(F) transition, the ν2 to the
3A2g(F) → 3T1g(F) transition, and the ν3 the 3A2g(F) → 3T1g(P) transition, as per the
Tanabe–Sugano diagram for octahedral d8 metal ion center [12,13]. With considering the
significance of the interactions between metal and ligand and the separating energy of
~1.0 eV between each two successive absorption bands, we could assign the ν3 transition
to ligand–metal charge transfer (LMCT) because it was the strongest in terms of energy
and intensity, ascribe the ν2 transition to ligand field (d-d) band, and attribute the ν1
transition to both of d-d and LMCT, where part of LMCT is symmetrically banned for
the perfectly octahedral hexaisothiocyanatonickelate(II) and feebly permitted in the real
distorted structure of this complex, and hence, ν1 transition was observed stronger and
more intense than ν2 transition. Furthermore, the ratio between the positions of two
successive peaks was ~1.61, indicating the formation of octahedral Ni(II) complex without
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tetragonal distortion [13]. All these observations, inferred from the UV-Vis-NIR spectrum,
confirmed the formation of the anionic complex of [Ni(NCS)6]4− and were in agreement
with the above FTIR spectrum and with the crystal structure determination by SCXRD.
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3.4. NMR Spectra Analyses

The 1H- and 13C-NMR spectra of the new hybrid organic–inorganic compound of
(C6H11NH3)4[Ni(NCS)6]·2H2O are displayed and discussed in the supplementary informa-
tion (Figures S1 and S2; Tables S1 and S2).

3.5. SCXRD Analyses

At room temperature, the compound (C6H11NH3)4[Ni(NCS)6]·2H2O crystallizes
in the monoclinic crystal system. The extinction conditions observed agree with the
P21/c space group. Most of the atomic positions were found by using the superflip
program. With isotropic atomic displacement parameters (ADPs), the residual factors
converged to the value R(F) = 0.27, wR(F2) = 0.5432, and S = 4.95 for 98 refined parame-
ters and 6892 observed reflections. At this stage of the refinement, the chemical formula
(C6H11NH3)4[Ni(NCS)6]·2H2O was not equilibrated. By refining the anisotropic ADPs
of all the atoms, the residual factors converged to the value R(F) = 0.1044, wR(F2) = 0.252,
and S = 2.31 for 223 refined parameters. The difference-Fourier maps showed very weak
residues at distances close to 0.9Å from several carbon, nitrogen, and oxygen atoms and
were attributed to the H atoms. Restrictions were applied on their positions and (ADPs) and
the extinction parameter was refined. The chemical formula became
(C6H11NH3)4[Ni(NCS)6]·2H2O and the residual factors decreased to the final values, given
in the supplementary information. The atomic positions and the anisotropic ADPs are
given in the supplementary information, respectively.

Since at room temperature very large ADPs were observed for most of the carbon
atoms, a second set of data was collected at 120 K. A large decrease of the cell volume from
2199.45(11) to 2134.77(11) Å3 was observed without any change in the symmetry. Therefore,
the room temperature structure was used as a starting model for the refinement of the low
temperature structure. A significant decrease in the ADPs was observed. However, one of
the two C6H14N still showed large carbon ADPs. Consequently, these carbon atoms were
split without any constraints on their ADPs and led to the final residual factors, given in
Table 2. The atomic positions and the ADPs are given in the supplementary information
(Tables S1–S4). Further details on the structure refinement may be obtained from the
Cambridge Crystallographic Data Centre (CCDC), by quoting the Registry No. CCDC
2,131,541 [64].

The unit cell of the title compound (C6H11NH3)4[Ni(NCS)6]·2H2O consists of two
formula units (Z = 2), each of which comprises two water molecules, the anionic complex
of hexaisothiocyanatonickelate(II) (the inorganic moiety) and four cyclohexylammonium
cations (the organic moiety). Half of the cations show disorder on the carbon atomic
positions (see Figure 3). Selected bond lengths and angles are given in Table 3.

The hexaisothiocyanatonickelate(II) anion displayed a regular octahedron geome-
try. The angle value of 180◦ was shown perfectly linear for N—Ni—N octahedron axis,
while marginal deviations from linearity were shown as 179.0(1), 178.6(1), and 178.4(1)◦

for the N1—C1—S1, N2—C2—S2, and N3—C3—S3 ligand angle values, respectively.
These values were similar to those previously reported for this anionic complex with
tetrakis(triethylammonium) cation [8]. Hydrogen bonds among cation, anion, and water
molecules were observed. They interconnect these molecules to form a 2D-layered struc-
ture, as shown in Figure 4, where the crystal structure view, along the b-axis, illustrates
clearly that each layer of the octahedral [Ni(NCS)6]4− is interacting with two layers of
(C6H11NH3)+. All possible hydrogen bonds are listed in Table 4.
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Table 2. Experimental details.

Crystal Data

Chemical formula (C6H11NH3)4[Ni(NCS)6]·2H2O (C6H11NH3)4[Ni(NCS)6]·2H2O
Mr 843.9 843.9

Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 120

a, b, c (Å) 15.8179 (5), 10.6222 (3), 13.8751 (4) 15.6486 (5), 10.4641 (3), 13.7387 (4)
β (◦) 109.362 (1) 108.393 (1)

V (Å3) 2199.45 (11) 2134.77 (11)
Z 2 2

Radiation type Mo Kα Mo Kα
µ (mm−1) 0.76 0.79

Crystal size (mm) 0.23 × 0.19 × 0.07 0.23 × 0.19 × 0.07

Data collection

Diffractometer D8 venture
diffractometer

D8 venture
diffractometer

Absorption correction Multi-scan
SADABS

Multi-scan
SADABS

Tmin, Tmax 0.694, 0.747 0.695, 0.746
No. of measured, independent and

observed [I > −4σ(I)] reflections 39757, 6892, 6892 31049, 5537, 5537

Rint 0.028 0.026
(sin θ/λ)max (Å−1) 0.722 0.677

Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.168, 1.54 0.036, 0.096, 1.18

No. of reflections 6892 5537
No. of parameters 230 277
No. of restraints 3 2

H-atom treatment H atoms treated by a mixture of
independent and constrained refinement

H atoms treated by a mixture of
independent and constrained refinement

(∆/σ)max 0.107
∆ρmax, ∆ρmin (e Å−3) 0.50, −0.39 0.18, −0.23
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Table 3. Selected angles and bond length of (C6H11NH3)4[Ni(NCS)6]·2H2O.

Bond Length (Å) Angles Degree

Ni1 N1 2.092 N1 Ni1 N2 86.77
Ni1 N2 2.099 N1 Ni1 N3 89.30
Ni1 N3 2.082 N1 Ni1 N1 180.00
Ni1 N1 2.092 Ni1 N1 C1 146.4
Ni1 N2 2.099 Ni1 N2 C2 153.4
Ni1 N3 2.082 Ni1 N3 C3 156.4
N1 C1 1.155(2) N1 C1 S1 179.0(1)
N2 C2 1.154(2) N2 C2 S2 178.6(1)
N3 C3 1.153(2) N3 C3 S3 178.4(1)
C1 S1 1.630(1)
C2 S2 1.637(1)
C3 S3 1.620(1)
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Figure 4. Projection view (C6H11NH3)4[Ni(NCS)6]·2H2O along the b-axis.

Table 4. List of possible hydrogen bonds at 120K for (C6H11NH3)4[Ni(NCS)6]·2H2O.

Donor Hydrogen Acceptor
D-H

Distance,
Å

H . . . A
Distance,

Å

D-A
Distance,

Å

A-H . . . D
Angle, ◦

O1 H1O1 S1 0.866(15) 2.459(19) 3.3043(14) 166(3)
N5 H2N5 N1 0.87 2.35 3.0924(19) 143.14
N5 H2N5 N2 0.87 2.39 3.0791(17) 135.97
N5 H3N5 O1 0.87 1.97 2.8375(15) 172.00
N4 H2N4 N3 0.87 2.31 3.0838(18) 148.52

Three types of hydrogen bonds were observed in this crystal structure, as shown
in Figure 5. The first type of interaction was the N—H···N and corresponded to the
hydrogen bond between ammonium cation and the thiocyanate nitrogen. The second type
of interaction was the N—H···O and corresponded to the bond between ammonium cation
and a water molecule. The third type of interaction was the O—H···S and corresponded to
the bond between a water molecule and thiocyanate sulfur. The second and third hydrogen
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bonding types were only observed with the equatorial thiocyanate ligands. All these bonds,
detected by SCXRD, were in agreement with the observed vibrational bands in the FTIR
spectrum.
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At room temperature, the single crystal of (C6H11NH3)4[Ni(NCS)6]·2H2O compound
showed a strong disorder in the doubly attached ring. For this reason, data were also
collected at 120 K. The atomic positions of the disordered structures collected at 293 K are
given in Tables S3 and S5, while those collected at 120 K are displayed in Tables S4 and S6.
As the low temperature measurement did not suppress the disorder, a theoretical ordered
structure of (C6H11NH3)4[Ni(NCS)6]·2H2O was built. All the disordered atoms with partial
occupancy were ordered manually in their average positions and considered full occupancy.
This enabled us to simulate the X-ray powder diffraction patterns for the disordered and
ordered structures of (C6H11NH3)4[Ni(NCS)6]·2H2O by using the “Mercury” program, as
shown in Figure 6A,B, respectively.

Figure 7a shows the distribution of all atoms inside the primitive cell except the
hydrogen atoms, while Figure 6B gives an example of the disorder in the carbon atoms of
cyclohexyl ring. The first pattern, shown in Figure 6A, was generated in the presence of
complete disorder and the second one, shown in Figure 6B, was generated by removing
only the disorder in the carbon of cyclohexyl ring. Comparing the two simulated patterns
in Figure 6A,B revealed that removing the disorder on the doubly attached carbons of the
ring either reduced the intensities of most peaks or disappeared them. However, there
were some exceptions of the observation, where the peak intensities at 2-θ ~10.8 and
11.7 degrees were enhanced and a new peak was arisen at ~11.25 degrees, as the result of
reducing the disorder. As the disorder was enhanced at 293 K, where the XRPD experiment
was conducted, we observed that the experimental XRPD pattern (Figure 6C) had more
peaks than the simulated one and the two peaks at ~10.8 and 11.7 degrees disappeared.
The unit cell of the monoclinic lattice consists of two formula units. The structure of
(C6H11NH3)4[Ni(NCS)6]·2H2O at 120 K deviated slightly from the standard of two formula
units per primitive cell due to the disorder not only in the doubly attached rings, as shown
in Figure 7b, but also in the number of other atoms in the primitive cell, as shown in Table 5.
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Table 5. The number of atoms in the primitive cell for the standard two lattice points per primitive
cell case and the disordered one.

Atom Standard Disorder

O 4 3
C (radial) 12 12
C (ring) 44 48

Ni 2 2
N 20 20
S 12 12

The simulated X-ray diffraction pattern can be used as a reference standard when
there is a good match between the simulated pattern of the structure and the experimental
one. By comparing the experimental XRPD pattern (Figure 6C) with the simulated ones
of Figure 6A or Figure 6B, one can observe that the number of peaks of the experimental
pattern exceeded those of the simulated ones due to the disorder in the number of carbon
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and oxygen atoms, as illustrated in Table 5, which obviously broke the standard of two
formula units per primitive cell [26,38]. The more atoms, existing inside the primitive cell,
might create different families of Bragg reflection planes, and consequently, generate more
X-ray diffraction peaks. In addition, increasing the number of atoms inside the primitive
cell produced Bragg reflection planes with smaller interplanar d-spacing or larger diffracted
angles 2-theta. This explanation tells us why there were some peaks at the positions larger
than 35◦ in the experimental pattern, while they were absent in the simulated patterns.
However, there were some peaks in the low 2-theta region that were absent in the simulated
patterns such as the peaks at ~5.8 and 7.7 degrees. These peaks were not because of the
presence of impurities due to the reactants of cyclohexylammonium thiocyanate, sodium
thiocyanate, and nickel nitrate hexahydrate or the byproduct of sodium nitrate, as shown in
Figure 8, which compares the XRD patterns of the reactants, byproduct, and experimental
XRPD of our new hybrid organic–inorganic compound. Thus, we excluded the existence of
impurities and concluded that the disorder might create new families of Bragg’s reflection
planes, which either led to forming new peaks or disappearing some others by constructive
and destructive interferences.
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experimental of (C6H11NH3)4[Ni(NCS)6]·2H2O (E).

3.6. TG Analysis

The TGA showed two different multi-stage decomposition thermograms under air
and helium, as shown in Figure 9. About 4.5% weight loss under both atmospheres was
observed in the temperature range of 50–112 ◦C, which could be due to the loss of two
crystallization water molecules and the formation of the anhydrous form of the compound,
(C6H11NH3)4[Ni(NCS)6]. The second step, under helium, was observed as a sharp decay
in the range of 112–200 ◦C, accounting for ~70.5% weight loss under helium due to the
loss of all the four cations of cyclohexylammonium and three of the isothiocyanate ligands.
The third step was observed in the range of 200–322 ◦C, accounting for ~12% weight loss
due to the loss of two isothiocyanate ligands. The fourth step was observed in the range of
322–437 ◦C accounting for ~2% weight loss under helium due to the loss of CN moiety and
the formation of nickel sulfide (NiS) with a remaining weight percentage of 11.0 (calculated
10.75%). The formation of NiS was also confirmed by XRPD.
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Figure 9. TGA analyses of (C6H11NH3)4[Ni(NCS)6]·2H2O under air (black) and helium (red).

On the other hand, the second step, under air, represented a loss of one cyclohexylam-
monium of ~12% in the temperature range of 112–180 ◦C. The third step could be attributed
to the loss of the remaining three cyclohexylammonium (~35.6%) in the temperature range
of 180–242 ◦C. The fourth step corresponded to the loss of two isothiocyanate ligands
between 242 ◦C and 375 ◦C. The last step could be owing to the loss of the remaining four
isothiocyanate ligands and the formation of nickel oxide (NiO) at 550 ◦C with a remaining
weight percentage of ~9.0 (calculated 8.85%). The formation of NiO was confirmed by
XRPD, too.

3.7. XRPD Microstructure of NiO and NiS

The XRD pattern, obtained after the pyrolysis of (C6H11NH3)4[Ni(NCS)6]·2H2O at
550 ◦C under air (Figure 10a), coincided with the XRPD pattern of cubic NiO. The peaks
at 2θ = 37.2, 43.3, 62.9, 75.5, and 79.6◦, corresponded, respectively, to the crystallographic
planes of (111), (200), (220), (511) and (222), as assigned by the (JCPDS card no. 47-1049) [65]
(Figure 10a). No impurity peaks were observed in the pattern. Moreover, the relatively
sharp XRD peaks indicated the formation of crystalline structure and the peak broadness
connoted nanostructures. By applying the Scherrer equation, the crystallite size was
calculated:

D =
0.9λ

βcosθ
(1)

The symbols λ, θ, and β stand for the wavelength of the Cu Kα (1.5406 Å), the
diffraction angle, and the full width at half maximum (FWHM) in radians, respectively. By
using the highest intensity peaks of (111), (200), and (220), an average D value of 16.34 nm
was obtained. The d-spacing (d), the lattice parameter (a), and the microstrain (ε) were
obtained by using Equations (2)–(4), respectively [66].

d =
λ

2 sinθ
(2)

d =
a√

h2 + k2 + l2
(3)
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ε =
β

4 tanθ
(4)

The tabulated values (Table 6) are in agreement with previous data.
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Figure 10. XRD patterns of (a) NiO and (b) NiS, obtained after the pyrolysis of
(C6H11NH3)4[Ni(NCS)6]·2H2O under air at 550 ◦C and helium at 500 ◦C, respectively.

Table 6. Crystallite size and lattice parameters of NiO and NiS.

Sample β D (nm) D* (nm) d (Å)
L. Parameters

ε ε*
a c

NiO 0.5027 16.34 30.80 2.2530 4.180 0.0055 0.0026

NiS 0.2077 53.79 72.98 2.3050 3.421 5.322 0.0021 0.0015

D* (crystallite size) and ε* (microstrain) calculated by the Williamson–Hall method.

The XRD pattern in Figure 10b, obtained after the pyrolysis of
(C6H11NH3)4[Ni(NCS)6]·2H2O at 500 ◦C under helium, matched well with the JCPDS
reference 01-075-0613 of the rhombohedral α-NiS. The peaks at 2θ = 30.2, 34.7, 45.8, 53.5,
60.7, 62.6, 63.2, 66.6, and 70.5◦ corresponded to the crystallographic plane of (100), (101),
(102), (110), (103), (200), (201), (004), and (202), respectively [67]. The relatively high crys-
tallinity of the synthesized α-NiS nanocrystalline was evidenced by the relatively sharp
peaks of the pattern, while their less broadening reflected large size NPs. The average
crystallite size (D) was estimated to be 53.79 nm, considering the high intensity peaks:
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(100), (101), (102) and (110). The lattice parameters a and c were calculated according to the
expression [68]:

1
d2

hkl
=

4
3

(
h2 + hk + k2

a2

)
+

l2

c2 (5)

To calculate the microstrain of the nanocrystalline NiO and NiS, the uniform defor-
mation model UDM of the Williamson–Hall method, presuming crystals isotropicity, was
used, as given in Equation (6) [69]. This method implies that the properties are independent
of the crystallographic direction of measurement.

βhklcosθhkl =
kλ

D
+ 4εsinθhkl (6)

Plotting βhklcosθhkl against 4sinθhkl (Figure 11a,b) provides linear relationship, where
the slope and intercept can provide the microstrain and the crystallite size, respectively.
For NiO and NiS, the crystallite sizes (D*) were 30.80 and 72.98 nm, respectively, while
the microstrain (ε) values were 0.0026 for NiO and 0.0015 for NiS. The difference in the
average crystallite sizes, estimated via Scherrer’s and W–H methods can be attributed to
the deviation in particle size distribution averaging, as more peaks are considered in the
latter [70].

3.8. Morphological Study

Figure 12A portrays the SEM image of slightly aggregated quasi-spherical NiO parti-
cles of an almost uniform size of 70 nm [71]. The EDX spectrum (Figure 12B) confirmed the
formation of the NiO, as manifested by the sharp peaks at the binding energy of Ni and O.
The presence of carbon in the EDX spectrum might be attributed to the carbon tape, used
to mount the sample on the SEM holder. Figure 12C shows that the NiS forms flake-like
structures. Vijaya et al. [72] attributed the formation of nano-flakes to the electrostatic
interactions and van der Waals forces, which caused the nanoparticles to aggregate as
nanosheets and then to nanoflakes-like owing to the alteration of nucleation rate. The
elemental composition of the NiS (Figure 12D) is portrayed as Ni and S peaks, supporting
the formation of NiS with the 1:1 stoichiometry of Ni and S in the nanostructures.

3.9. Porosity Analysis

The N2 adsorption–desorption measurements, at liquid N2 temperature of 77 K, were
performed to determine the specific surface area and to probe the mesoporosity and the tex-
tural characteristics of the fabricated NiO and NiS. The as-recorded adsorption–desorption
isotherms are displayed in Figure 13A (NiO) and Figure 13B (NiS), where the isotherms
suggested archetypal type-II sorption patterns with type-H3 hysteresis loops, indicating
mesoporous nanostructures as per the IUPAC definition [73], which was additionally sub-
stantiated by the Barrett–Joyner–Halenda (BJH) pore size distribution of 7.0 and 10 nm for
NiO and NiS, respectively. The prominent step at the adsorption branch combined with the
sharp decay of the desorption branch was concrete evidence of mesoporous material [74].
A sudden increase in the adsorbed N2, perceived at P/P0 greater than 0.8, is commonly
linked to the capillary condensation, designating good sample homogeneity and relatively
smaller pore size, as the P/P0 inflection point is influenced by the pore size. The textural
properties of the nanocrystalline mesoporous NiO and NiS samples are provided in Table 7.
The results demonstrated that NiO had enhanced porosity, as reflected by larger BET sur-
face area, pore volume, and pore size. A similar dramatically increased porosity of NiO
NPs was attributed to the removal of surfactant residues and hydroxyl groups out of the
pore system during calcination [75]. For both isotherms, the adsorption and desorption
isotherms completely overlapped in the low and intermediate relative pressure ranges for
NiO, and the hysteresis loop subsists in the high relative pressure region (P/P0 > 0.8), which
was mainly due to the presence of ink-bottle type and/or slit-shaped pores. Such ink-bottle
type of pores possess a larger pore size in the bottle body, leading to the occurrence of
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hysteresis in the high relative pressure region [76]. On the other hand, no hysteresis loop
was observed for NiS, indicating cylindrical closed-end pores, as per the Kelvin equation,
which conjectures the similarity of the condensed phase and the uniform bulk liquid at the
interface, separating the dense adsorbate region and the gas-like region, when the pore fills
as when it empties. This phenomenon results in the coincidence of the desorption branch
of open pores with the adsorption branch of the closed-end pores, and thus, no hysteresis
loop exists [77].
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Table 7. Specific surface area and porosity parameters of NiO and NiS.

Sample SBET (m2/g) Pore Volume (cm3/g) Pre Size, (Å)

NiO 451.45 0.472 53.33
NiS 219.92 0.170 45.96
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4. Conclusions

The novel hybrid organic–inorganic compound cyclohexylammonioum hexaisoth-
iocyanatonickelate(II) dihydrate was synthesized at room temperature in four reaction
steps with an overall yield of 93%. The title compound has been characterized fully by
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spectroscopic techniques, the crystal and molecular structures have been determined at 295
and 120 K. High surface area, mesoporous, nanocrystalline nickel oxide, and sulfide were
obtained by pyrolysis in air and helium, respectively. These results show that cyclohexy-
lammonioum hexaisothiocynatonickelate(II) is a promising single-source precursor for the
facile production of mesoporous, nanocrystallined NiO and NiS for application-oriented
research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst12030315/s1, Figure S1: 1H-NMR spectrum of
(C6H11NH3)4[Ni(NCS)6]·2H2O in methanol-d4; Figure S2: 13C-NMR spectrum of
(C6H11NH3)4[Ni(NCS)6]·2H2O in methanol-d4; Table S1: 1H-NMR of (C6H11NH3)4[Ni(NCS)6]·2H2O
at room temperature; Table S2: 13C-NMR of (C6H11NH3)4[Ni(NCS)6]·2H2O at room temperature;
Table S3: Atomic coordinates and isotropic displacement parameters (in Å2) at 293 K; Table S4:
Atomic coordinates and isotropic displacement parameters (in Å2) at 120 K; Table S5: Anisotropic
displacement parameters (in Å2) at 293 K; Table S6: Anisotropic displacement parameters (in Å2) at
120 K.
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