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Abstract: Supramolecular, low-melting (near or below 0.0 ◦C) ionic liquid crystals with two rings
of Schiff bases were prepared and studied. The Schiff bases were synthesized using 4-substituted
aniline derivatives and 4-pyridine carbaldehyde and then mixed in equimolar amounts with linear
1-bromoalkanes of different chain lengths, namely C6, C8, and C14. The mesomorphic behavior and
thermal properties of the compounds were determined by polarized optical microscopy (POM) and
differential scanning calorimetry (DSC). Only the ionic liquids analogous with 1-bromotetradecane ex-
hibit mesomorphic behavior. All, except the smectic A (SmA) monomorphic fluorine-substituted com-
plex, show dimorphic enantiotropic mesophases, namely SmA followed by nematic (N) mesophases
depending on the temperature rise. The DSC and POM results for the induced mesophases were then
treated with density functional theory calculations (DFT). The results showed that both the polarity
of the polar groups and the length of the alkyl groups strongly influence the mesomorphic properties
of the ionic liquids.

Keywords: supramolecular; low-melting ionic liquids; mesomorphic behavior; DFT

1. Introduction

Ionic liquids (ILs) can be defined as ionic materials possessing low melting points of
less than 100 ◦C. Moreover, low-mass calamitic liquid crystals, consisting of two aromatic
rings with at least one terminal substituent, are capable of showing the nematic phase
of important applications at room temperature [1–3]. In general, ILs consist of organic
or inorganic anions usually coupled with asymmetric large organic cations. ILs possess
a large number of different physicochemical properties that qualify these materials for
specific applications and often lead to significant results when applied compared to their
behavior in conventional solvents [4,5]. Moreover, ILs are considered to be environmentally
friendly solvents, since they usually show very low vapor pressure [6]. In addition, ILs
reveal stability towards thermal degradation [7–9]. Therefore, they can be used as ideal
substitutes for conventional organic solvents. Moreover, they exhibit exceptional solubility
properties for inorganic, organic and organometallic compounds. ILs play an important
role as starting materials for N-heterocyclic carbenes, which can be used in a variety of
catalytic reactions [10–13]. At the macroscopic level, however, ILCs are identical to LCs
in every way, because the material’s behavior is determined by the phase structure. As
a result, ILCs are gaining popularity since they are projected to combine the numerous
intriguing technical applications of ILs and LCs [14,15].
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In the last three decades, ILs were massively investigated as they display broad
electrochemical windows, elevated ionic conductivity [16] and a wide temperature range
of their liquid state. Furthermore, many of the physical characteristics of ILs such as
melting point, density, viscosity, polarity, and enthalpy of vaporization can be tailored
simply through variation of their anion and cation pairing [17]. A lot of effort has been
attempted to fabricate new classes of ILs, known as functionalized ionic liquids (FILs),
which bear different functional groups in their cationic portion [18–23]. Functionalization
of the cationic moiety of the FILs allow them to be tunable for specific applications such as
reduced catalyst leaching and increased catalytic stability [24,25].

It is worth noting that Schiff base compounds are considered as a distinguished class
of ligands that play a vital role in coordination chemistry. They display diverse chelating
capability [26–28], functionalities [29] and various ranges of pharmacological, biological,
and antitumor activities. Schiff bases involving hetero-atoms such as N and S in their
chemical structures exhibit special importance due to their strong ability to coordinate with
a variety of transition metal ions, affording a lot of uncommon configurations [30–32].

In this contribution, we extended our recent work of supramolecular Schiff base-
induced liquid crystalline materials [33,34] to synthesize functionalized ionic liquid crystal
(FILCs) two-ring Schiff bases with melting points close to or lower than 0.0 ◦C. These Schiff
bases were designed using 4-substituted aniline derivatives and 4-pyridine carbaldehyde
and finally paired with linear 1-bromoalkanes of various chain lengths. We investigated
the mesomorphic behavior and thermal properties of these FILCs using polarized optical
microscopy (POM) and differential thermal analysis (DSC). In addition, the DSC and POM
results of the studied materials were linked using density functional theory (DFT).

2. Materials and Methods

Chemicals were obtained from TCI Company, Japan (Tokyo Chemical Industry, Tokyo,
Japan). Their purity is more than 98% in all compounds. Schiff bases were prepared
and recrystallized twice from ethanol/water mixture and were checked to be TLC pure
(Scheme 1).
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Scheme 1. Schiff bases I-IV preparation.

3. Schiff Bases Synthesis

The Schiff bases were identified according to their reported melting points: I (98 ◦C) [35],
II (74 ◦C) [36], III (80 ◦C) [35], and IV (82 ◦C).

4. The Ionic Liquids Synthesis

The Schiff base ionic liquids were prepared by mixing 1:1 molar ratios of any two
complementary components of the particular Schiff bases with linear 1-bromo alkanes at
various chain lengths, namely C6, C8, and C14; melting the appropriate amounts with
stirring to produce a thorough blend; and then, cooling with stirring to room temperature
to obtain the ionic liquids (Scheme 2).
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Scheme 2. Preparation of the ionic liquid crystals ((I-IV)Cn).

The phase changes characterizing the materials were verified via differential scanning
calorimetry (DSC), with a Shimadzu DSC-60A (SHIMADZU, Tokyo, Japan). A quantity of
2–3 mg was encapsulated in Al pans and heated or cooled in a dry nitrogen atmosphere.
The samples were heated using a heating speed of 10.0 ◦C/min during the tests. The
samples were heated to 100 ◦C from room temperature and then cooled to −20 ◦C at the
same time rate. Finally, samples were reheated again to 150 ◦C, all under N2 gas atmosphere.
The accuracy in temperature monitoring is <1.0 ◦C.

5. Results and Discussion

The two-ring ILs 1:1 compounds ((I-IV)Cn) were investigated in terms of mesophases
and optical analyses. Table 1 epitomizes the transition temperatures, T, and their associated
enthalpies, H, of all observed transitions, as determined by DSC measurements, for all
prepared ((I-IV)Cn) ILs.

Table 1. Phase transitions: temperatures (T, ◦C) and enthalpies (∆H, kJ/mol) for the ((I-IV)Cn) function-
alized ionic liquids. The abbreviations Cr-I, Cr-SmA, SmA-N and N-I denote the crystalline to isotropic,
crystalline to smectic A, smectic A to nematic and nematic to isotropic transitions, respectively.

◦C kJ/mol ◦C kJ/mol ◦C kJ/mol ◦C kJ/mol
Compounds TCr-I ∆HCr-I TCr-SmA ∆HCr-SmA TSmA-N ∆HSmA-N TN-I ∆HN-I

I/C6 MeO 90.1 16.9
II/C6 Cl 84.4 14.4
III/C6 Br 107.3 15.4
IV/C6 F 88.7 17.2
I/C8 MeO 97.0 16.0
II/C8 Cl 80.0 12.7
III/C8 Br 107.5 14.5
IV/C8 F 136.6 20.8
I/C14 MeO 3.4 8.7 65.9 0.70 84.6 2.36
II/C14 Cl 1.6 12.0 26.2 0.28 59.4 2.68
III/C14 Br −0.8 6.3 21.4 0.11 96.1 7.20
IV/C14 F 3.5 9.0 78.2 8.60

Figure 1 displays the DSC thermogram of sample I/C14 at a heating rate of 10.0 ◦C/min.
We will only consider the results obtained from the second heating run in this manuscript.
The temperature dependence of the heat capacity of the compound manifests an endother-
mic peak at 3.4 ◦C corresponding to a crystalline to smectic A (Cr-SmA) mesomorphic
phase transition. By increasing the temperatures, a second endothermic peak at 65.9 ◦C,
referring to SmA to nematic transition (SmA-N), is monitored. Finally, nematic to isotropic
(N–I) transition is detected at 84.6 ◦C. The total mesomorphic temperature range of the
material is satisfying (81.2 ◦C). Both mesomorphic transitions are observed upon cooling,
proving the enantiotropic behavior of the observed mesophases. Displaying the mesophase
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behavior upon cooling can be taken as direct evidence for the thermal stabilities of the ILCs
in the entire investigated temperature range. The mesophase textures have been identified
by the polarized optical microscope, as shown in Figure 2, Table 1.
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Figure 1. DSC heating/cooling cycles of I/C14 ionic liquid crystal (ILC) sample bearing MeO polar
group and alkyl chain length of C14.
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Figure 2. Mesophase textures observed by POM during heating cycle of compound II/C14 smectic A
phase at 24.0 ◦C (a) and compound I/C14 nematic phase at 75.0 ◦C (b).

The DSC investigations (Table 1) show that the ILC analogues incorporating the
1-bromotetradecane exhibit mesomorphic behavior. The rest of the IL complexes formed
with the 1-bromohexane and 1-bromooctane are non-mesomorphic, irrespective of the Schiff
base moiety contributing in the ILs. In addition, all the ILs involving 1-bromotetradecane
reveal dimorphic enantiotropic mesophases. According to the temperature elevation, two
transitions are observed, namely Cr-SmA followed by SmA-N mesophase transitions.
The only exception is shown for the fluoro-substituted ILCs (IV/C14), which reveals a
monomorphic SmA monotropic behavior.

The impact of variation of the polar group on the mesomorphic behavior of the
(I-IV)/C14 ILCs is shown in Table 1. The influence of the polar substituent on the tempera-
ture ranges of the different mesophases (SmA and N), as well as the total mesomorphic
temperature range, is pronounced. The ILC (I/C14) bearing the electron-releasing MeO
group shows SmA and N mesophase ranges of 62.5 and 17.8 ◦C, respectively (a total
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mesomorphic range of 81.2 ◦C). In addition, the halide derivatives exhibited overall me-
somorphic ranges of 57.8, 96.6 and 74.7 ◦C for Cl, Br, and F, respectively, which indicated
a wide range of temperature for the mesomorphic behavior in all the samples. It can be
noticed that the smectogenic mesomorphic range is enhanced in the order MeO > Cl > Br
(Table 1), while the nematogenic behavior is generally enhanced in the order Br > Cl > Me,
i.e., upon the increase in negative inductive effect. The fluoro-derivative is the only ex-
ception, as mentioned above. The highly electron-withdrawing F group reveals only a
SmA mesophase with a mesorange of 74.7 ◦C. This wide SmA mesophase range could be
explained by the mesomeric resonance effect of the extremely small compact fluoro group.
This effect could raise the π-cloud loop and promote the degree of π–π stacking in the
fluoro-substituted ILC to the other derivatives. In other words, the incorporation of the
small compact fluorine atom with the highest negative inductive effect only enhances the
formation of the SmA mesophase (74.7 ◦C), rather than the N phase. The highly parallel
interaction that could be promoted by the F atom could be responsible for the enhanced
SmA mesophase.

6. DFT Theoretical Calculations
Geometrical Structures

All the investigated compounds, (I-IV)C8, were optimized employing the DFT method
using Gaussian 09 software (University of Cincinnati Libraries, OH, USA). The calculations
were performed in gas phase using the B3LYP, 6-311g(d,p). Subsequence frequency counting
was carried out to establish the most optimized real structures with the absence of imaginary
frequency (Figure 3).
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The relationships among the evaluated dimension parameters of all the prepared
ILs, which are used to explain the mesomorphic properties including texture type, me-
somorphic range, and stability, are shown in Table 2. The variation in aspect ratio of the
compounds (length-to-width ratio) with the mesomorphic temperature range of the SmA
and N mesophases of the compounds is displayed in Figure 4a,b.
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Table 2. Mesomorphic parameters, polarizability, α, and aspect ratio of the investigated compounds.

Dimension Ǻ
Compounds ∆TC ∆TSmA ∆TN

Dipole
Moment, µ Width (D) Length (L)

Aspect Ratio
(L/D)

I/C6 0 0 0 6.20 9.51 23.00 2.42
I/C8 0 0 0 6.21 9.67 25.40 2.63

I/C14 81.2 62.5 18.7 6.22 9.85 34.54 3.55
II/C14 57.8 24.6 33.2 8.18 8.96 32.43 3.60
III/C14 96.9 22.2 74.7 7.98 9.05 32.74 3.62
IV/C14 74.7 74.7 0 8.16 9.00 31.54 3.52
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Figure 4. The relation between the aspect ratio and nematic (a) and smectic (b) total ranges of the
investigated compounds (I-IV)C14.

It is well known that the intermolecular interaction increases upon the elevation
of aspect ratio [37–40]. At high aspect ratios, the area of the intermolecular interaction
increases. Additionally, the degree of molecular packing increases and the possibility of
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introducing a more ordered smectic mesophase dominates over the less ordered nematic
mesophase. However, in our present series the situation is reversed: the nematic range
increases as the aspect ratio increases and the smectic mesorange decreases. This finding
can be illustrated in terms of the change in the dipole moment. Such little change in the
dipole moment could affect the competitive lateral and terminal intermolecular interaction
of the compounds (Table 2).

Figure 5 illustrates the relation between the type of the compact polar group of the
prepared ILCs and the mesomorphic range (either smectic or nematic). A direct relationship
can be noted between the type of terminal compact polar group and the mesomorphic
range. For the high electronegative compact F-atom, the smectic mesophase is the dominant
mesophase over the nematic one due to its high degree of intermolecular interaction that
may enhance the existence of smectic over the nematic mesophase. However, the methoxy
group of high mesomeric resonance effect with large space filling showed higher overall
mesomorphic smectic range than the nematic mesophase. As indicated, due to the greater
degree of alkyl aggregation of the methoxy chain, the smectic range increases [33,34,41].
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mesophase range of the investigated compounds (I-IV)C14.

7. Conclusions

Supramolecular two-ring, Schiff base, novel low-melting ILCs were prepared and
investigated thermally and optically by means of DSC and POM. The IL compounds
were fabricated from 4-substituted aniline (MeO, Cl, Br and F derivatives) and 4-pyridine
carbaldehyde and then mixed in equimolar ratios with linear 1-bromo alkanes at different
chain lengths, namely C6, C8, and C14. Only the IL analogues composed of Schiff bases
with the 1-bromotetradecane exhibit mesomorphic behavior. All of these ILs, excluding the
monomorphic SmA monotropic F-substituted compound, exhibit dimorphic enantiotropic
mesophases, namely SmA followed by N mesophases according to temperature increment.
The DSC and POM results for the induced mesophases were then treated by the density
functional theory (DFT). The results proved that the group polarity strongly influences both
the mesomorphic ranges and mesophase stabilities of the prepared ILCs. The experimental
results were in direct agreement with the theoretical data obtained by DFT.
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