
Citation: Li, Y.; Li, Y.; Zhang, J.;

Wang, Y.; Li, T.; Jiang, Y.; Jia, H.;

Wang, W.; Yang, R.; Chen, H. Direct

Observation of Carrier

Transportation between Localized

States in InGaN Quantum Wells.

Crystals 2022, 12, 1837. https://

doi.org/10.3390/cryst12121837

Academic Editors: Igor Yurkevich,

Zeyu Liu, Mingzeng Peng,

Yang Wang and Yuanpeng Wu

Received: 28 November 2022

Accepted: 14 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Direct Observation of Carrier Transportation between Localized
States in InGaN Quantum Wells
Yangfeng Li 1 , Yixiao Li 1,2, Jie Zhang 3,*, Yi Wang 1,2, Tong Li 1,2, Yang Jiang 4,*, Haiqiang Jia 4,5,
Wenxin Wang 4,5, Rong Yang 1,2,* and Hong Chen 4,5

1 College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
2 School of Physics and Electronics, Hunan University, Changsha 410082, China
3 Hunan San’an Semiconductor Co., Ltd., Changsha 410000, China
4 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices,

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences,
Beijing 100190, China

5 Songshan Lake Materials Laboratory, Dongguan 523808, China
* Correspondence: authors: jack_zhang@sanan-ic.com (J.Z.); jiangyang@iphy.ac.cn (Y.J.);

yangrong@hnu.edu.cn (R.Y.)

Abstract: Despite the large misfit dislocation densities, indium gallium nitride (InGaN) demonstrates
high luminous efficiency both for electroluminescence and photoluminescence. The mechanism
behind it has been interpreted as the existence of potential minima (i.e., localized states), which will
screen the non-radiative recombination centers to avoid carriers being trapped by the defects. The
existence of localized states has been testified by many experiments. However, almost all of the
observations are indirect observations, and some experiments, such as those focused on whether
the indium clusters observed by transmission electron microscopy are localized states, still remain
controversial. Here, we report the direct observation of carrier transportation between localized states
driven by temperature-dependent photoluminescence (TDPL) and excitation power-dependent PL in
InGaN quantum wells. This enriches the experimental evidence on the existence of localized states.

Keywords: InGaN; localized states; TDPL; excitation power-dependent PL

1. Introduction

The transcendental optoelectronic properties of indium gallium nitride (InGaN) en-
able the prevailing application and development of InGaN-based devices in solid-state
lighting [1–6], micro light-emitting diode (µLED) displays [7,8], light communication [9,10],
etc. Since the early research stages for InGaN, the high luminous efficiency accompanied
by high misfit defects (e.g., the threading dislocation density in the magnitude order of
~108–109 cm−2) has attracted much attention from researchers, seeking to interpret such a
contradictory phenomenon. Chichibu et al. suggest the existence of potential minima in the
InGaN materials, which will localize the carriers spatially, thus avoiding carrier consump-
tion via non-radiative recombination centers caused by defects [11]. The main experimental
evidence includes a large Stokes shift between the photoluminescence (PL) peak and the
absorption peak given by the photoluminescence excitation (PLE), and also the energy
deviation between the electroluminescence (EL) peak and the modulated electroabsorption
(EA) spectra [12]. In addition, the blue shift of the EL peak under a high injection current
also indicates the band filling of the localized states. A long decay time (~ns) obtained
from the time-resolved PL (TRPL) measurements also implies the carrier’s transportation
towards localized states. Moreover, the decay time elongates at the lower-energy side of
the emission peak, in agreement with the localized state-induced band-tail distribution of
carriers [13]. According to the cathodoluminescence (CL) results, a small-area scan demon-
strates sharp peaks with narrower full-width at half-maximum (FWHM) values, which also
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reveals spatial potential fluctuations [12]. However, due to the limited spatial resolution of
CL measurement, the size of localized states could only be estimated to be smaller than
60 nm [14]. Eliseev et al. proposed a model to quantitatively evaluate the degree of
localized states and suggested that an S-shaped curve, which is demonstrated by the
evolution of the PL peak with increasing temperature, should be considered evidence
of the carrier’s transportation between deep and shallow localized states [15]. As the
possible mechanisms causing localized states include thickness undulation and composi-
tion fluctuation (most probably caused by phase separation) [16], transmission electron
microscopy (TEM) is widely used to provide direct evidence of the localized states [11].
A number of researchers have observed indium clusters with a lateral size in several to
tens of nanometers in the InGaN quantum well (QW), and such a morphology, with a
higher indium composition than that of the adjoining sections, is usually interpreted as
a localized state [2,11,17]. However, other researchers suggest that the indium clusters
should not be localized states. Lefebvre et al. found that the S-shaped curve even exists
in the InGaN quantum box; then, they concluded that the spatial extension of localized
states should be smaller than the size of the quantum box (5–10 nm) [18]. Graham et al.
suggested that the in-plane length of localized states should be ~2 nm according to the
analyses of the longitudinal-optical (LO) phonon replicas [19]. Moreover, they attributed
the formation of localized states to the well-width fluctuations. Smeeton et al. pointed
out that the indium clusters were most probably false images, as they will emerge with a
prolonged electron irradiation time or when exposed to a high-voltage electron beam [20].
The possible mechanisms may be attributable to radiolysis and knock-on damage, which
cause the lattice distortion of InGaN, resulting in an electron-beam-induced strain [21].
Other researchers used the three-dimensional atom probe (3DAP) technique to analyze
the atom distribution of InGaN multiple-quantum wells (MQWs) and found that the in-
dium distribution coincides with the binomial distribution that occurs in random ternary
alloys [22,23]. They stated that an inhomogeneous indium distribution was not observed
and suggested that the localized states should be a result of well-width fluctuations [22].
Galtrey et al. further explained that localized states are a result of QW width fluctuations,
which are caused by a surface-segregated indium layer [24,25]. As a result, the observation
of localized states from TEM becomes a less convincing method. Thereafter, the localized
states were further attributed to the atomic condensates of In–N via analyses of implanted
positron annihilation experimental results [26].

In 2019, we reported the experimental results of carrier transportation between dif-
ferent localized states as the temperature was ramped up from 10 K to 300 K in a single
yellow-green QW [27]. Such a study offers more concrete evidence for the existence of
localized states. However, as the energy difference between the two localized states was
~70 meV, it was difficult to distinguish the integrated intensity for each peak exactly. In
this study, we fabricated three InGaN MQWs, which were subjected to an in-situ post-
annealing process after the growth of each QW to establish quantum-dot-like states. From
the temperature-dependent PL (TDPL) and excitation power-dependent PL measurements,
we directly observed the carrier’s transport from the deep localized states to the relatively
shallow localized states as the temperature or the excitation power increased. The results
provide a vivid picture of the existence of localized states.

2. Materials and Methods

Three MQWs were grown on a 350-nm-thick GaN template following an aluminum
nitride (AlN) buffer layer composed of a 15-nm low-temperature AlN and a 300-nm high-
temperature AlN on a 2-inch silicon (111) substrate by metal organic chemical vapor
deposition (MOCVD). The detailed growth conditions for the GaN template on the silicon
substrate can be found in our previous study [28]. To assess the presence of quantum dots
(QDs) in the QW, we exploited the in-situ post-annealing method, which is also called
the growth interruption method, to evaporate the indium clusters surrounding defects
and facilitate the formation of quantum-dot-like localized states after the ending of each
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QW [29–31]. The three QWs underwent the same growth conditions. Lastly, a 50-nm GaN
was deposited as the capping layer. The schematic structure is shown in Figure 1. The TDPL
were taken by a 325-nm He-Cd continuous-wavelength laser with the sample mounted on
the cold finger of a closed-cycle helium compressor. The temperature could be changed
from ~15 K to 300 K consecutively. The excitation power-dependent PL was carried out
with the same setup, with the excitation power adjusted by a neutral optical attenuator
at different temperatures (viz. 15 K, 70 K, 150 K, and 300 K) [32]. The TEM images were
obtained via a JEM 2100Plus microscope, where the lamella was mechanically thinned,
followed by further thinning by argon ions with a Gatan precision ion polishing system
(PIPS). The voltage of TEM was kept at 200 kV.
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Figure 1. The schematic illustration of the InGaN MQW structure.

3. Results and Discussion

An example of the PL spectra obtained from 15 K to 300 K is presented in Figure 2a. At
lower temperatures (15 K–~60 K), four emission peaks are obviously distinguishable, which
are attributable to the emissions from deep localized states (PL), shallow localized states
(PH), the wetting layer (PW), and GaN (PGaN), respectively. With increasing temperature,
the PGaN quenches rapidly and becomes indistinguishable at 300 K. The PW also decays
rapidly and disappears at the relatively lower excitation power at 300 K. A noticeable
emission intensity change from PL to PH can be easily observed, as shown in Figure 2a. For
a more detailed study, the spectra at each temperature are fitted by a multiple-peak curve
fit with a Gaussian function. The exemplary fitted curves, as well as the experimentally
obtained spectra at 15 K and 300 K, are depicted in Figure 2b, where the black lines are the
measured data, the green lines are the fitted lines for each emission peak, and the red lines
are the sums of all the green lines. The extracted relative PL-integrated intensities of the
three emission peaks are delineated in Figure 2c. The relative PL-integrated intensity for a
certain peak at each temperature is obtained by calculating the proportion of the absolute
PL-integrated intensity of this peak in the sum of the absolute PL-integrated intensity for the
three peaks. According to Figure 2c, the relative PL-integrated intensity of PH remains on an
increasing trajectory along with the increase in temperature, while those of PL and PW are
liable to a monotonous decrease as the temperature ramps up. According to the changing
tendency of the relative PL-integrated intensity, we infer that as the temperature increases,
the carriers will gain enough kinetic energy to overcome the restriction of the deep localized
states, thus causing a weakened PL emission of PL. The consecutive increase in PH emission
among the three peaks implies that the thermally activated carriers tend to accumulate
in the shallow localized state (i.e., PH). It is worth noting that the absolute PL-integrated
intensity of all the peaks decreases with the temperature increase. This could be due to the
thermally activated non-radiative recombination centers, which consume the carriers, thus
weakening the emission efficiency [4,30]. However, as the growth conditions are the same
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for the three QWs, the deep and shallow localized states should be randomly distributed
in the MQWs; then, the effects of the non-radiative recombination centers on both peaks
should be equal at each temperature. In this case, the increase in the relative PL-integrated
intensity in PH is mainly due to the carrier’s transportation from deep localized state (PL).
As the relative emission intensity of the wetting layer also demonstrates a decrease with
temperature, the carrier transportation from PW to PH also cannot be excluded.
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Figure 2. (a) The TDPL spectra from 15 K to 300 K. PL, PH, PW, and PGaN denote the emission peaks
of the deep localized states (lower energy), shallow localized states (higher energy), wetting layer,
and GaN, respectively. (b) The spectra as well as the fitting curves at 15 K and 300 K. The green lines
are the fitted lines for each peak, while the red lines are the gross fitted lines for the whole spectrum.
(c) The relative PL intensity for PL, PH, and PW at different temperatures.

For a further study of the carrier transportation behavior, and to evaluate the non-
radiative recombination centers in each peak at different temperatures, the excitation
power-dependent PL was carried out at 15 K, 70 K, 150 K, and 300 K, respectively, with
the excitation power being increased from 0.2 mW to 8 mW. Figure 3a,d,g,j present the
spectral evolution under different excitation powers at 15 K, 70 K, 150 K, and 300 K,
respectively. All the four peaks could clearly be distinguished due to the high radiative
recombination efficiency at lower temperature, viz. 15 K. The peaks of PL, PH, and PW
are fitted by a Gaussian function, similarly to the treatment of the TDPL spectra; thus, the
integrated intensities are extracted. As the PW is submerged into the background noise in
300 K, only PL and PH could be well fitted through the excitation power range; thus, the
data of PW are absent at 300 K. The PL-integrated intensity obeys a power-law evolution
with the excitation power, viz. I ∝ Pm, where I represents the PL-integrated intensity, P
denotes the excitation power, and m is the index. If radiative recombination dominates
the recombination process, the index m is expected to be close to 1. If non-radiative
recombination plays an important role in the recombination process, then the index m will
be larger than 1, as the non-radiative recombination centers will not be effectively saturated
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by the excited carriers under relatively low excitation powers [33,34]. The experimental
data in Figure 3b,e,h,k are offset for clarity; therefore, they are not equal to the absolute
PL-integrated intensities for PL, PH, and PW. The fitted index m values for the three peaks
(only two peaks at 300 K) are all close to 1 from 15 K to 300 K, and the values of m for each
peak remain a small deviation at different temperatures. Such a phenomenon indicates
that the recombination mechanism is analogous at different temperatures for each peak,
confirming the assumption that the effects of the non-radiative recombination centers on
all peaks are equivalent at each temperature. In addition, as the values of m are all close to
1, radiative recombination should dominate the recombination process in all three peaks.
Therefore, the evolution of the PL-integrated intensity with temperature is mainly caused by
the carrier transportation rather than the different non-radiative recombination processes
in each peak. A more obvious carrier transportation between different localized states
could be found in the evolution of the relative PL-integrated intensities with excitation
power. The relative PL-integrated intensities of PH and PW maintain an increasing trend,
whereas that of PL diminishes monotonously, as shown in Figure 3c,f,i,j. Moreover, from
Figure 3c,f, we find that, at lower excitation powers (0.2–~1 mW), the relative PL-integrated
intensity of PL is the highest. This indicates that, at lower excitation powers, due to
the deficiency of activated carriers, the photo-activated carriers are likely to fill the deep
localized states as a first priority, thus generating the strongest emission from the deep
localized states. When the excitation power increases to a certain level, the spillover carriers
will fill the shallow localized states and the wetting layer, resulting in an enhancement in
the emission intensities of PH and PW. As the peaks are somewhat weak under 0.2 mW
excitation at 150 K, the PL-integrated intensity at 0.2 mW for PL and PW may suffer from an
inaccurate evaluation because the peaks are difficult to be extracted from the background
noise. Therefore, the data at 0.2 mW in Figure 3i show a deviation from the tendency in
Figure 3c,f. However, as the PL signals are strong enough at higher excitation powers, the
other data in Figure 3i are in agreement with those at other temperatures. As the Pw peak
is severely weakened at 300 K, especially under lower excitation powers, only PL and PH
are investigated at this temperature. From Figure 3k, it is verified that both PL and PH are
dominated by the radiative recombination process. The monotonous decrease in the relative
PL-integrated intensity of PL and the concomitant increase in PH in Figure 3l are indicators
of the carrier transportation between different localized states. As the temperature of 300 K
is relatively high, the carrier transportation behavior becomes more prominent.
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Figure 3. (a,d,g,j) The excitation power-dependent PL spectra at 15 K, 70 K, 150 K, and 300 K,
respectively. (b,e,h,k) The PL-integrated intensity versus the excitation power at 15 K, 70 K, 150 K,
and 300 K, respectively. The red lines are the fitted lines obeying a power law. The PL-integrated
intensities are offset for clarity. (c,f,i,l) The relative PL-integrated intensity of the emission peaks
under different excitation powers at 15 K, 70 K, 150 K, and 300 K, respectively.

The TEM images of the as-grown sample are presented in Figure 4. Figure 4a illustrates
the stacking structure of the sample. Three MQWs with non-consecutive regions are
sandwiched between the GaN template and the capping layer. In Figure 4b, one can clearly
observe the morphology of the unambiguous quantum-dot-like blotches in the QWs. As
the acceleration voltage was not high (200 kV), an aperture slot was added before the
objective lens, and the electron spot was dispersed to a rather weak extent, we tend to
accept such features to be the real characteristics of the material. In addition, we captured
the images less than 10 s after exposure, and we also could not observe a morphology
change as the exposure time elapsed. A further magnified image of the MQW region is
shown in Figure 4c, where the quantum-dot-like speckles were measured to be 2.5–4.2 nm
in width and 2.8–5 nm in height. Such quantum-dot-like structures may contribute to the
formation of localized states.
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Figure 4. (a) The TEM image of the as-grown sample. Three MQWs with non-consecutive regions
are noticeable. (b) The zoomed-in picture in the MQW region. Quantum-dot-like blotches are
distinguishable. (c) A further magnified image of the MQW region. The quantum-dot-like speckles
were measured to be 2.5–4.2 nm in width and 2.8–5 nm in height.
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4. Conclusions

In conclusion, the carrier transportation between deep and shallow localized states
is directly observed by TDPL and excitation power-dependent PL. The transportation
behavior is further verified by the excitation power-dependent PL at different temperatures,
where all the emission peaks are confirmed to be dominated by the radiative recombination
process. The TEM images demonstrate a large number of quantum-dot-like blotches, which
may contribute to the formation of localized states. This study enriches the evidence from
experiments supporting the localized state assumption in InGaN QWs.
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