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Abstract: In this study, zinc oxide nanostructures (ZnO NS) were synthesized using Pyrus pyrifolia
fruit extract. Biophysical characterization results confirmed that the synthesized materials are
crystalline wurtzite ZnO structures. Field emission scanning electron microscopy (FESEM) revealed
that the ZnO NS are cubical, and the sizes range 20–80 nm. Transmission electron microscopy (TEM)
and XRD results revealed a crystal lattice spacing of 0.23 nm and (101) the crystalline plane on
ZnO NS. UV-Visible spectrophotometer results showed an absorbance peak at 373 nm. The ZnO
NS demonstrated significant antibacterial activity analyzed by metabolic activity analysis and disc
diffusion assay against Escherichia coli and Staphylococcus aureus. FESEM analysis confirmed the
bacterial membrane disruption and the release of cytoplasmic contents was studied by electron
microscopy analysis. Further, ZnO NS achieved good photocatalytic activity of decolorizing 88%
of methylene blue (MB) in 60 min. The dielectric constant and loss of ZnO were found to be 3.19
and 2.80 at 1 kHz, respectively. The research findings from this study could offer new insights for
developing potential antibacterial and photocatalytic materials.

Keywords: antibacterial; zinc oxide nanoparticles; photocatalytic; methylene blue; Pyrus pyrifolia; dielectric

1. Introduction

Nanotechnology involves the application of materials in the range of 1–100 nm. The
applications span from coatings [1], gas sensing devices [2], solar cells [3], batteries [4],
environmental catalysts and antimicrobials [5,6]. Metal and metal oxide nanomaterials
have improved the efficiency and performance of such devices. Consequently, researchers
have given ZnO much attention due to its biocompatibility, low cost, high photocatalytic
efficiency and antimicrobial potential. Indeed, it is recognized as a multifunctional material,
as it has played a significant role in various fields such as biomedical (e.g., antimicrobials
anticancer, tissue engineering) [7–9], cosmetics industries [10] and photocatalysts [11].
ZnO nanostructures are II–VI semiconductors with a wide bandgap energy of 3.3 eV and
a high excitation binding energy of 60 meV. Thus, the materials are suitable for large
electrical fields, high temperatures and high-power functionalities such as photovoltaic
cells and chemical sensors. ZnO nanocrystals mostly show a wurtzite structure with lattice
parameters of a = 0.325 nm and c = 0.520 nm [12]. The scarcity of clean water has been
a serious issue debated globally. Water contamination is severely inflicted everywhere.
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This is due to the irresponsible and uncontrolled development of industries that release
chemicals into streams [13]. For example, textile industries have used large amounts of
dyes and water in their textile coloring process. The release of dye wastewater from this
process substantially pollutes the aqueous environment, which was predicted to be 15–20%
of the total industrial pollution [14]. The introduction of carcinogenic dye pollutants to
the environment cause lethal side effects to human and aquatic organisms [15]. Therefore,
finding ways to remove wastewater dyes before discharging them into the environment
is necessary.

In recent years, ZnO has been intensively researched as a potential material to treat
dye effluents. In this process, ZnO absorbs UV light with a wavelength equal to or less than
385 nm to generate radicals that, in turn, degrade the dyes. Recent studies demonstrated
that the photodegradation of methylene blue (MB) was up to 98.3% [16]. Factors such as
morphology [17], shape, size and concentrations of the ZnO can directly affect the efficiency
of the photocatalytic activities [18]. For instance, Barnes et al. reported that lowering the
concentration of ZnO from 1 to 0.1 g/L reduced the photodegradation performance from
18 to 7% [19]. Recognizing the simplicity and wide potential of ZnO as a photocatalytic
agent, numerous approaches are being used to synthesize ZnO nanostructures. However,
green synthesis is more advantageous than the conventional approach and hazardous
chemical-free procedures [20,21] because it is eco-friendly. This technique is similar to
chemical reduction, except that the extracts of natural products replace the reducing and
stabilizing agent. Furthermore, studies have shown that the nature of biological elements
and the concentrations of extracts could influence the size, shape, and optical properties of
nanostructures [22–25].

ZnO is also gaining interest due to its electronic polarizability. This allows ZnO to be
researched as a dielectric material. Dielectric materials are mainly applied in developing
flexible electronic devices [26]. In addition, the dielectric properties of the developed
material strongly depend on the synthesis conditions [27]. Lanje et al. reported that the
ZnO obtained via the precipitation method has a dielectric constant of 14.52 at 100 kHz [28].
On the other hand, ZnO synthesized using starch as a stabilizing agent reported a dielectric
constant in the range of 4–5 at the same frequency [27]. At the same time, numerous
research studies have investigated the phytosynthesis of ZnO, but very few have discussed
its dielectric or electrical properties. In the present work, we develop a facile method for
the synthesis of ZnO nanostructures by using a fruit extract of Pyrus pyrifolia. To the best
of our knowledge, this is the first study of ZnO NS synthesis using P. pyrifolia fruits. To
study the interaction between ZnO nanostructures and the bacteria and the decolorization
ability of MB, we studied antimicrobial assays and the photocatalytic reaction. Notably, the
dielectric properties of ZnO NS have also been reported in this study.

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals used in this study were of analytical grade and used without further pu-
rification. The zinc nitrate (Zn(NO3)2.6H2O), Ethidium bromide (EB) and MB were purchased
from Sigma Aldrich (Burlington, MA, USA). Acridine orange (AO) was obtained from VWR
AMRESCO Life science, Radnor, PA, USA. Distilled water (DW) was used in all experiments.

2.2. Preparation of Extracts

Fresh fruits of Pyrus pyrifolia were obtained from a supermarket in Kuala Lumpur,
Malaysia. The fruits were washed twice with DW to remove any dust and impurities, then
100 g of the fruit was cut into small pieces and ground with 100 mL DW. The resulting
saturated extract was filtered through the Buchner funnel by vacuum filtration and further
filtration procedures were carried out (e.g., using gravity filtration) to ensure a clear extract
was attained.
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2.3. Synthesis of ZnO Nanostructures

For the synthesis of ZnO nanostructures, 0.1 M Zn(NO3)2.6H2O was prepared by dissolv-
ing 7.43 g of zinc nitrate in 250 mL DW and sonicated for 30 min to achieve complete dissolution.
Aqueous fruit extract in the amount of 50 mL was introduced into the above solution, mag-
netically stirred for 15 min and left at room temperature for 24 h. Afterwards, the reaction
solution was heated at 80 ◦C till the volume was reduced to 3/4 of its original volume and the
color changed to a deep yellow paste [29]. Next, the paste was collected in a clean crucible and
calcined at 450 ◦C for 60 min using a small benchtop muffle furnace (Barnstead/Thermolyne
furnace 1400, Thermo Scientific, Waltham, MA, USA). The calcined materials were washed with
DW and ethanol to remove the impurities. Finally, the resultant materials were dried for 12 h in
a vacuum oven at 70 ◦C to obtain the white zinc oxide powder.

2.4. Characterization of the ZnO

X-ray diffraction (XRD) analysis was performed using Ultima IV (Rigaku, Tokyo,
Japan) at a scan speed of 2◦ min−1 and a wavelength of 1.5406 Å in the 2θ range of
20–90 degrees. The crystallite size of the resultant ZnO NS was calculated using the
Scherrer Equation (1).

D =
κλ

βcosθ
(1)

where D is the average crystallite size (in Å), κ is the shape factor, λ is the X-ray wavelength
of X-ray (1.5406 Å) Cu-Kα radiation, β is the full width at half maximum (FWHM) of the
diffraction peak and θ is the Bragg angle [30].

The UV-Vis absorbance spectra were obtained using a UV-1700 Spectrometer (Shi-
madzu, Kyoto, Japan) with measurements in the wavelength range of 300–500 nm. Fourier
transform infrared (FT-IR) spectroscopy analysis was carried out to detect the possible func-
tional groups involved in the synthesis of ZnO nanostructures. A PerkinElmer, Waltham,
MA, USA, Frontier FT-IR Spectrophotometer in the attenuated total reflectance (ATR) mode
in the range of 4000–500 cm−1 was used. Raman spectra were recorded in the backscat-
tering geometry using a 632 nm HeNe laser with a LabRAM HR Evolution spectrometer,
Kyoto, Japan. The morphological properties were characterized using FESEM (JEOL JSM
6701-F, Peabody, MA, USA) equipped with EDX analysis. EDX tests were carried out to
identify the element and obtain the weight/atomic ratio of each element in the synthesized
nanomaterials. Transmission electron microscopy (TEM) analysis was carried out on a
(JEOL 2010, Peabody, MA, USA) instrument operated at an accelerating voltage of 200 kV.
The Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption (Nova 2000E) was used
to calculate the specific surface areas using desorption data. The sample was prepared
using 200 mg of ZnO NS, which was subsequently degassed at 200 ◦C for 2 h to remove
the moisture. Nitrogen gas was introduced as an adsorbent into the sample cell and the
pressure changes due to the adsorption process were monitored via pressure transducers.
When the saturation pressure was achieved, the sample was removed from the nitrogen
atmosphere and heated to release the adsorbed nitrogen, which was then quantified.

2.5. Dielectric Studies

The dielectric studies of ZnO NS were carried out using a chemical impedance ana-
lyzer (Model: Hioki Im3590, Nagano, Japan). The as-synthesized ZnO nanostructure was
compressed into pellets 13 mm in diameter and 0.539 mm in thickness by applying a force
of 10 tons with a hydraulic press. The dielectric constant and loss were measured in the
frequency range of 1 Hz–100 kHz.

2.6. Photocatalytic Decolorization of Methylene Blue

We placed 2.5 mg/L MB dye (50 mL) and 10 mg catalyst ZnO NS in a glass beaker
and the suspension was magnetically stirred for 30 min in the dark to reach equilibrated
adsorption between the ZnO NS and MB. Then the suspension was irradiated under UV
light sources (Philips, λ = 365 nm, 6 W) with continuous stirring. Another beaker containing
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the same concentration of MB dye without ZnO was prepared as a control and underwent
the same treatment as the one with ZnO. The samples (5 mL) were taken out at regular
intervals of 0, 15, 30, 45 and 60 min, centrifuged for 5 min at 4000 rpm and the absorbance
was measured using UV-Vis spectroscopy. The decolorization efficiencies of the dyes were
estimated from the following equation [31]:

Decolorization(%) =
Ao − At

Ao
× 100 (2)

where Ao represents the absorbance of dye before illumination and At denotes the ab-
sorbance of the dye after a specific irradiation time.

2.7. Antimicrobial Assay of ZnO NS
2.7.1. Disc Diffusion Assay

The antibacterial activity of the ZnO NS was studied using disc diffusion assay. Briefly,
Gram-positive bacteria B. subtilis (ATCC 23857) and Gram-negative bacteria E. coli (ATCC
25922) were used to perform the antimicrobial assays. The freshly grown bacterial single
colonies were spread in the Mueller-Hinton agar plate. The different concentrations (100,
200, 300 and 400 µg/mL) of ZnO NS solution (20 µL) were impregnated on the paper disc
(6 mm diameter) and labelled as 1, 2, 3 and 4. The disc in the center was loaded with 20 µL
DW and served as a control. The plates were then incubated for 24 h at 37 ◦C. The bacterial
inhibition zones observed around the discs were measured and tabulated.

2.7.2. Resazurin Assay Based Minimum Inhibitory Concentration (MIC) Determination

The MICs of the ZnO NS were determined by a standard broth microdilution assay
in a 96 well plate. Briefly, the concentration of overnight grown bacterial pathogens was
adjusted to 1 × 105 CFU/mL. The ZnO NS (500 µg/mL) were serially diluted (2-fold) in
175 µL of MHB with 10 µL of selected bacterial inoculum. The wells containing only MHB
and the MHB containing bacteria were negative and positive controls, respectively. Then,
the plates were incubated for 24 h at 37 ◦C. Next, the MIC was determined by visually
observing the turbidity. The lowest concentration of ZnO NS treated bacteria wells without
turbidity were considered as the MIC [32]. Meanwhile, another set of experimental wells
were flooded with 10 µL of resazurin and incubated for 60 min. The sample wells turned
from blue to pink, indicating bacterial viability, and the minimal dosage of ZnO NS treated
wells remained blue, indicating MIC [33].

2.7.3. Analysis of Bacterial Morphological Changes

The morphological changes of bacteria caused by the ZnO NS were examined by
scanning electron microscopy. Briefly, P. aeruginosa and B. subtilis were treated with ZnO
NS and incubated at 37 ◦C for 2 h. Then the cells were washed with PBS, followed by
glutaraldehyde fixation for 6 h. The samples were then washed with H2O and dehydrated
with increasing concentrations of ethanol and acetone. Lastly, the samples were processed
for gold coating and viewed under a field emission scanning electron microscope (FESEM).

3. Results and Discussion
3.1. ZnO NS Synthesis and UV-Vis Spectrum

The phytochemical constituents in the P. pyrifolia fruit extract chelate with the metallic
zinc ions (Zn2+) and form yellow-colored zinc coordinated complex sediment in the reaction
medium [34]. Then, the obtained Zn complex was decomposed by calcining it at 450 ◦C for
60 min to get the nanostructured zinc oxide materials. The schematic diagram of P. pyrifolia
mediated ZnO NS synthesis is represented in (Figure 1a).
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extract (a). UV-Vis spectrum of the synthesized zinc oxide nanostructure solution (b).

Generally, UV-Vis spectral analysis is used to confirm the formation of metal and
metal oxide nanoparticles. The synthesized aqueous ZnO NS solution showed that the
synthesized nanoparticles exhibit an excitation wavelength of 373 nm (Figure 1b), which is
almost similar to the range of results in the literature [11,22]. The band gap energy (E) of
the synthesized ZnO nanostructure was estimated by applying the peak at 373 nm, using
Equation (2).

E =
hc

λmax
(3)

where h is the Planck’s constant and c is the speed of light in vacuum. E of the resultant
ZnO NS was calculated to be 3.32 eV. This result is in accordance with the previous report
on the synthesis of ZnO nanoparticles [35].

3.2. X-ray Diffraction Analysis of ZnO NS

The X-Ray diffraction peaks of the synthesized ZnO NS are shown in Figure 2. The
X-ray diffraction patterns of the resultant ZnO NS showed different diffraction peaks at
the 2θ values of 31.87◦, 34.49◦, 36.36◦, 47.49◦, 56.75◦, 62.94◦, 66.29◦, 68.06◦, 69.29◦, 75.58◦

and 76.85◦, which can be indexed to the (1 0 0), (0 0 2), (1 0 1), (1 0 2), (1 1 0), (1 0 3),
(2 0 0), (1 1 2), (2 0 1), (0 0 4) and (2 0 2) planes, respectively. These observed diffraction
peaks are highly matched with the hexagonal phase of the wurtzite ZnO structure (JCPDS
card number: 36–1451). The sharp diffraction peaks demonstrate the high crystalline nature
of the formation of ZnO particles. No obvious presence of unknown peaks implies a high
purity of the synthesized ZnO NS. Our results are in accordance with an earlier report [36].
The crystallite size of the resultant ZnO NS was calculated using the diffraction peak of
36.36◦ and found to be 17 nm.
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3.3. FESEM and EDX Pattern of ZnO NS

The FESEM images showed that the diameters of the samples of ZnO nanostructures
are in the range of 20–80 nm (Figure 3a,b). The ZnO is cubical, and the shape is almost
uniform throughout the sample. The formation of clusters by the nanoparticles is mostly
likely attributed to agglomeration, which is common in nano-sized materials. Furthermore,
the elemental analysis spectrum results revealed the presence of zinc and oxygen in the
densely populated nanoparticles region (Figure 3c). The elemental weight percentage is
shown in the inset of (Figure 3c).
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3.4. TEM and BET Measurement of Resultant Nanomaterials

To study the structure and morphology of the synthesized ZnO NS, the TEM analysis
was employed, as shown in (Figure 4a), and thus the mean size of the particles can be
analyzed. It is apparent from the TEM image that the shape of the ZnO particles is modified
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from a spindle structure to a nearly spherical form due to the involvement of the extract
in the crystallization process. This further asserts the findings of Bayrami et al. [37]. The
results showed the lattice fringes spacing was measured to be 0.23 nm, which can be
attributed to the space between two planes (101) of the wurtzite ZnO NS [38]. Moreover,
this result corroborates the crystal lattice spacing determined from the above XRD peak
2θ value of 36.36◦ with a corresponding lattice plane of (101).
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To examine the surface properties of resultant ZnO NS, the Brunauer-Emmett-Teller
(BET) nitrogen adsorption-desorption isotherms were measured, as shown in (Figure 4b).
In both cases, it is evident that the volume of the sample increases monotonously with
increasing relative pressure. Particularly, at low pressure (between 0 and 0.1 P/P0), the
adsorption can be largely attributed to its microporous filling. A nearly similar trend is
noticed for desorption. However, with the enhancement in pressure, a gentle hysteresis loop
ensues, which is a habitual hallmark of mesoporous materials [39]. The BET measurements
estimate the surface area of ZnO to be 21.4 m2/g. Furthermore, relating the ZnO NS surface
area with their photocatalytic performances, two trends of results have been reported, as
the photocatalytic activity of ZnO nanoparticles increased with both an increase in specific
surface area [40] and a decrease in specific surface area [41]. Moreover, it has been reported
that, although the ZnO NS have a larger surface area and it has no significant effect on the
pore diameter, it may result in a larger active site [42]. The obtained data curve denotes
typical type II isotherms, which relate to the nonporous characteristic of solids [37].

3.5. FTIR and Raman Measurement of ZnO NS

FTIR spectra of the P. pyrifolia fruit extract and synthesized ZnO nanostructures before
and after calcination were showed in (Figure 5a, A,B,C). A vibration band of fruit extract
showed peaks at 3382, 1638, 1488, 1381 and 845 cm−1. The peak at 3382 cm−1 corresponds
to the O-H stretching functional group [43]. The peaks at 1638 and 1488 cm−1 can be
attributed to the carbonyl (C=O) functional group and bending vibration of the sp2 C=C
aromatic ring [44], respectively. The obtained peaks at 1381 and 845 cm−1 are probably due
to the alkene group of C-H stretching and C-N amine [45], respectively. Phenolic contents
in the extract of pear may also be involved in the formation of ZnO NS. Momeni et al.
suggested that the peaks that range from 3500 to 3100, 1720, 1605, 1395 and 1100 cm−1

can be linked to the free OH in the extract, thus forming hydrogen bonds, a carbonyl
group (C=O), a stretching C=C aromatic ring and C-OH and C-H stretching vibrations.
Correspondingly, these indicate the presence of phenolic structures in the plant extract [46].
The FTIR spectrum of synthesized zinc complex before calcination showed peaks at 3412,
1635 and 1385 cm−1. A comparison of FTIR spectra revealed a slight shift in the peaks of
the extract and the zinc complex. This is anticipated due to the adsorption of the plant
extract (C-H stretching vibration, O-H and carbonyl groups) onto the zinc surface, which
may be involved in the synthesis of the nanoparticles. Further, the FTIR spectrum of the
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ZnO NS revealed no significant peaks due to the decomposition of bioactive functional
groups during calcination [5].

Crystals 2022, 12, x FOR PEER REVIEW 8 of 15 
 

 

Correspondingly, these indicate the presence of phenolic structures in the plant extract 
[46]. The FTIR spectrum of synthesized zinc complex before calcination showed peaks at 
3412, 1635 and 1385 cm−1. A comparison of FTIR spectra revealed a slight shift in the peaks 
of the extract and the zinc complex. This is anticipated due to the adsorption of the plant 
extract (C-H stretching vibration, O-H and carbonyl groups) onto the zinc surface, which 
may be involved in the synthesis of the nanoparticles. Further, the FTIR spectrum of the 
ZnO NS revealed no significant peaks due to the decomposition of bioactive functional 
groups during calcination [5]. 

The Raman spectrum of the ZnO nanostructures from 290 cm−1 to 990 cm−1 is shown 
in Figure 5b. The obtained spectrum has a Raman peak comparable to ZnO nanocrystals 
presented in an earlier report [47] with a slight shift (in the range of 1–2 cm−1) caused by 
different crystal sizes [48]. Theoretically, the wurtzite crystal structure of ZnO belongs to 
the C6v4, possessing 2 formula units in each primitive cell with all the atoms lodging the 
C3V sites [49]. The major, sharp peak labelled as E2 at 439 cm−1 is recognized as Raman 
active optical phonon mode, which is the characteristic of the wurtzite hexagonal phase 
ZnO. Raman modes at 333.6 and 439 cm−1 are denoted as 2E2 and E2 modes, respectively 
[47,48]. 

 
Figure 5. (a) FTIR spectrum of P. pyrifolia fruit extract (A), ZnO NS before calcination (B), calcined 
ZnO NS (C) and Raman spectrum of ZnO nanostructures (b). 

3.6. ZnO NS Photocatalytic Decolorization of Methylene Blue 

Figure 5. (a) FTIR spectrum of P. pyrifolia fruit extract (A), ZnO NS before calcination (B), calcined
ZnO NS (C) and Raman spectrum of ZnO nanostructures (b).

The Raman spectrum of the ZnO nanostructures from 290 cm−1 to 990 cm−1 is shown
in Figure 5b. The obtained spectrum has a Raman peak comparable to ZnO nanocrystals
presented in an earlier report [47] with a slight shift (in the range of 1–2 cm−1) caused by
different crystal sizes [48]. Theoretically, the wurtzite crystal structure of ZnO belongs to the
C6v4, possessing 2 formula units in each primitive cell with all the atoms lodging the C3V
sites [49]. The major, sharp peak labelled as E2 at 439 cm−1 is recognized as Raman active
optical phonon mode, which is the characteristic of the wurtzite hexagonal phase ZnO.
Raman modes at 333.6 and 439 cm−1 are denoted as 2E2 and E2 modes, respectively [47,48].

3.6. ZnO NS Photocatalytic Decolorization of Methylene Blue

The photocatalytic decolorization efficiency of ZnO NS on MB was observed using
different amounts of ZnO catalyst (1 mg, 5 mg, 10 mg and 20 mg) in 50 mL of 2.5 mg/L
MB solution under UV light for 60 min. The decolorization was analyzed by measuring
the absorbance peak of the MB. As shown in Figure 6a, a lower absorbance peak indicates
that more MB is decolorized and vice-versa. These results showed that by using 10 mg of
ZnO, the absorbance peak was the lowest compared to the other tested ZnO concentrations,
inferring the highest amount of MB decolorized at this particular concentration. This may



Crystals 2022, 12, 1808 9 of 15

be attributed to the increase of the catalyst concentration, which subsequently increases the
production of ROS and accelerates the number of active sites on the ZnO NS for the reaction.
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As seen in Figure 6b, the decolorization exhibits a linear behavior indicating that
degradation is directly proportional to the amount of ZnO. However, it was also observed
that when the catalyst loading was further increased to 20 mg, the absorbance peak of the
MB was the highest, corresponding to the lowest decolorization of MB. The decrease in the
photocatalytic decolorization efficiency is probably due to the agglomeration of the catalyst
particles. As a result, the specific surface area decreased and subsequently decreased
the number of active sites [50]. Moreover, a high quantity of ZnO NS would lower the
opacity, turbidity of the suspension and light scattering of the catalyst particles. The more
significant amount of nanoparticle suspension may have increased UV shading to hinder
photocatalytic activity [19,51]. This would decrease the path of irradiation through the
sample [52]. Therefore, in our case, the most effective decolorization for MB was recorded
with 10 mg of ZnO NS catalyst.

Figure 6c represents the photocatalytic mechanism for MB in the presence of ZnO.
Adsorption and adhesion of the MB dye molecules on the surface of ZnO result in the degra-
dation of the MB. It has been extensively discussed that the photocatalytic decolorization
of MB by semiconductors, such as ZnO, can occur due to hydroxyl radicals (•OH) [53,54].
The •OH can be formed either from (i) the highly hydroxylated ZnO surface or (ii) by direct
oxidation of dye pollutants under UV irradiation. Moreover, there is also a possibility that
the •OH co-occurs by both methods. The photo decolorization process starts when ZnO
absorbs UV light of energy equal to or higher than its bandgap (3.37 eV). This promotes
the formation of free electrons (e−) and holes (h+) in the conduction and valence bands,
respectively. These electrons can either recombine with the holes (and scatter the captivated
energy as heat), or the electron-hole pairs can contribute to redox reactions. In the case
of participating redox reactions, the electron-hole pairs can generate •OH either from the
reaction of h+ with water or with OH− anions [50]. On the other hand, the response of

dissolved O2 and e− will produce superoxide (•O−
2 ) and may also proceed to make OO

·
H.
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All of these active oxygen species (•O−
2 ) and free hydroxyl radicals (•OH, •OOH) could

also be involved in the photodegradation of the MB [16].

3.7. Dielectric Studies

The dielectric constant is a measure of the capability of a material to stock electrical
energy in an electric field. It is a ratio of the material permittivity to the free space permit-
tivity. Permittivity (ε) is a measure of the ability of a material to be polarized by an electric
field. An efficient dielectric material supports polarization with minimal dissipation or
loss of energy. The dissipation of energy in the form of heat, as the movement of charges
in an alternating electromagnetic field occurs, as polarization switches direction. This is
known as the dielectric loss (D) or tan δ (loss tangent). It is proportional to the amount of
energy stored and dissipated due to the presence of an applied electric field. The dielectric
constant and loss were assessed in the frequency range from 1 Hz to 100 kHz in the present
study. The dielectric constant, also known as relative permittivity, is determined using
the equation:

εr =
C x d
εo A

where C is the capacitance of the sample, d and A are the thickness and the area of the sample
pellet, respectively, and εo is the dielectric permittivity of vacuum (8.854 × 10 F/m). The εr
and tan δ for the synthesized ZnO were found to be 3.19 and 2.80 at 1 kHz, respectively. A
recent report of the synthesized ZnO NPs by the co-precipitation method demonstrated the
value of the dielectric constant and loss to be approximately 12 and 0.01, respectively [55],
while ZnO NPs synthesized using sol-gel observed the dielectric constant and loss to be
40 and 50, respectively [56]. Apart from the preparation conditions that can influence the
value of the dielectric properties [27], it is noteworthy to mention that the compression
force used in preparing the pellet must also be considered because different compression
forces will result in different void spaces between the particles [57], and void space affects
electrical measurements. Therefore, a direct comparison of the values is difficult, as many
aspects and factors come into play. Figure 7a,b represents the deviation of the dielectric
constant (ε) and dielectric loss (tan δ) with respect to frequency at room temperature (300 K).
The values of εr and D were found to decline with increasing frequency. The decrement
rate was observed to be quicker at a lower frequency and slower at a higher frequency.
The decrease of the dielectric constant at high frequencies is typical because any species
contributing to polarization will have their space charges reduced under the applied field
at higher frequencies [58]. Polarization could arise from electronic dislodgment, ionic
displacement, dipole orientation and space charge displacement [56].
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3.8. Antibacterial Activity of ZnO NS
3.8.1. MIC Determination and Metabolic Activity

Although industrial effluents pollute the environment, the emergence of pathogenic
bacterial drug resistance epitomizes the high risk to public health. Nanomaterials are
considered alternate antimicrobials due to their unique physiochemical properties. To
determine the MIC level of ZnO NS against P. aeruginosa and B. subtilis, a broth microdi-
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lution assay was performed. The turbidity observation results showed that the ZnO NS
significantly inhibited the growth of P. aeruginosa and B. subtilis with MIC values of 125
and 250 µg/mL (Figure 8, Row B and D), respectively. A similar pattern of greater and
lesser antibacterial activity was observed against P. aeruginosa and B. subtilis, which may be
due to the differential cell wall structure of Gram-positive and Gram-negative bacteria [59].
ZnO NPs demonstrated a prominent antibacterial effect; their combinations are used in
food additives due to their non-toxic nature to humans within FDA approved concen-
trations [60]. The turbid white color appearance of increasing ZnO NS concentrations
slightly interfered with the determination of MIC and whether bacterial growth caused
the turbidity. Furthermore, the samples that were incubated with resazurin after 60 min
showed that the metabolically active bacterial cells appeared to change colors, from blue
(resazurin) to pink (resorufin), as shown in Figure 8 (Row A and C). The lowest dosage of
ZnO NS (125 and 250 µg/mL) exposed P. aeruginosa and B. subtilis, remaining unchanged
in its blue color, were determined as MIC. Moreover, these results are in line with the MIC
of turbidity observation analysis.
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3.8.2. Disc Diffusion Assay

The antibacterial activity of ZnO NS was studied against B. subtilis and P. aeruginosa by
disc diffusion assay. The assay results showed clear growth inhibition on the plates against
both the tested bacteria (Figure 9a,d). From the results, the DW loaded control disc in the
center, and for lesser concentrations of ZnO NS impregnated discs (1. 100 µg/mL and
2. 200 µg/mL), did not show any inhibition against both the tested bacteria. In contrast,
a clear zone of inhibition was observed at increasing concentrations of ZnO NS discs
(3. 300 µg/mL and 4. 400 µg/mL). A higher inhibitory zone was observed at 8 mm for both
bacteria at a 400 µg/mL dosage of ZnO NS. These results showed an increased bacterial
inhibitory effect as ZnONS dosage was increased, which was correlated with an earlier
report [61].

To study the ZnO NS effect on bacterial cells, the ZnO NS treated cells were imaged
and compared with the control bacteria. Figure 9b,e shows the bacteria without any
treatment, which demonstrated a rod-like shape with a smooth cell membrane surface.
After 2 h ZnO NS treatment, our observations show that both bacteria underwent structural
changes, including membrane damage, pits and holes on the cell membranes (Figure 9c,f).
Furthermore, the leakage of cytoplasmic content was observed, which led to bacterial
death. The bactericidal effect of ZnO is ascribed to multiple reasons, such as cell wall
and cell membrane damage and the release of zinc ions and their ability to produce ROS,
which causes oxidative stress to the bacteria [62]. It was reported that the release of Zn2+

ions accelerates the ROS generation in the bacterial surface and may involve oxidizing
glutathione and induce lipid peroxidation, which subsequently causes bacterial lysis [63].
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4. Conclusions

ZnO nanostructures were successfully synthesized using Pyrus pyrifolia fruit extract
as a reducing agent by the green synthesis route. The structural, morphological and
optical properties of the ZnO nanostructures were analyzed by FESEM, UV-Vis, FTIR
and Raman. The XRD pattern result confirmed the wurtzite structure of ZnO nanos-
tructures. FESEM analysis revealed the average size of ZnO NS in the range of 20–80 nm.
Flavonoids/limonoids/carotenoids, proteins and other functional groups in the fruit extract
are likely responsible for forming ZnO nanostructures. Further, the ZnO NS demonstrated
significant antibacterial activity against B. subtilis, and P. aeruginosa, which was confirmed
by metabolic assay and morphological analysis. MB dye was effectively decolorized under
UV light by controlling the concentration and catalyst loading of the MB. The synthesized
ZnO NS exhibits a typical pattern of dielectric constant and loss of ZnO with respect to
the frequency. The results of this study may provide new insights into the utilization
of green-synthesized ZnO NS for developing novel antimicrobial combinations to treat
bacterial infections, and for environmental photocatalysts to remove pollutant antibiotics.
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