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Abstract: When considering the effect of inclusions on fatigue life, the size effect of inclusions is
well recognized. However, many of these studies overlooked or decoupled the size effect from the
shape features. Therefore, in this study, the influence of the shape characteristics of inclusions with
3 equivalent sizes of 26.6 µm, 13.3 µm, and 4.2 µm on the very high cycle fatigue life of high-strength
steels is investigated based on a microstructure-sensitive modeling approach, considering residual
stresses. A shape parameter, unifying the aspect ratio and tilting angle of inclusion, is introduced.
Based on this parameter, a new formulation of fatigue life with respect to inclusions is also proposed,
extending the former one to consider the shape effect of inclusions. It is concluded that the general
trend that the fatigue life increases with the decrease in inclusion size is still valid, while the shape
features in terms of aspect ratio and tilting angle complicate the quantitative influence of inclusions
size significantly. Even for a constant inclusion size, the combination of shape factor and tilting angle
could change the fatigue life with one order of magnitude compared with the commonly assumed
round shape. These findings would enhance the precision for the fatigue life estimation based on
pre-inclusion analysis and also eventually provide new dimensions for inclusion engineering to
improve fatigue resistance, as size will not be the only design parameter for fatigue life.

Keywords: fatigue life prediction; microstructure modeling; inclusion characteristic; residual stress;
inclusion shape parameter

1. Introduction

Fatigue property is an important mechanical property for many kinds of materials.
With the improvement of material quality, more focuses are moving from low cycle fatigue
to high cycle fatigue (HCF) and very high cycle fatigue (VHCF). With the increase in the
circle number before fatigue failure, the main influencing factors on fatigue behavior tend
to change. When the circle number is not that large, the most evident factor influencing the
fatigue property is the surface quality. Rough surfaces always lead to bad fatigue behavior;
meanwhile, for VHCF, the most evident factor turns to internal defects, such as inclusions.
Li et al. [1,2] claimed that the inclusion-induced fatigue cracks are in the majority in their
research on VHCF.

To reveal the effect of inclusions on fatigue properties, many studies were conducted
via experiments and simulations [3–6]. A majority of them focused on the effect of inclusion
size on fatigue life and it is proven that inclusion size indeed plays a significant role in
determining the fatigue life of metals [7–10]. However, recent research also shows that
the effect of other features of the inclusions also cannot be neglected, such as the type
and shape of inclusions. Fu et al. [11] studied the fatigue behavior under the influence
of different types of inclusions and suggested that early fatigue of bearings is governed
by SiO2 fragmentation and late fatigue by TiN inclusions. Gu et al. [12] found that the
fatigue properties of bearing steels with different amounts of inclusions are dramatically
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different and the critical sizes of inclusions with different types that trigger fatigue cracks
are distinct. Ulrike et al. [13] claimed that different 18Ni maraging steels containing
different inclusions also show different fatigue properties and the effect of inclusions on
fatigue behavior is related to the combined states between the inclusions and the matrix.
Some advanced experimental methods were also adopted in the analysis of fatigue failure
and inclusions. Naragani et al. [14] studied the crack initiation mechanism in a Ni-based
superalloy specimen with high energy synchrotron X-rays and in situ mechanical testing
and found that crack nucleation was easily created due to the inclusion, specifically the
residual stress state and local bonding state at the inclusion–matrix interface.

Although the fatigue mechanism, concerning inclusions, has been studied rather thor-
oughly, it is still challenging to analyze the quantitative effect of inclusions on fatigue life
due to the complex features of inclusions and the uncertainty of the inclusion distribution
in the matrix materials. To solve this problem, microstructure-based models with inclu-
sions were developed. This type of study for fatigue property was initially introduced by
Dunne et al. [15] and McDowell and Dunne [16], and most of them were focusing on the
microstructural features of the matrix materials, as they mainly studied the HCF properties.
Concerning the VHCF simulation, the investigation team has been continuously developing
microstructure-based models by including various inclusions as well as residual stresses
between the inclusions and matrix [5,6]. The predicted fatigue life shows a good agreement
with the experiment data in terms of the calcium aluminate inclusions and also reflects a
clear effect of the inclusion size on the fatigue life.

As mentioned before, in addition to size, inclusions in steels have multiple features,
including shape and mechanical/physical properties (Young’s modulus, Poisson’s ratio,
thermal expansion coefficient, etc.). The mechanical properties of inclusions are governed
by their compositions, which are connected to the generation process of inclusions [17–20].
The size and shape features belong to geometrical characteristics of inclusions. Except
for the size effect, the quantitative correlation between the other features of inclusions
and fatigue life is still missing. Therefore, the aim of the current study is to develop a
modeling approach, correlating the shape characteristics of inclusions with fatigue life,
and eventually establishing a quantitative relation between them for a comprehensive and
accurate evaluation of the fatigue life of engineering materials.

The effect of shape features of inclusions on fatigue life is actually not decoupled from
the size analysis. There are a few methods of these two features. The simplest one is to
adopt the projected area of the inclusion perpendicular to the fatigue loading direction or
calculate the equivalent diameter with the projected area. Concerning the inclusion shape,
some researchers [21] use eccentricity, defined in Equation (1), to describe the features.

ε =

√
a2

0 − b2
0

a0
, (1)

where a0 is the distance of the intersection of the radius of the two centers of the ellipse
where both have the same length; b0 is the trace that is perpendicular to the intersection
and the trace between the two centers. The range of ε is from 0 to 1. When a0 equals b0, the
ellipse has the shape of a circle. With an eccentricity of ε = 1, the ellipse would transform
into a straight line. In this case, the inclusion size can be calculated with Equation (2),
as follows:

area = π × a× b. (2)

With these methods, some of the inclusion features can be described well when the
shape of inclusions is not complicated. When the local shapes of the inclusion are distinctly
different, these methods will lose details during the description. Gu et al. [22] offered a
method to recreate the inclusion shape based on the coordinates of inclusion edges. The
method can reproduce details of the local inclusion shape well. However, this method is
designed for digitalization of existing inclusions in the microstructure model and shows
obvious weakness on the analytical assistant of the total effect of a single inclusion on fatigue
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life due to its complexity. To solve this problem, a new method to describe the inclusion
shape is offered in the present study. Using this method, the shape factors, such as aspect
ratio and rotation angle, are unified in one single parameter. With the assistance of the new
shape parameter, the quantitative relationship between inclusion and the corresponding
fatigue life is clarified based on the simulation results of microstructure-sensitive modeling.

2. Modeling Strategy

The modeling strategy of the microstructure-based fatigue life prediction model with
residual stresses can be divided into five steps, as follow: (a) generation of inclusions with
various features in representative volume element model; (b) simulation of residual stress
and fatigue process; (c) extraction of fatigue indicator parameter (FIP) data to derive the
fatigue life for each configuration; (d) conduction of sensitivity study about the shape
influence on fatigue life; (e) formulating a general equation to correlate the fatigue life with
inclusions shapes. The flow chart of the modeling strategy is shown in Figure 1.
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Figure 1. The flow chart of the investigation strategy in this study.

2.1. Reconstruction of Microstructure

The reconstruction of the geometry model of the steel matrix was based on the results
from electron backscatter diffraction (EBSD) tests with the assistance of representative
volume element (RVE). Instead of direct digitalization of the microstructure graphs, the
statistical method was applied during the reconstruction [23]. The characteristic parameters
of the virtual microstructure were obtained through the grain size distribution. Further
information on grain distribution and a detailed method of RVE generation can be referred
to in our previous study [5]. Based on this method, 10 different RVEs were generated
to avoid the unreasonable results led by the occasionality of the microstructure in the
previous study.
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2.2. Digitalization of Inclusions

To describe the inclusion shape accurately, the inclusions were concreted with coordi-
nates of their edges. With the assistance of coordinates, the inclusions were all inserted in
the center of the RVEs. In this study, three features of the inclusions were considered: size,
aspect ratio, and the rotation angle relative to the loading direction. The inclusion sizes,
which were expressed with the square roots of the inclusion area,

√
area, were determined

as 26.6 µm, 13.3 µm, and 4.2 µm. For each inclusion shape, the variations of two features,
aspect ratio A and the tilting angle θ, are shown in Table 1, as well as their geometry
sketches. All the changes of inclusion geometries in Table 1 were based on circle and ellipse.
None of the inclusions with sharp edges were considered in this study. In Table 1, aspect
ratios are expressed with A (A≥ 1). When A = 1, the shape of the inclusion is a perfect circle.
The tilting angle, θ, as a representation of inclusion orientation, is the angle between the
major axis and the loading direction (0◦ ≤ θ ≤ 180◦). Due to the symmetry of 0◦ ≤ θ ≤ 90◦

and 90◦ ≤ θ ≤ 180◦, only the case with 0◦ ≤ θ ≤ 90◦ are discussed in the present study.
For a better understanding of these two parameters, a diagram of an example inclusion is
shown in Figure 2. All the 12 cases of inclusions with different

√
area, A, and θ are inserted

in different RVEs constructed in Section 2.1. Figure 3 gives an example of one RVE with
different inclusions in the center (the dark grey part represents the inclusion). All the edges
of the inclusions were assumed to be tightly bonded with the steel matrix in this study.

Table 1. Geometry sketches of inclusions with different shapes in this study and the corresponding
values of aspect ratio A and the rotation angle θ.

Inclusion Shape Circle Ellipse-1 Ellipse-2 Ellipse-3

Geometry sketches
of inclusions
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Figure 2. Schematic drawing of the aspect ratio, A, and the tilting angle, θ, of an inclusion. 
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√
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2.3. Residual Stress Simulation

During the heat treatment process of quenching, the temperature of the steel decreases
sharply, which introduces residual stresses between the inclusion and steel matrix due to
different thermal expansion properties and mechanical properties. The residual stress has
been proven to affect the fatigue process significantly [24,25]. In this study, the residual
stress distribution was simulated and set as the initial condition for fatigue loading, element
by element. The simulation was conducted with Abaqus/standard. The inclusions type
was chosen as calcium aluminate, which is one of the most common inclusion types existing
in steels. The properties of calcium aluminate inclusions are obtained from references and
shown in Table 2. For the inclusions, only the elastic properties were considered; while
for the steel matrix, elastic and plastic properties were both considered. The mechanical
properties of the steel matrix and detailed numerical study on the effect of inclusions
with different shapes and types on residual stress distribution were investigated in the
previous study [22]. The temperature variation in this study is from 835 ◦C to 20 ◦C, which
is consistent with the quenching process.

Table 2. Mechanical properties and thermal expansion coefficients [25,26].

Material
Coefficient of Linear

Expansion,
α (10−6·◦C)

Young’s Modulus,
E (GPa) Poisson’s Ratio, v

Calcium Aluminate 5.0 113 0.23
Steel Matrix 23.0 206 0.30

2.4. Crystal Plasticity Model and Parameter Calibration

In the microstructure-based fatigue simulation, the response behavior of the steel
matrix to fatigue loading is described by the CP model. The formulation of the model is
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based on the well-established phenomenological description of slip, which can be found
in detail in the review paper by Roters et al. [27]. The model has shown great predictive
capabilities in correlating the deformation anisotropy [28], damage [29], and residual
stresses [30] with microstructure features. The model was extended to include the kinematic
hardening in our previous study [31]. The main equations in this model are shown in
Table 3.

Table 3. Main equations in the CP model.

Constitutive Equation

.
γ

α
=

.
γ0

∣∣∣∣ τα − χα

τα
c

∣∣∣∣ 1
m

sgn(τα − χα) (3)

γa—slip rate along the slip system α;
.
γ0—initial slip rate;
τα—resolved shear stress along a slip system α;
χα—backstress on slip system α;
τα

c —critical resolved shear stress on slip system α;
1/m—strain rate sensitivity factor.

Calculation of Shear Stress

τα = S·(mα ⊗ nα) (4)

na—normal to the slip plane;
ma—slip direction;
S—second Piola–Kirchhoff stress tensor.

Isotropic Hardening Law

τα
c = τi +

N

∑
β=1

qαβ

[
h0

(
1− τ

β
c

τs

)a]∣∣∣∆γβ
∣∣∣ (5)

τi—initial resolved shear stress;
qαβ—latent hardening parameter;
h0, τs, a—hardening parameter;
∆γβ—plastic slip increment of each slip system β.

Kinematic Hardening

.
χα = G1

.
γ

α − G2

∣∣∣ .
γ

α
∣∣∣χα (6)

G1, G2—kinematic hardening constant;
χα—backstress tensor of slip system α.

In Table 3, the calibration parameters are τi, τs, h0, a,
.
γ0, m, G1, and G2, and the elastic

parameters are C11, C12, and C44. The calibration was based on the hysteresis loops from
low cycle fatigue tests with a fixed strain. The calibration process was iterative with the
trial-and-error method. The calibration results for the steel matrix are reported in our
previous studies [5,6], which is also shown in Table 4.

Table 4. CP model fitting parameters [5].

C11: 193.9 GPa C12: 94.6 GPa C44: 92.2 GPa γ0: 0.01
1/m: 100 τ0: 645 MPa G1: 100,000 MPa G2: 2000

h0: 1000 MPa a: 1.1

2.5. Fatigue Indicator Parameter and Fatigue Simulation

A fully reversed tension–compression (R = −1) fatigue loading in the y-direction
(Figure 2) was applied in this simulation. The stress amplitude is predefined, which
is 1200 MPa in this study. Six cycles of fatigue loading were acted on the model since
the saturated plastic slip per cycle can be generally reached after two cycles, according
to multiple studies [32,33]. The local accumulated dislocation slip was recognized as
fatigue indicator parameter (FIP) according to the studies of Mughrabi et al. [34–36],
Dunne et al. [15], Manonukul and Dunne [37], and Cheong and Busso [38]. To obtain
the information of FIP accurately and clear the effect of meshing, the maximum grain-
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level-averaged value was calculated. The local accumulated dislocation slip pacc and the
maximum grain-level-averaged value Pmax are calculated with Equations (7) and (8) [31].

pacc =
∫ t

0

√
2
3

Lp : Lpdt, (7)

Pmax = max

 1

∑
NGr

E
i=1 VGr

i

∑NGr
E

i=1 piVGr
i

, (8)

where the parameter i is the identifier of the finite element of the involved grain, NGr
E is the

number of elements within the grain, and VGr
i is the volume of the element i of the grain.

The position of Pmax is identified as the fatigue crack initiation site.
Researchers also studied the relation between Pmax distribution and the cycles for

fatigue crack. Gillner et al. [21,31] proposed a method to calculate fatigue life with Pmax
and other fitting parameters (Equations (9) and (10)), as follow:

f (x|Am, Bm) = A−1
m exp

(
x− Bm

Am

)
exp

[
− exp

(
x− Bm

Am

)]
, (9)

Nf,m =
αp

dgr

(
∑k Pmax

kNc

)2

(
1 +

∑L
i (AmBm)

uσm

(AmBm)
u ∑L

m σm

)
, (10)

where Am and Bm are the distribution parameters of Pmax under stress amplitude indicating
number m; k is the number of RVEs; Nc is the number of cycles to calculate Pmax; dgr is the
mean grain size; αp and u are fitting parameters calibrated with at least two fatigue life
data; σm is the stress amplitude value under m.

To adopt the method offered by Gillner et al. [21,31], over three stress amplitudes
are necessary for the simulation. Besides, at least two experimental fatigue life data
under different stress amplitudes are needed for curve calibration. These facts narrow the
application scope of this method.

Compared with Gillner et al. [21,31], Boeff et al. [39] proposed a relatively simple
method, claiming that the number of cycles to initiate a microcrack is inversely proportional
to Pmax (Equation (11)), as follows:

Nf =
pc

∆P
, (11)

where pc is the critical accumulated plastic slip. ∆P is the accumulated plastic slip per cycle
in the stable regime. Since only one stress amplitude was adopted in this simulation, and
the method of Boeff et al. [39] was chosen to analyze the relationship between Pmax and
cycle Nf.

3. Results and Discussion
3.1. Residual Stress Distribution with Different Inclusions

Since the residual stress distribution will be the initial state before the fatigue stress
loading and the residual stress will significantly affect the fatigue behavior, the residual
stress state concerning inclusions with different sizes and shapes will be analyzed in
this section.

Figure 4 shows typical residual stress distributions around different inclusions. The
residual stress distributions are calculated with the same RVE even though the inclusion
features are different. As shown in the figure, the maximum residual stress exists in the
boundary between the inclusion and steel matrix. The value of residual stress decreases
gradually when the position turns far away from the inclusion. It is also obvious that the
residual stress is larger for inclusions with larger sizes when the shape keeps consistent.
While for inclusions with the same size, the maximum residual stress around ellipse
inclusions appears larger than that around circular inclusion. For elliptical inclusions, the
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position for maximum residual stress remains at the end of the ellipse due to the largest
curvature and the stress concentration.
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√
area = 26.6 µm;

(e–h)
√

area = 13.3 µm; (i–l)
√

area = 4.2 µm.

When the maximum residual stress with different inclusions in different RVEs are all
calculated and analyzed, another interesting fact is noticed. Figure 5 shows the average
maximum residual stress with different RVEs and the same inclusion and the standard
deviation of these data. The standard deviations for inclusions with

√
area = 4.3 µm are

distinctly larger than the larger inclusions no matter what the inclusion shapes are. This fact
indicates that for smaller inclusions, especially when the inclusion size is close to the grain
size, the value of the maximum residual stress is affected by the microstructure around the
inclusion more seriously, compared with the inclusion features themselves. While for larger
inclusions, the fluctuation of the maximum residual stress turns smaller under different
local features of the microstructure. In this case, the inclusion feature is more important in
residual stress analysis.
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3.2. Fatigue Crack Initiation Site Prediction

To analyze the crack initiation site with inclusions of different characters, Figure 6
shows the pacc contour distributions of steel matrix in typical RVEs with different inclusions.
The white arrows point at the position of Pmax. As shown in the figure, the positions of Pmax
are all around the inclusions; meanwhile, the specific positions are not exactly the same as
those of the maximum residual stress, which are more connected with the loading directions.
This conclusion can be proven in the cases of the Ellipse-2 and Ellipse-3 inclusions. In
Figure 6c,d,g,h,k,l, the positions of Pmax are not in the sites with the largest curvature of the
ellipse. The positions of Pmax are all at the end of the ellipse perpendicular to the loading
direction, where the stress concentration is caused by the fatigue loading peaks. In the cases
of the present study, the residual stress introduced by heat treatment around inclusions can
just affect the value of fatigue life, but cannot constitute a key factor of the fatigue crack
initiation site.
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area = 26.6 µm; (e–h)

√
area = 13.3 µm; (i–l)

√
area = 4.2 µm.

3.3. Fatigue Life Prediction
3.3.1. Results of Fatigue Life Prediction with Microstructure Modeling

To illustrate the effect of the shape features (aspect ratio and tilting angle) on the
fatigue life, the material parameter of pc shall be firstly calibrated. This calibration requires
one data point in the S–N curve from experimental data. In this study, the experimental
results for a circular inclusion with the size of

√
area = 13.3 µm under the stress amplitude

of 1200 MPa are used. The morphology of the fatigue fracture and the composition of
the inclusion inducing this fracture is shown in Figure 7. It is emphasized here that pc is
considered to be a material intrinsic parameter. Therefore, with one special case of circular
inclusion and one stress amplitude, it is plausible to extend it for other extrinsic applications
with different inclusion staples and stress amplitudes.
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inclusion in crack initiation site.

During the calculation of the values of ∆P, the stable cycles in this study are decided
from cycle 4 to cycle 6, according to previous studies [5,6]. The average fatigue life of
different inclusions is shown in Figure 8a without unifying the shape parameter. The
decreased tendencies of fatigue life with the increase in inclusion sizes are similar, but the
absolute values appear obviously different with different inclusion shapes. It is also noted
that the fatigue life of inclusions with different shapes shows different features when the
inclusion size is the same. The fatigue life in the case of Ellipse-3 is the best, while the
fatigue life in the case of Ellipse-1 is the worst. The tilting angle also plays an important
role in fatigue life. When the aspect ratio is the same (Ellipse-1, Ellipse-2, and Ellipse-3), the
fatigue life also varies clearly, especially for the case of Ellipse-3. Based on the simulated
∆P and the experimental fatigue life of inclusions with

√
area = 13.3 µm, the calculated

result of lg(pc) is 3.2.
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Figure 8b also gives the variation of variance values of fatigue life with different inclu-
sions caused by different RVEs, which is the square of the standard deviation. It is noticed
that the scatters of the predicted fatigue life of inclusions with

√
area = 4.3 µm appear larger

for all types of inclusion shapes. The scatters of inclusions with
√

area = 13.3 µm are also
larger than those of inclusions with

√
area = 26.6 µm. This result is quite reasonable since

the effect of smaller inclusions on fatigue life is lower and will lead to longer fatigue life
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and longer fatigue life often means large scatter in fatigue experiments, especially in the
VHCF regime.

3.3.2. Inclusion Parameters Unifying and the Formulation of Fatigue Life concerning
Inclusion Parameters

In previous studies, the shapes of inclusions were considered as total areas or the
projection areas along the loading direction when their effects on fatigue behavior were
analyzed, which are quite reasonable and effective under some conditions. However,
these assumptions and simplifications cannot fully describe the features of the inclusions,
especially for the inclusions with the same projection area but different local shapes. In this
section, a new method to describe the size and shape of inclusions is offered with three
parameters—

√
area, A, and θ—based on the four kinds of shapes shown in Section 2.2. In

the end, an equation
√

Sshape = f (
√

area, A, θ)—is proposed, where Sshape is the equivalent

area when the inclusion shape is taken into consideration.
Firstly, this method is designed from circular inclusions. For the circular inclusion,

the change of θ is meaningless, as long as A = 1. To meet this characteristic, the parameter
A and θ is represented with θ × (A − 1). Therefore, the entirety of θ × (A − 1) remains
to be 0 no matter how θ changes. However, θ × (A − 1) cannot meet the demands from
elliptical inclusions. For elliptical inclusions with θ = θ0 and θ = 180◦ − θ0, the effects on
fatigue behavior are the same due to the symmetry effect. Therefore, the trigonometric
function sinθ is introduced accordingly. θ × (A − 1) is improved to be sinθ × (A − 1).
Under this circumstance, the values of sinθ × (A − 1) for circle inclusion and Ellipse-3
inclusion are both 0. However, the effects of these two inclusions on fatigue are obviously
different. To solve this problem, the parameter A is recalled. Additionally, the value 0 of
sinθ × (A − 1) will also cause trouble when it shows in the denominator in the function,
hence the function to describe inclusion shape becomes Asinθ × (A − 1). The values of these
expressions are shown in Table 5 for better understanding.

Table 5. Values of expressions in the function to describe inclusion shape.

Circle Ellipse-1 Ellipse-2 Ellipse-3

Geometry sketches
of inclusions
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A 1 2 2 2 

θ / 90° 45° 0° 

A − 1 0 1 1 1 

sinθ / 1 √2/2 0 

sinθ × (A − 1) 0 1 √2/2 0 

According to the data regulations, when the shapes of inclusions were considered as 

total areas or the projection areas along the loading direction, the increase in Asinθ × (A − 1) 

will lead to the increase in the inclusion effect on fatigue life. Therefore, √𝑆shape = f(√𝑎𝑟𝑒𝑎, 

A, θ) is expressed with Equations (12) and (13), as follow: 

𝜉 = 𝐴(sin 𝜃 − ℎ)×(𝐴 − 1), (12) 

√𝑆shape = √𝑎𝑟𝑒𝑎
𝜉
, (13) 

where 𝜉 is the inclusion shape parameter. It is noted that an extra parameter h is also 

inserted in this equation. This parameter is designed for adjusting the influence weight of 
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A 1 2 2 2
θ / 90◦ 45◦ 0◦

A − 1 0 1 1 1
sinθ / 1

√
2/2 0

sinθ × (A − 1) 0 1
√

2/2 0

According to the data regulations, when the shapes of inclusions were considered as to-
tal areas or the projection areas along the loading direction, the increase in Asinθ × (A − 1) will
lead to the increase in the inclusion effect on fatigue life. Therefore,

√
Sshape = f (

√
area, A, θ)

is expressed with Equations (12) and (13), as follow:

ξ = A(sin θ−h)×(A−1), (12)√
Sshape =

√
areaξ , (13)

where ξ is the inclusion shape parameter. It is noted that an extra parameter h is also
inserted in this equation. This parameter is designed for adjusting the influence weight
of A and θ and balancing the synergistic effects of these two parameters, which will be
fitted later.
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To decide the value of parameter h, multiple values of h are applied to the calibration
trials. The variations of shape indicator ξ under different shapes are shown in Figure 9. For
circle inclusion, the value of ξ keeps constant. While for Ellipse-1, Ellipse-2, and Ellipse-3
inclusion, the value of ξ decreases, and the decreasing rate is slightly flattened with the
increase in h.

Crystals 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

A and θ and balancing the synergistic effects of these two parameters, which will be fitted 

later. 

To decide the value of parameter h, multiple values of h are applied to the calibration 

trials. The variations of shape indicator ξ under different shapes are shown in Figure 9. 

For circle inclusion, the value of ξ keeps constant. While for Ellipse-1, Ellipse-2, and El-

lipse-3 inclusion, the value of ξ decreases, and the decreasing rate is slightly flattened with 

the increase in h.  

 

Figure 9. The variations of shape indicator ξ with h under different inclusion shapes. 

As presented in previous studies, the logarithm of fatigue life, Nf, can be expressed 

with a power function of stress amplitude and √𝑎𝑟𝑒𝑎. In this study, the stress amplitude 

is not considered as a variable, thus Nf will be fitted with a power function of a single 

variable √𝑆shape, where √𝑆shape is a replacement of √𝑎𝑟𝑒𝑎, as shown in Equation (14). 

lg(Nf) = a × (√𝑆shape)b, (14) 

where a and b are the fitting parameters for power function. Combined with Equation (11), 

Equation (14) becomes the following: 

−lg(∆𝑃) = −lg(𝑝c) + a × (√𝑆shape) b, (15) 

Based on this variation trend, Equation (15) is calibrated with data in Figure 8a and 

lg(𝑝c) = 3.2 under different values of h. Several representative calibration results are shown 

in Figure 10. With the increase in h, the quality of calibration improves sharply at first, 

which is also proved by the fitting degrees R2 (Figure 11). When the value of h exceeds 0.8, 

R2 begins decreasing. Therefore, the formulation of fatigue life concerning inclusion pa-

rameters can be expressed with Equation (16). 

lg(Nf) = 9.2×(√𝑎𝑟𝑒𝑎
𝐴(sin 𝜃 − 0.8)×(𝐴 − 1))

)−1/26, (16) 

To further express the representative meaning of inclusion shape parameter, 𝜉, Fig-

ure 12 shows the values of 𝜉 under different aspect ratios, A, tilting angle, θ, and h. Based 

on the fact that the increase in 𝜉 will lead to the increase in the inclusion effect on fatigue 

property and the decrease in fatigue life, the geometrical and physical representativeness 

of parameter 𝜉 and h can be described as follows. When A equals one, the value of 𝜉 and 

the inclusion effect keeps constant no matter how θ changes. When A remains constant 

and larger than one, the value of 𝜉 the inclusion effect keeps growing with the increase 

in θ. However, when θ keeps constant, the changing trend of the value of 𝜉 and the in-

clusion effect with the increase in A becomes different, which is distinguished with light 

Figure 9. The variations of shape indicator ξ with h under different inclusion shapes.

As presented in previous studies, the logarithm of fatigue life, Nf, can be expressed
with a power function of stress amplitude and

√
area. In this study, the stress amplitude

is not considered as a variable, thus Nf will be fitted with a power function of a single
variable

√
Sshape, where

√
Sshape is a replacement of

√
area, as shown in Equation (14).

lg(Nf) = a× (
√

Sshape)
b
, (14)

where a and b are the fitting parameters for power function. Combined with Equation (11),
Equation (14) becomes the following:

− lg(∆P) = −lg(pc) + a× (
√

Sshape)
b
, (15)

Based on this variation trend, Equation (15) is calibrated with data in Figure 8a and
lg(pc) = 3.2 under different values of h. Several representative calibration results are shown
in Figure 10. With the increase in h, the quality of calibration improves sharply at first,
which is also proved by the fitting degrees R2 (Figure 11). When the value of h exceeds
0.8, R2 begins decreasing. Therefore, the formulation of fatigue life concerning inclusion
parameters can be expressed with Equation (16).

lg(Nf) = 9.2× (
√

areaA(sinθ−0.8)×(A−1)
)
−1/26

, (16)

To further express the representative meaning of inclusion shape parameter, ξ, Figure 12
shows the values of ξ under different aspect ratios, A, tilting angle, θ, and h. Based on
the fact that the increase in ξ will lead to the increase in the inclusion effect on fatigue
property and the decrease in fatigue life, the geometrical and physical representativeness
of parameter ξ and h can be described as follows. When A equals one, the value of ξ and
the inclusion effect keeps constant no matter how θ changes. When A remains constant and
larger than one, the value of ξ the inclusion effect keeps growing with the increase in θ.
However, when θ keeps constant, the changing trend of the value of ξ and the inclusion
effect with the increase in A becomes different, which is distinguished with light grey color



Crystals 2022, 12, 200 13 of 17

in Figure 12. When sinθ is larger than h, the increase in A will lead to the increase in the
value of ξ and the inclusion effect; when sinθ is smaller than h, the increase in A will lead
to the decrease in the value of ξ and the inclusion effect. According to the change of h, the
different values of critical θ can be calculated. In the above text, the value of h has already
been determined based on the calibration quality between fatigue life and

√
areaξ , which

indicates that the critical value of h = arcsin(0.8) = 53◦. When θ > 53◦, the effect of inclusion
on the fatigue property will increase when A increases; when θ < 53◦, the effect of inclusion
on the fatigue property will decrease when A increases.
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3.3.3. Validation of the Formulation of Fatigue Life concerning Inclusion Parameters

According to the research of Murakami [10], the 107 fatigue limit for stress ratio,
R = −1, depends on the square root of inclusion area to the −1/6th power, shown in
Equation (17):

σw = a(HV + 120)/
√

area1/6, (17)

where HV is the Vickers hardness of the steel;
√

area is the square root of the inclusion area,
µm; a is the position coefficient of the inclusion, a = 1.43 for surface inclusions, a= 1.41 for
inclusions in contact with the sample surface, and a = 1.56 for internal inclusions. For high
cycle fatigue and very high cycle fatigue properties, Furuya et al. [40] reported that the 109

fatigue limit also obeyed this −1/6th power rule for inclusions larger than 15 µm.
In our previous study, a formulation of fatigue life with respect to stress amplitude and

inclusions size was also proposed based on the experimental data and microstructure-based
fatigue modeling. The formulation is shown as Equation (18), as follows:

lg(Nf) = F1 × σF2 ×
(√

area
)F3 , (18)

where σ represents the stress amplitude in MPa;
√

area represents the square root of the inclu-
sion area in µm; and F1, F2, and F3 are the fitting constants, where F1 = 15,402 MPa0.98·µm1/4.7,
F2 = −0.98, and F3 = −1/4.7.

The inclusions in the previous study were calcium aluminate circle inclusion. To
compare the previous formulation and Equation (16). The value of ξ is calculated first with
the data of circle inclusion (A = 1, (sinθ − h) × (A − 1) = 0). Therefore, for circle inclusion,
Equation (16) becomes Equation (19).

lg(Nf) = 9.2× (
√

area)−1/26, (19)

It is noted that the exponent changed to −1/26. With this exponent, the slope of the
curve turns flatter, which means the effect of inclusion size change on fatigue life decreases
in this formulation. Since the inclusions considered in Equations (18) and (19) are actual
inclusions observed in the fatigue failure. The shapes of these inclusions are not that
regular. The local irregularity directly leads to a stronger impact on fatigue life; meanwhile,
in the present study, artificial inclusions with perfect regular shapes are inserted in the
model for numerical study. The absence of the roughness in the inclusion shapes is the
major cause of the smaller value of the exponent. In the following work, the surface
roughness of inclusions will also be included in the simulation to extend the applicability
of the formulation.

4. Conclusions

(1) In this study, the effect of the shape features of inclusions on fatigue life is system-
atically investigated via a microstructure-based modeling approach. Based on the
findings, an analytical formulation to correlate the fatigue life with the size and
shape features of inclusions is proposed. This formulation extends the former fatigue
equation to shape parameters (aspect ratio, A, and tilting angle, θ).

(2) To describe the inclusion shape, a new parameter, ξ, which unifies the aspect ratio
and tilting angle of the inclusion, is introduced. This parameter, ξ, shows its repre-
sentativeness in both the geometrical and physical sides. This new parameter and
inclusion area jointly determine the equivalent inclusion area, which was adopted in
the formulation of fatigue life as a single variable.

(3) A critical θ is also offered. When θ > 53◦, the effect of inclusion on the fatigue property
will increase when A increases; when θ < 53◦, the effect of inclusion on the fatigue
property will decrease when A increases.

(4) For smaller inclusions, the value of the maximum residual stress around the inclusion
is affected by the microstructure of the steel matrix around the inclusion more seriously
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compared with the inclusion features itself; meanwhile, for larger inclusions, the
inclusion shape is more important in residual stress analysis.

(5) The predicted fatigue life in this study concerning the inclusion depends on the square
root of the equivalent inclusion area to the −1/26th power.
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