
����������
�������

Citation: Shu, C.; He, J.; Xue, G.; Xie,

C. Grain Knowledge Graph

Representation Learning:

A New Paradigm for Microstructure-

Property Prediction. Crystals 2022, 12,

280. https://doi.org/10.3390/

cryst12020280

Academic Editors: Hartmut Schlenz,

Stefan Sandfeld, Tomasz Sadowski

and Shujun Zhang

Received: 8 January 2022

Accepted: 15 February 2022

Published: 18 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Grain Knowledge Graph Representation Learning: A New
Paradigm for Microstructure-Property Prediction
Chao Shu 1 , Junjie He 2, Guangjie Xue 2 and Cheng Xie 1,*

1 School of Software, Yunnan University, Kunming 650000, China; shuchao_shanty@mail.ynu.edu.cn
2 School of Materials and Energy, Yunnan University, Kunming 650000, China; 20210015@ynu.edu.cn (J.H.);

12019101472@mail.ynu.edu.cn (G.X.)
* Correspondence: xiecheng@ynu.edu.cn

Abstract: The mesoscopic structure significantly affects the properties of polycrystalline materials.
Current artificial-based microstructure-performance analyses are expensive and require rich expert
knowledge. Recently, some machine learning models have been used to predict the properties
of polycrystalline materials. However, they cannot capture the complex interactive relationship
between the grains in the microstructure, which is a crucial factor affecting the material’s macroscopic
properties. Here, we propose a grain knowledge graph representation learning method. First,
based on the polycrystalline structure, an advanced digital representation of the knowledge graph
is constructed, embedding ingenious knowledge while completely restoring the polycrystalline
structure. Then, a heterogeneous grain graph attention model (HGGAT) is proposed to realize the
effective high-order feature embedding of the microstructure and to mine the relationship between the
structure and the material properties. Through benchmarking with other machine learning methods
on magnesium alloy datasets, HGGAT consistently demonstrates superior accuracy on different
performance labels. The experiment shows the rationality and validity of the grain knowledge graph
representation and the feasibility of this work to predict the material’s structural characteristics.

Keywords: materials genome; polycrystalline; graph neural network; graph representation learning;
microstructure property

1. Introduction

The material’s crystal structure is of great significance to the research and development
of modern advanced metal materials [1–3]. Micro-domain grains, texture, and others affect
the formability of a part, which is directly related to the material’s mechanical properties [4–7].
Regarding aerospace materials such as titanium alloys, the texture is carefully controlled
during processing to obtain higher corrosion resistance and strength [8]. For auto body
parts, magnesium alloys (or aluminum alloys) with excellent strength and ductility can be
obtained by adjusting the texture [9,10]. Moreover, the mechanical properties of steel (i.e.,
tensile strength and formability) are also improved by controlling the grain size [11,12]. It
is imperative to understand how the material’s structure affects the material’s performance.

At present, there are two main methods for analyzing the properties of polycrystalline
structures: qualitative manual analysis and physical modeling. The methods based on
qualitative manual analysis include orientation distribution analysis, inverse pole figure
analysis, grain size analysis, etc. Based on this statistical approach, researchers observe
specific features through images or statistical functions, thereby establishing a qualitative
structure–performance relationship [2,4–7,9–13]. Another method is to simulate and cal-
culate the structure and properties of materials by establishing physical models, such as
Visco-plasitic Self Consistant (VPSC), crystal plasticity finite element method [14–19].

With the formation of the “fourth paradigm” of materials science, data-driven methods
are increasingly used to explore the relationship between structure and performance [20–24].
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Some scholars use the method of statistical descriptors to construct the correlation model
between physical characteristics and performance [20,25–28]. Relevant descriptors are used
to represent artificially selected essential features (e.g., grain size and orientation), and then
machine learning methods are applied to learn relational functions. Such methods lose the
topological information of the microstructure. Another commonly used method is based
on image vision [22,29–33]. The scanned image of the organization structure is input into
the convolutional neural network (CNN) [34,35]; then, CNN learns the low-dimensional
microstructure embedding representation; and finally, the target output is obtained through
the fully connected layer [36] or the softmax layer [37]. This type of method guarantees
the integrity of the polycrystalline structure (visually) but loses the individual grains’
characteristics and ignores the polycrystalline space’s topological structure. Therefore,
the established structure–performance mapping is also biased. Recently, Minyi Dai et al.
used Graph Neural Network (GNN) [38,39] to embed the polycrystalline structure [40].
They used nodes to represent grains, edges to represent grain boundaries, and Graph
Convolutional Network (GCN) [41,42] to predict the performance of microstructures. This
method preserves the topological characteristics of the microstructure through graph
embedding. However, the isomorphic graph constructed in this work only expresses
the polycrystalline structure’s most straightforward and prominent characteristics. In
the actual environment, the polycrystalline structure shows more complex relationships
(e.g., different grain boundaries and distribution of similar grains). Moreover, this work
uses direct numerical attributes in node descriptions, which is not conducive to network
learning [43].

Based on these problems, the following challenges need to be overcome: (1) find a
method to effectively digitize the collected microstructure information within the charac-
terization framework, and then, develop a more advanced microstructure “fingerprint”
program; (2) design an algorithm that can extract and effectively quantify the representa-
tive features (main components) of the microstructure, and then, further establish a rapid,
objective, and symmetric structure-performance quantification model.

To solve the above challenges, we propose a digital structured representation method
based on a Knowledge Graph (KG) [44,45] and design a heterogeneous grain graph convo-
lutional network, HGGAT. KG can objectively and effectively describe the real objective
world, and heterogeneous KG is first used to characterize material grain structure. We
provide evidence that KG can realize the effective information digitization of the microstruc-
ture. HGGAT can effectively extract the higher-order representative features of the structure
and establish the quantitative relationship between the structure and the performance.

2. Materials and Methods
2.1. Dataset
2.1.1. Polycrystal Sample Preparation

This work uses five types of magnesium alloy plates for experiments. The difference
in grain orientation and grain size mainly causes changes in their properties. These alloys
with normal composition Mg-2Zn, Mg-2Zn-1Li, Mg-2Zn-3Li, Mg-2Zn-1Gd, and AZ31
(Mg-3Zn-1Al) were prepared from Mg (99.9%), Al (99.9%), Zn (99.9%), and Mg-5Li (Wt)
(Jiangxi Shida Magnesium Alloy Technology Co., Ltd., location: Ganzhou, Jiangxi, China).
The Mg-2Zn alloy charge was heated to 750 ◦C in an induction furnace (Shanghai Haoyue
Electric Furnace Technology Co., Ltd., location: Shanghai, China) protected by Ar gas and
kept at 750 ◦C for 20 min. Then, the liquid alloy was poured into the cylindrical mold with
ϕ95 mm × 480 mm and cooled down in the air. Finally, the ingot was cut to ϕ82 mm by
the machine tool (Jiangsu Siji Machine Tool Co., Ltd., location: Yancheng, Jiangsu, China).
The rest of the Mg-2Zn-1Li, Mg-2Zn-3Li, Mg-2Zn-1Gd, AZ31 were produced using the
identical process. The chemical compositions are shown in Table 1 using the inductively
coupled plasma-atomic emission spectroscopy (ICP-AES) ( Analytik Jena AG, location:
Jena, Germany). These cylindrical ingots were removed from the surface oxide layer and
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homogenized at 380 ◦C for 8 h before extrusion. Afterward, these ingots were extruded at
430 ◦C with a final thickness of 2 mm.

Table 1. Chemical compositions of the as-cast alloys (wt%).

Alloy Mg Zn Li Al

Mg-2Zn Bal 1.99 - -
Mg-2Zn-1Li Bal 1.67 1.11 -
Mg-2Zn-3Li Bal 1.82 3.08 -
Mg-2Zn-1Gd Bal 1.74 0.97 -
AZ31 Bal 2.98 - 0.99

2.1.2. Dataset Preparation

The microstructure and texture were measured using electron backscattered diffraction
(EBSD) (Oxford Instruments, location: Oxford, United Kingdom) on the ED-ND plane in a
dual-beam focused ion beam scanning electron microscopy (FIB-SEM, TESCAN AMBER)
(TESCAN, location: Brno, Czech). These samples were prepared by grinding on 800#,
1600#, and 3500# SiC sandpapers; then, the electrochemical polishing method for 90–100 s
at 20 V, 0.05 A and −15 ◦C was used to optimize the ED-ND plane further.

The tensile specimens with a gauge length of 12 mm and a width of 6 mm were
employed from the extruded samples to measure yield strength (YS) and elongation (EL).
Uniaxial tensile tests with a speed of 2 mm/min were performed in the direction of the
transverse direction relative to the extruded direction at room temperature.

Based on the above materials, we used the EBSD technology to scan the polycrys-
talline structure and to obtain nearly 7.03 million scanning point data. After cleaning and
denoising the data, we built a knowledge graph of the crystal grains. Finally, the number
of grain nodes constructed reached 77,110, the number of attribute nodes formed by the
discrete attribute knowledge was 58, and the total number of edges reached 745,784. The
model uses the graph as input and the mechanical properties as the corresponding label.

2.2. Representation of the Grain Knowledge Graph

This section constructs the knowledge graph representation [44,46] of the microscopic
polycrystalline structure. The polycrystalline microstructure is composed of crystal grains
separated by grain boundaries. The grains are located in space with a specific orienta-
tion, and the properties and spatial distribution of the crystal grains have an impact on
the material’s mechanical properties. Inspired by the Knowledge Graph, we regard the
microstructure structure as a huge graph, with the grains in the structure as nodes and
the grain boundaries as edges, as shown in Figure 1. Using the methods of texture analy-
sis [47,48] and grain size analysis [49,50] for reference, we discretize the orientation and
size of the grains to form easy-to-understand knowledge and embed it in the graph. The
discretized orientation categories and size categories are instantiated as attribute nodes in
the graph. Based on the idea of object similarity in SimRank [51,52], attribute nodes are
connected with corresponding grain nodes to form attribute edges.

2.2.1. Node Representation

Grain Node Construction. The grain is the central basic unit in the mesoscopic poly-
crystalline structure we studied, so we extracted it to construct the grain node. Specifically,
we use Atex software [53] to give each crystal grain in the microstructure an independent
number, which is used to distinguish and identify each crystal grain. Then, we initialize
a grain node in the grain knowledge graph for each grain. Figure 2 shows the forma-
tion process of the grain node. Grain nodes represent the information and existence of
individual grains.
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Figure 1. Grain knowledge graph. Each node in the figure represents a crystal grain in the microstructure,
and the edges between nodes represent the grain boundaries between the original crystal grains.
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Figure 2. Grain nodes construction process. Each grain in the IPF map corresponds to each grain
node in the graph. Each node stores the features of the grain.
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Figure 2. Grain node construction process. Each grain in the IPF map corresponds to each grain node in
the graph. Each node stores the features of the grain.

Size Attribute Node Construction. Metal grain size has a decisive influence on its
mechanical properties at room temperature and high temperature. In the analysis of metal
properties, grain size number analysis is fundamental [49,50]. Therefore, we also embed
knowledge of grain size levels in this work. As shown in Figure 3, we divide the crystal
grains with the super parameter cs as the interval length, and each interval represents a
kind of grain size. The discrete interval type is more in line with knowledge expression
and machine understanding than the original numerical size to describe the grain size.

Equation (1) shows the calculation method of the grain size level. After calculating all
of the grain size intervals, we construct the size attribute nodes, which correspond to the
interval categories one-to-one. The built size attribute node will be used to reflect the size
properties of the grains.

L_Snode = d(Grain.size− Sizemin/cse (1)
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where L_Snode is the grain size interval category. Grain.size represents the grain diameter,
Sizemin represents the smallest-scale grain size, cs denotes the interval length, de refers to
rounding up operation.
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Figure 3. Grain size discretization and size attribute node construction. Sizemax (Sizemin) denotes the
largest-scale grain size (the smallest-scale grain size). According to the interval length cs, the grains
are divided into each interval. There are Ns intervals in total, Ns = d(Sizemax − Sizemin)/cse. For
each interval, the corresponding node on the left is constructed.

Orientation Attribute Node Construction. Similarly, we discretize orientation and
build the orientation attribute node. In texture analysis, the orientation distribution of
micro-regions is the main observation object. Orientation differentiation appears in the
regional distribution. Therefore, establishing discrete intervals of orientation and obtaining
statistical distribution information of grain orientation is beneficial to highlighting the
characteristics of the organization structure. The grain’s three Euler angles (φ1, φ, φ2) de-
termine its orientation. Figure 4a shows an example of the distribution of grain orientations
in a structure. The orientation is three-dimensional data. Therefore, we need to discretize
the three-dimensional orientation space, classifying infinite orientation points into finite cat-
egories. As shown in Figure 4b, we take cφ1, cφ, and cφ2 as the interval division step lengths
of φ1, φ, and φ2, respectively. Then, the intervals divided by three latitudes constitute a
three-dimensional split space. Each divided space is a discrete orientation category. The
specific calculation process is shown in Equations (2) and (3), φφφmax = {φ1max, φmax, φ2max},
φφφmin = {φ1min, φmin, φ2min} are the largest and smallest grain Euler angles, respectively.
According to the length of the three division intervals cccφ(cφ1, cφ, cφ2), the Euler angle
φφφ(φ1, φ, φ2) are divided into NNNφ(Nφ1, Nφ, Nφ2) equal parts. As a result, a total of No three-
dimensional subspaces are divided. Equation (4) calculates the subspace number where the
crystal grain is located. Finally, we construct the orientation attribute node corresponding
to each divided space. Each node represents an orientation category, reflecting the nature
of orientation, as shown in Figure 4c.

cφ1 = (φ1max − φ1min)/Nφ1

cφ = (φmax − φmin)/Nφ

cφ2 = (φ2max − φ2min)/Nφ2

(2)

No = Nφ1 × Nφ × Nφ2 (3)
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L_Onode = {d(Grain.φ1− φ1min)/cφ1e,
d(Grain.φ− φmin)/cφe,
d(Grain.φ2− φ2min)/cφ2e}

(4)

where L_Onode refers to the grain orientation subspace number, i.e., the grain orienta-
tion category.

Figure 4. Grain orientation discretization and orientation attribute node construction. (a) Simulated
Euler angle data distribution. Each orientation is determined by three Euler points. (b) The three-
dimensional orientation space is discretized, and each orientation point can be divided into a discrete
three-dimensional space. (c) For each discrete three-dimensional space, the corresponding orientation
attribute node is constructed.

2.2.2. Edge Representation

Grain-Grain Edge Construction. The plastic deformation, strength, fracture, brittleness,
and other properties of polycrystalline materials are very different from those of single-
crystal materials, mainly because the special properties of varying grain boundaries affect
the different properties of the alloy. Therefore, a crucial element in the polycrystalline
structure is the grain boundary, reflecting the transformation of the atomic arrangement
and the interaction between crystal grains. Here, we embed the knowledge information of
the grain boundary in the grain knowledge graph by constructing the edges between the
grains. First, according to the grain boundaries between the original grains, we build edges
between the corresponding grain nodes, corresponding to the grain boundaries. This edge
characterizes the interaction and topological structure of the crystal grains. Then, a more
specific neighboring interaction rule is established to embed richer structural knowledge.
As shown in Equation (5), ζ is the ratio of the grain boundary length to the total side length.
When ζ is greater than the threshold hyperparameter λ, the edges between the grains
indicate strong, otherwise weak connection, as shown in the Equation (6). The constructed
edge (subgraph) is shown in Figure 5.

ζ = boundlength/perimeter (5)
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Rel_G_G(ζ) =

{
strongly connect, ζ ≥ λ

weakly connect, ζ < λ
(6)

where boundlength denotes the grain boundary length and perimeter denotes the total side
length of the grain. Rel_G_G represents the edge type between grains.
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Figure 5. Grain-grain edge construction. According to the connection relationship of the crystal
grains (i.e., the grain boundary), the edges between the grain nodes are constructed.

Grain-Size Edge Construction. In Section 2.2.1, the size attribute node and the orienta-
tion attribute node are constructed. Here, the grain node and the matching attribute node
are connected to form a completed grain attribute subgraph. For the size attribute node, we
connect it to all matching grain nodes to correlate the size properties of the grains. At the
same time, the formed grain size attribute subgraph can reflect the grain size distribution
in the microstructure. The specific method is shown in Figure 6, for grains {12, 20, 28, 21,
34}. First, their size levels (categories) {5, 2, 2, 2, 2} are calculated according to Equation (1).
Then, the corresponding size attribute nodes are connected to the grain nodes. “size is”
and “size of” are the two relationships between the grain node and the size attribute node.
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Figure 6. Grain-size edge construction. First, the corresponding size categories of grains are cal-
culated, and then, the corresponding size category nodes (size attribute nodes) are connected to
the grain nodes. In this way, the grain node and the corresponding size attribute node constitute a
subordination relationship.

Grain-Orientation Edge Construction. Similarly, we construct the grain orientation
attribute subgraph (i.e., the edges between grain nodes and orientation attribute nodes).
The orientation attribute node is used to correlate the orientation properties of the grains,
and the formed orientation attribute subgraph can also reflect the orientation distribution
characteristics of the tissue structure. The specific method is shown in Figure 7. The
orientation categories {5, 2, 2, 2, 2} of the grains {12, 20, 28, 21, 34} are calculated by
Equation (4), and then, the corresponding orientation attribute nodes are connected to the
grain nodes. “ori is” and “ori of” are the two relationships between the grain node and the
orientation attribute node.
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2.2.3. Representation Structure Analysis

Figure 8 shows the original microstructure and the characterization structure con-
structed in this paper. The proposed structure has two key characteristics: (1) the hetero-
geneous graph describes the organization more complete and restores the microstructure
information; (2) the knowledge graph is easier to understand and calculate using a computer.

The grain structure in Figure 8a is completely embedded in the heterogeneous graph in
Figure 8b, and information such as grains and grain boundaries are expressed. Compared
with image, the form of a graph is more in line with polycrystalline structure characteristics.
When a computer understands an image, it uses pixels as the basic unit to perform statis-
tical calculations. As shown in Figure 8a, p2 contains the parts of grain 12, grain 20, and
grain 21, i.e., the area contains the pixels of the three kinds of grains. For computer storage,
the pixel storage is continuous, and individual grains are not distinguished. Therefore,
in the p2, p3, and p4 regions, there are two-grain boundaries or even three-grain bound-
aries, and the computer cannot directly and accurately determine and count the grain
boundary information.

Figure 8. Representation structure comparison. (a) The image storage structure. (b) The grain knowledge
graph storage structure.

Moreover, we also added discrete attribute nodes in the graph to enhance knowledge
expression. As shown in Figure 8b, the sizes of the grains 20, 21, 28, and 34 are all Size 2.
We built a subordination relationship between these grain nodes and the Size 2 node, using
similarity transitivity to cluster the nodes with the same attributes. In this way, all nodes
with the same attributes are two-hop nodes with each other, and a second-order neighbor
relationship is established between the originally uncorrelated or low-correlation nodes.
Thus, the computer would pay attention to the cluster information when it understands
the graph. The same goes for the orientation attribute node.
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2.3. Grain Knowledge Graph Representation Calculation

After completing the representation of the polycrystalline structure, we verify the
method’s feasibility through representation calculations. Therefore, we designed a Hetero-
geneous Grain Graph Attention Model (HGGAT) for the constructed knowledge graph.
Through this model, the high-order embedding of the microstructure can be obtained, and
the mapping relationship between structure and performance can be established.

2.3.1. Overview of the HGGAT

As shown in Figure 9, HGGAT is a two-layer heterogeneous graph attention network
(GAT) [38,54,55]. First, the input grain graph is divided into a grain isomorphism graph
(grain subgraph) and two grain attribute bipartite graphs (attribute subgraphs). When the
nodes propagate in the attribute subgraph, the grain nodes connecting the same attribute
node absorbs the same attribute characteristics and have a similarity. When the nodes
propagate in the grain subgraph, the nodes with similar characteristics are more easily
aggregated to obtain a more enhanced feature distribution. The attention mechanism
(node-level attention) is used in the subgraph (meta-paths) convolution. After the message
passing on all subgraphs (meta-paths), a path-level attention network is used to aggregate
the features of the same node on different subgraphs (meta-paths). The attention of the
meta-path captures the influencing factors between nodes so that the nodes can focus
on more essential features. The optimal combination is obtained by path-level attention
when aggregating different path nodes. In addition, the model can learn the complex and
rich information in heterogeneous graphs better. Through the message transmission and
aggregation of different relationships, the grain nodes in the graph continuously capture the
characteristics of more and more nodes around them. Finally, the readout operation extracts
the graph-level feature embedding and maps the embedding to the material properties.
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Figure 9. Grain graph convolutional prediction model.
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2.3.2. The Propagation Process of HGGAT

For each set of data, we used the grain knowledge graph G as input and the material
performance Y as a label. The goal of the model is to learn the mapping from graph to
performance (i.e., Γ : G → Y). The model contains two processes: graph convolution feature
extraction and label mapping. Convolution mainly includes two parts: (1) convolution
on independent subgraphs; (2) feature fusion of the same nodes on different subgraphs.
Equations (7)–(10) show the convolution process in the subgraph. ~hk(ι)

i is the initial feature
of the k-layer (lower layer) node, ι represents different paths/edges (subgraph), and W is a
learnable weight matrix. First, the lower layer embedding is linearly transformed to form
higher-order features~zk(ι)

i .

~zk(ι)
i = W k(ι) ·~hk(ι)

i (7)

Then, a paired unnormalized attention score ek(ι)
ij between two neighbors is calculated

using the dot product on the splicing embedding of two adjacent nodes.

ek(ι)
ij = LeakyReLU(~ak(ι) · [~zk(ι)

i ‖ ~zk(ι)
j ]) (8)

where ~a denotes a learnable weight vector, ‖ means concatenation, · represents the dot
product, and LeakyReLU is the activation function. Next, the softmax layer is used to
normalize the attention score on the incoming edge of each node.

αk(ι)
ij = So f tmaxj(ek(ι)

ij ) (9)

where j denotes the incoming node. Finally, according to the calculated attention score, the
embeddings from neighboring nodes are scaled and aggregated together.

~hk+1(ι)
i = σ( ∑

j∈N(i)(ι)
αk(ι)

ij ·~zk(ι)
i ) (10)

where N(i) represents all neighbors of node i. hk+1
i denotes the (k + 1)-layer (higher layer)

feature embedding of node i. σ is an activation function.
After the message passing of all subgraphs (meta-paths), path-level attention is used

to aggregate the features of the same node on different subgraphs (meta-paths). βk
(ι)

is an

important coefficient of meta-path ι. First, the updated node embedding~hk+1(ι)
i of each

subgraph is non-linearly transformed; then a similarity measurement is achieved with a
learnable vector~q; next, a softmax operation is performed to obtain important coefficients.
Finally, the node embeddings on each meta-path are weighted and summed.

βk
(ι) = So f tmax(

1
N(i) ∑

ι∈N(i)
~q · tanh(W k ·~hk+1(ι)

i +~b))

~hk+1
i =

p

∑
ι=1

βk
(ι) ·~hk+1(ι)

i

(11)

where~b represents the bias vector, tanh denotes the activation function, p refers to the number
of edge types (the number of subgraphs), and~hk+1

i is the final updated node embedding.
After completing multiple graph convolutions, highly abstract node embedding is

obtained. Then, we use a readout operation (average pooling) to obtain the graph-level
node representation ~H and to map it to the material properties Y′ with fully connected
layers [56] (FC).

~H =
1

N(g) ∑
i∈N(g)

~hk+1
i

Y′ = ReLU(a · ~H + ~b′)

(12)
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where N(g) denotes all grain nodes, ~H represents the graph-level embedding, ReLU is
activation function, a is a learnable weight matrix, ~b′ is a bias vector, and Y′ is the predicted
performances (mechanical properties).

After completing the forward propagation to obtain the prediction result, the mean
square error is used to calculate the L2 loss (error between Y′ and Y). Through gradient
descent to reduce loss, the model is continuously optimized.

L2 =
1
n

n

∑
m=1

(Y′m −Ym)
2 (13)

3. Results
3.1. Experiment Settings

To evaluate the performance of HGGAT and to prove that the paper method is superior
to well-known machine learning methods, we designed a representative comparative
experiment. We selected the most popular and representative machine learning algorithms:
Ridge, Support Vector Regression (SVR), K-Nearest Neighbor (KNN), Random Forest (RF),
and Multilayer Perceptron (MLP). For the machine learning algorithms, the raw statistical
data are used as input, i.e., the inputs are the average, maximum, and minimum grain
size and the average, maximum, and minimum orientation (Euler angles); for HGGAT, the
grain knowledge graph is used as input. Their outputs are the mechanical properties (yield
strength, ultimate tensile strength, and elongation). To further highlight the superiority of
our graph of adding attribute nodes, our method is also compared with the graph with
grain size and orientation simply as scalar grain node attributes. In this isomorphic graph,
the grain size and orientation are directly as node attributes of grain nodes, which means
that there is only one type of node (grain node) in the graph. Its performance evaluation
is shown in the Grain Graph Attention Model (GGAT) row of Table 2. In all experiments,
80% of the data is randomly selected for training and 20% is selected for testing; 10-fold
cross-validation is applied in the training process; Mean Squared Error (MAE), Root Mean
Squard Error (MSE), Explained Variance (EV), and R Squared (R2) are used to evaluate the
performance of each method in the results.

3.2. Prediction Results

The experimental results show that HGGAT shows better performance than other
methods in general. For material performance optimization problems, improving a per-
formance often comes at the cost of a decrease in the opposite performance. Therefore, it
is difficult to balance various performances and to obtain a better result. With the help of
artificial intelligence technology, the model constructed in this paper can predict multiple
performances simultaneously. Table 2 shows the model performance for the simultaneous
fitting of three attributes (yield strength, ultimate tensile strength, and elongation), i.e.,
model performance under multi-label learning predictions. Obviously, our HGGAT model
has achieved the best in all indicators and even achieved a very impressive R2 value of
0.941, which is significantly better than other methods. Those machine learning methods
can learn the statistical characteristics of grains and grain boundaries and can capture the
impact of different characteristics on performance. However, they can neither capture
the effects of different granularities nor ignore the high-order relationship features (i.e.,
interaction between grains and topological structure of organization), so their performance
is relatively poor. Even if an optimal parameter search is used, their performance is still
far behind HGGAT. HGGAT uses graphs comparing grain size and orientation, presented
as simply scalar grain node attributes, as the input and is consistent with HGGAT in the
main structure. In terms of model performance, this graph learning method exhibits bet-
ter performance than traditional machine learning methods, but it is slightly worse than
our method.
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Table 2. Multi-label learning model performance of yield strength (YS), ultimate tensile strength
(UTS), and elongation (EL). ↑ (↓) means that, the higher (lower), the better (worse).

Model MSE ↓ MAE ↓ EV ↑ R2 ↑
Ridge 0.139 0.299 0.850 0.836
SVR 0.176 0.351 0.796 0.792
KNN 0.160 0.336 0.834 0.810
RF 0.157 0.250 0.841 0.802
MLP 0.153 0.305 0.844 0.819
GGAT 0.116 0.234 0.873 0.865
HGGAT(Our) 0.051 0.164 0.943 0.941

In addition to multi-attribute (multi-label) learning and prediction, HGGAT also stands
out in single-attribute (single-label) learning and prediction. We use a single attribute as
a label to train all contrast models. As shown in Figure 10, the model fitting results for
different prediction targets are arranged in each row. In the YS prediction, HGGAT achieved
the highest R2 value of 0.93; in the UTS prediction, HGGAT achieved the highest R2 value of
0.94; and in the EL prediction, HGGAT achieved the highest R2 value of 0.93. It proves that
the scattered points of HGGAT are closest to the fitted line, indicating that the prediction
accuracy of HGGAT is the highest.

`
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Figure 10. Fitting result. “ Ultimate Tensile Strength” means that UTS is used as the label during
training and testing; “Elongation” means that EL is used as the label during training and testing;
“Yield Strength” means that YS is used as the label during training and testing; “All” means that UTS,
EL, and YS are used together as the label of the data in the experiment, i.e., multi-label learning and
prediction task.

4. Discussion and Conclusions

All materials have specific structural dimensions and characteristics that determine
their performance. For polycrystalline materials, the nature of the grain structure is a
critical internal factor that affects its mechanical properties. Based on the fourth paradigm
of data-driven materials research, this paper reports a novel representation method based
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on knowledge graphs and an artificial intelligence model, which realizes the scientific grain
structure digital representation and calculation of the structure–performance relationship.

As a digital representation method, the grain knowledge graph can completely restore
the original polycrystalline structure information. It uses nodes to describe the grains in the
material microstructure and directly stores grain boundary information through different
edges. Therefore, it is worth mentioning that the grain knowledge graph stores the grains’
spatial topological structure while retaining the properties of the original grains. Second,
on the basic graph, discrete descriptions of critical attributes are added further. We divide
grains according to grain size, orientation, and boundary characteristics and construct
subgraphs of grain nodes. We also discrete attribute nodes through expert knowledge.
Discrete feature injection into the graph makes the non-linear feature better represent the
knowledge level expression.

Based on this digital representation, this paper proposes a targeted heterogeneous
grain graph network model HGGAT. From a technical point of view, HGGAT has some
advantages. First, unlike other methods, HGGAT uses features, knowledge, and graphical
structure to ensure that the polycrystalline structure’s original and critical information is
not lost. Second, HGGAT uses the representation learning method to obtain the high-level
feature embedding of the polycrystalline structure and then implements the structure-to-
performance supervised learning, which is preferable to directly mapping the original
features to the label. Third, HGGAT uses a two-layer attention method to disseminate
feature information under the same path non-linearly and then to aggregate the messages
of all paths. It captures the complex structure by considering the semantic relations of
different classes to improve the embedding performance of the model.

Despite the successful results of this work, there are still some areas that can be
improved. First, this work is only applicable to ordinary single-phase polycrystalline
materials. For other structures such as multiphase and internal twins, additional knowledge
representation is needed to improve the scientific accuracy of graph construction. Second,
as an artificial intelligence model, although HGGAT shows its powerful data analysis
capabilities, it also shows some limitations, including the black-box nature of the AI model.
These can be solved using a parameter control and feature analysis, such as graph message
transmission control and feature visualization analysis. Finally, with the rapid development
of the AI field, the graph construction and graph networks are constantly iterating and
updating. Future work will focus on these issues. We will iterate and optimize it in
future work.
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