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Abstract: Visible light communication (VLC) is a promising technology for next-generation high-speed
optical wireless data links. Among various transmitters, GaN-based superluminescent diodes (SLDs)
show interesting characteristics, including a large modulation bandwidth, droop free and low speckle
noise, which makes them attractive for VLC applications. In this work, we design and fabricate a
blue-emitting SLD utilizing tilted facet configuration. Using SLD as the light source, a VLC system
is experimentally demonstrated. A record data rate of 4.57 gigabit per second (Gbps) is achieved
with adaptive bit-loading discrete multiple tone (DMT) modulation, while the highest modulation
format reaches 256 quadrature amplitude modulation (QAM). The corresponding bit error rate (BER)
is ~3.5 × 10−3, which is below the forward error correction (FEC) threshold of 3.8 × 10−3.

Keywords: gallium nitride (GaN); superluminescent diode (SLD); visible light communication (VLC);
discrete multiple tone (DMT) modulation

1. Introduction

In recent years, the rapid growth of wireless data demands has called for a large
data rate and low latency data links. Beyond conventional RF-based technologies, various
emerging technologies have been studied, and visible light communication (VLC) is one
of them. VLC, or LiFi technology, has drawn much attention, owing to its high security,
durability against electromagnetic interference (EMI), use of an unlicensed spectrum, and
combination of illumination and communication [1–3].

InGaN-based light-emitting diodes (LEDs) have been widely used as the transmitter
of VLC systems, due to their wide availability, long lifespan, and low cost. However, the
modulation bandwidth of a typical LED is limited to tens or hundreds of MHz, owing to the
spontaneous emission nature. Hence, the transmission data rate of LED-based VLC systems
might be limited. On the other hand, laser diodes (LDs) have a much higher bandwidth
of several GHz and a high data rate of several Gbps, but the speckle noise, as well as the
potential safety concerns, limit the mass deployment of LD-based VLC systems [4].
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Superluminescent diodes (SLDs) have the advantages of both LEDs and LDs, and
have lately been studied as the transmitter in VLC systems with high-speed, droop-free
and low speckle noise characteristics [5,6]. In this work, a blue SLD was fabricated using a
tilted facet configuration with a tilting angle of 8.3◦ on the front facet. We experimentally
demonstrate a VLC system based on this blue SLD, which has reached a record data rate of
up to 4.57 Gbps.

2. Materials and Methods
2.1. Blue SLD Structure

The epitaxial structure of the device is grown on a c-plane GaN substrate using a
metal–organic chemical vapor deposition (MOCVD) technique. The SLD is fabricated
based on a conventional laser epi-structure [7], consisting of In0.15Ga0.85N/GaN quantum
wells as the active region, together with AlGaN cladding layers, GaN waveguiding layers
and an AlGaN electron blocking layer. The top GaN layer is highly Mg-doped in order to
guarantee high-quality ohmic contact. The SLD has an etched ridge waveguide structure
and an 8.3◦ tilted facet, as illustrated in Figure 1a. This angle is controlled for minimizing
the direct reflectance from the front facet, and thus the formation of a resonant cavity is
suppressed. In particular, anti-reflective (AR) coating is not needed for this structure. The
device mesa and 2 µm ridge waveguide is defined by UV photolithography and plasma
etching. The Pt/Au and Ti/Al/Ti/Au metal contacts are deposited using RF sputtering
as p- and n-contacts [7]. The tilted facet is defined using focus ion beam (FIB) milling
technology using FEI Helios System. In order to increase the output optical power, the back
facet of the SLD is coated with a highly reflective (HR) mirror with reflectivity over 90%.
The top view of the fabricated device is shown in Figure 1b.
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Figure 1. (a) Schematic illustration of the superluminescent diode on the GaN substrate; (b) the
scanning electron microscopy (SEM) image of the fabricated SLD device.

2.2. The Principle of Adaptive Bit-Loading Discrete Multiple Tone (DMT) Modulation Scheme

On–off keying (OOK) is widely used as a modulation scheme for data transmission
experiments, but due to the low spectral efficiency (SE), the data rate is limited. In this
work, we use the adaptive discrete multiple tone (DMT) scheme for optical wireless com-
munication and achieve a data rate much higher than those using OOK modulation.

In the bit-loading DMT modulation scheme, the utilized frequency spectrum is uni-
formly divided into multiple communication channels with carriers totally separated. The
carriers for those separated communication channels are called subcarriers. There is no
interference across subcarriers. In the VLC systems, only amplitude modulation is consid-
ered. These systems are called intensity modulation direct detection (IM-DD) systems. A
structure of Hermitian symmetry is utilized in the DMT modulation scheme to obtain a
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real-valued signal through inverse discrete Fourier transform (IDFT), then the requirement
of IM-DD systems is satisfied [8,9].

To better assess the characteristic of the channel for VLC links, a training process is
included in the adaptive bit-loading DMT scheme. A 4-QAM training signal is transmitted
and then the error vector magnitude (EVM) is calculated, so that the subcarrier signal-to-
noise ratio (SNR) can be estimated properly. According to the estimated SNR of the VLC
channel, the LC algorithm introduced in [10] is utilized to complete bit loading for each
subcarrier. The SE is maximized in this way, which can even approach the Shannon limit.
After training, the communication signal is transmitted and then collected at the receiver
end (Rx). Further digital signal processing (DSP) is carried out. The received signal is
demodulated with posteriori knowledge of the VLC channel, and then the bit error rate
(BER) is calculated.

2.3. Experimental Setup

The light output current–voltage (L-I-V) measurement was carried out in a device tester
with a thermal-electric cooled SLD mount, a Keithley 2400 source measure unit (SMU), and
an integrating sphere with a calibrated Si photodetector (Labsphere LPMS-020-SF-SDTP,
North Sutton, NH, USA). The optical spectra were collected using a spectrometer (Ocean
Optics QE Pro, Orlando, FL, USA). All measurements were performed at room temperature.

The schematic and experimental setup of the SLD-based VLC system using the bit-
loading DMT modulation scheme is depicted in Figure 2. For proof-of-concept demon-
stration, the signal modulation and demodulation processes were performed offline using
MATLAB. Firstly, a pseudo-random binary sequence was generated. We used the adaptive
bit-loading DMT modulation scheme containing 256 subcarriers, the QAM order of which
depended on SNR estimation. The up-sampling factor was 2. The signal was loaded into
an arbitrary waveform generator (AWG, Keysight M8190A, Santa Clara, CA, USA) with a
maximal sample rate of 12 GSa/s. Afterwards, the signal was amplified by an electronic
amplifier (iXblue Photonics DR-AN-10-MO, Lannion, France), and attenuated by an at-
tenuator (Key-Press Attenuator kT2.5-30/1S-2S, Shenzhen, China). The 290 mA DC bias
generated by a source measure unit (Keithley 2400, Santa Clara, CA, USA) was coupled
with the modulated signal by the bias-tee (Mini-Circuits ZFBT-4R2GW-FT+, Brooklyn, NY,
USA). A thermoelectric cooler (TEC) was attached to the SLD so as to keep the device at a
constant temperature. The transmission distance was set as ~1 m as a test bed for practical
deployment of the VLC system. An iris was placed in front of the Rx to reduce the sponta-
neous emission component of the beam. Finally, the light was received by a customized
Si avalanche photodetector (APD) with a bandwidth exceeding 1 GHz. Then the optical
signal was converted into an electrical signal and was resampled by the oscilloscope (OSC,
Keysight DSO9404A, Santa Rosa, CA, USA) for offline signal processing. The maximal
sample rate of the OSC was 20 GSa/s. The frequency response of the SLD-based VLC
system was tested by a network analyzer (Agilent Technologies PNA-L N5230C, Santa
Clara, CA, USA).
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3. Results

The optical and electrical characteristics of the SLD are reported in Section 3.1, and the
results of the communication experiment are outlined in Section 3.2 below.

3.1. Device Characterizations

Figure 3 presents the optical power vs. current and voltage vs. current curves of the
fabricated SLD tested at room temperature. The device has a turn-on voltage of ~3.1 V,
which is similar to a typical GaN-based LED. With increasing injection current exceeding
80 mA, a super-linear L-I curve is observed, suggesting that the device entered the amplified
spontaneous emission regime, which is typical for an SLD. The optical power increases to
~4.46 mW under the injection current of 290 mA.
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In Figure 4a, we plot the emission spectra of the SLD under different injection currents.
A blue shift of the emission peak is observed with increasing injection current. The emission
peak changes from ~447 nm at 40 mA to ~441 nm at 200 mA. This is mainly attributable
to the band filling effect [11]. Figure 4b shows the change in the emission peak position
and the full-width at half maximum (FWHM) against the injection current. A fast decrease
in peak FWHM, from ~19 nm at 40 mA to ~10 nm at 80 mA, can be observed, suggesting
the onset of the superluminescence effect. This matches the L-I characteristics shown in
Figure 3 well. The SLD has a relatively broad spectrum, with FWHM of ~12 nm at a high
injection current of 300 mA.

3.2. Data Communication Performance

We firstly use a network analyzer to observe the frequency response of the SLD-based
VLC system, and the result is shown in Figure 5. When the injection current exceeds 80 mA,
there is a significant increase in modulation, suggesting that the SLD operating in the
amplified spontaneous emission regime has a better frequency response characteristic. The
device shows a −10 dB and −20 dB bandwidth beyond 700 MHz and 1.3 GHz, respectively.
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In the data communication experiment where SLD is used as the transmitter, the
driving current and the amplitude of the signal should be optimized for communication
applications. Thus, we perform a series of measurements to find the optimal working
condition of the SLD transmitter for achieving a high data rate. We test the average QAM
order under a bias current from 180 mA to 320 mA, with a step of 10 mA, and under the
peak-to-peak voltage (Vpp) generated by the AWG, from 350 mV to 650 mV, with a step of
50 mV. As shown in Figure 6, to attain the highest QAM order, the Vpp is set at 500 mV, and
the driving current of 290 mA is set for the DC bias of the SLD. According to the device
characterization results, the corresponding operating voltage is ~6.98 V, the emission peak
is ~442 nm, and the FWHM is ~12 nm at 290 mA. The −3 dB and −20 dB bandwidth of the
VLC system are 110 MHz and 1.4 GHz, respectively.

The gain control voltage of the amplifier is set as 1 V, and an attenuation of 5 dB is set
by the attenuator. To reduce the spontaneous emission component of the beam, an iris is
placed in front of the Rx. The utilized bandwidth is adjusted to achieve a higher data rate in
the experimental system. We test the transmission rate using a modulation bandwidth from
1 GHz to 1.425 GHz, with a step of 250 MHz. When testing the data rate, the BER is strictly
controlled under the forward error correction (FEC) threshold 3.8 × 10−3. As is shown in
Figure 7a, the optimized bandwidth is tested as 1.35 GHz. The SNR and allocated bits for
each subcarrier are demonstrated in Figure 7b. The constellation diagrams for different
QAM orders in this experiment are also included. From the constellation diagrams, we
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can observe a clear separation of constellation points, which indicates a relatively good
SNR. In the SLD-based VLC data link, the highest QAM order reaches six. At a data rate
of 4.57 Gbps, the BER is ~3.5 × 10−3, which satisfied the forward error correction (FEC)
standard of 3.8 × 10−3.
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4. Discussion

Table 1 summarizes the device performance of recently reported GaN-based SLDs for
high-speed modulation applications. The emission wavelength, spectral FWHM, modulation
bandwidth, achieved data rate and modulation scheme are compared. In 2016, a group of
researchers from KAUST utilized a 405 nm SLD as a transmitter to transmit data at 1.3 Gbps
using an OOK modulation scheme [12]. In 2018, the same group reported a blue SLD-based
VLC link that enabled a data rate of 1.45 Gbps using an NRZ-OOK modulation scheme [5]. In
2019, KAUST and Fudan University utilized a 443 nm c-GaN SLD with a bit-loading DMT
modulation scheme, and reached a data rate of 3.4 Gbps [8]. In 2020, a 443 nm SLD on a
c-GaN substrate was demonstrated with a 750 MHz modulation bandwidth. A data rate of
3.8 Gbps was reported [13]. The University of New Mexico successfully fabricated an m-GaN
SLD and reached a modulation bandwidth of 2.5 GHz [14]. A c-GaN SLD-based VLC system
with an MAPNN-CAP modulation scheme was reported in 2020, which contained neural
network applications [15]. In this work, we reported a high-speed VLC system with a data
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rate of 4.57 Gbps, utilizing a 442 nm SLD as a transmitter, partially attributed to the optimized
design and fabrication of the SLD device, and the high spectral efficiency of the bit-loading
modulation scheme. The record data transmission rate achieved may be attributed to the
high-performance blue SLD and the optimized adaptive DMT modulation scheme used for
higher spectral efficiency, which approaches the Shannon limit. Compared with other SLDs,
the demonstrated SLD shows a large modulation bandwidth, as well as a good frequency
response in the range of 0–1.35 GHz. The narrow (~2 µm) ridge waveguide structure might
be one of the main factors enabling high-frequency performance in the compact SLD emitter.
A device with a small form factor enjoys a reduced RC time constant, making it promising for
high-speed operations.

Table 1. Comparison of GaN-based SLDs for VLC applications.

Year Wavelength Substrate Spectral
FWHM

Modulation
Bandwidth Data Rate Modulation

Scheme Ref

2016 405 nm Semipolar GaN 9 nm 807 MHz (−3 dB) 1.3 Gbps OOK [12]
2018 442 nm c-GaN 6.5 nm 405 MHz (−3 dB) 1.45 Gbps NRZ-OOK [5]
2019 442 nm c-GaN 7 nm 1 GHz (−3 dB) - - [16]
2019 443 nm c-GaN 5.1 nm - 3.4 Gbps DMT [9]
2019 416 nm Transparent GaN 6 nm - - - [17]
2020 443 nm c-GaN 4.3 nm 750 MHz 3.8 Gbps DMT [13]
2020 428 nm m-GaN 3 nm 2.5 GHz (−3 dB) - - [14]
2020 442 nm c-GaN 4 nm 600 MHz 2.95 Gbps MAPNN-CAP [15]
2021 442 nm c-GaN 12 nm 1.35 GHz 4.57 Gbps DMT This work

5. Conclusions

In this work, a 442 nm SLD is fabricated with a 8.3◦ tilted angle on its front facet. A
high-speed blue SLD-based VLC system is demonstrated with a record transmission rate of
4.57 Gbps and a BER of 3.5 × 10−3, which is below the FEC BER limit of 3.8 × 10−3. The
modulation bandwidth is 1.35 GHz. Adaptive bit-loading DMT is an efficient modulation
scheme. Our work suggests that GaN-based SLD is a promising transmitter to build high
data rate, high-speed VLC systems, benefiting from the large modulation bandwidth, with
the possibility of enabling other functionalities, including simultaneous lighting and sensing.
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