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Abstract: The temperature dependence of thermal conductivity and specific heat for detonated
nanodiamond ceramics is investigated on specially designed experimental setups, implementing the
uniaxial stationary heat flow method and the thermal relaxation method, respectively. Additionally,
complementary studies with a commercial setup (Physical Property Measurement System from
Quantum Design operating either in Thermal Transport or Heat Capacity Option) were performed.
Two types of samples are under consideration. Both ceramics were sintered at high pressures
(6–7 GPa) for 11–25 s but at different sintering temperatures, namely 1000 ◦C and 1600 ◦C. The effect
of changing the sintering conditions on thermal transport is examined. In thermal conductivity κ(T),
it provides an improvement up to a factor of 3 of heat flow at room temperature. The temperature
dependence of κ(T) exhibits a typical polycrystalline character due to hindered thermal transport
stemming from the microstructure of ceramic material but with values around 1–2 W/mK. At
the lowest temperatures, the thermal conductivity is very low and increases only slightly faster
than linear with temperature, proving the significant contribution of the scattering due to multiple
grain boundaries. The specific heat data did not show a substantial difference between detonated
nanodiamond ceramics obtained at different temperatures unlike for κ(T) results. For both samples,
an unexpected upturn at the lowest temperatures is observed—most likely reminiscent of a low-T
Schottky anomaly. A linear contribution to the specific heat is also present, with a value one order of
magnitude higher than in canonical glasses. The determined Debye temperature is 482 (±6) K. The
results are supported by phonon mean free path calculations.

Keywords: nanodiamond ceramic; thermal conductivity; specific heat; low temperature phenom-
ena; sintering

1. Introduction

Detonated nanodiamonds have become one of the most interesting and intensely
exploited carbon materials in the past few decades [1,2]. This is especially true after
establishing their sintering procedure, which started back in the 1980s [3,4] and which is
now fully implemented in the industry with widely used technology. The high demand for
the use of nanodiamond materials has been derived from their exceptional properties like
mechanical performance, electrical, optical, thermal, even biocompatible ones [5,6]. Most
importantly it is their vast possible applications that make them so desirable [7–12].

While the common approach covers the structural, electrical, and strength tests, or
materials functionalization, an increase in the importance of thermal properties was also
observed. Next to the fundamental science, an equally critical issue of heat removal,
enhanced by practical needs, awaited its progress mostly due to the growth in the electronic
industry requiring a good determination of the dissipated thermal energy. [13,14] Another
noticeable effect needing detailed consideration is the change in thermal behavior with
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the lowering of the size to the nanometer scale. Nanomaterials do not transfer heat in
the same manner as their bulk crystalline counterparts [15,16]. It is mostly inherited from
the increased phonon-boundary scattering or changes in the phonon dispersion [17,18].
Nanoscale thermal transport requires also a completely different approach when it comes
to simulation [19].

Thermal transport mechanisms in carbon materials are of different natures depending
on the scale (macro/micro/nano) and type. Due to the vast spread of data in the literature,
the focus will be limited only to the nanodiamond ones. Investigations on the thermal
conductivity of nanodiamond and microdiamond samples and their composites were
so far carried out by different groups by using both stationary and transient methods,
e.g., [20–22]. In all the mentioned papers the focus was on the determination of the final
thermal conductivity value at room temperature depending on the origin or different
sintering conditions of detonated nanodiamond material towards desired high values of
the parameter. On the other side, heat capacity studies were substantially less common
and performed only in a limited temperature range [23].

The materials chosen for studies are two types of nanodiamond ceramic samples
obtained by sintering at high pressures in a toroidal chamber of detonated nanodiamond
powders at different temperatures. Besides testing the assumption that higher sintering
temperature provides better thermal transport in samples, we mostly focus on some unex-
plored fields, namely the possible phenomena associated with the temperature dependence
of thermal conductivity coefficient and specific heat, particularly in the low-temperature
region [24,25].

2. Materials and Methods
2.1. Samples

The sintering of polycrystalline detonated nanodiamond ceramics was carried out in
a high-pressure toroid-type chamber of 0.26 cm3 in volume, using a press with the axial
force of 5 MN. AC current at 50 Hz in the electric power stabilization regime heated the
initial blend in a graphite cylinder. The as-received sintered samples were cylinders of
approx. ∼3 mm in diameter and ∼4 mm high. The chamber pressure was maintained
in the range of ∼6.0 to 6.5 GPa, the sintering temperature was ∼1000 ◦C or 1600 ◦C for
particular samples, respectively and the annealing time varied from 11 to 25 s. Under these
conditions, the structure of diamond is preserved, as confirmed by XRD (see Supporting
Information Figure S1). The details of the detonation nanodiamond technology can be
found in [2,26,27]. The sample sintered at 1600 ◦C will be named dnd_crmc1 hereafter, and
the one sintered at 1000 ◦C as dnd_crmc2.

2.2. Thermal Conductivity

Thermal conductivity experiments were carried out in a specially designed heat
bath cryostat at the Department of Low Temperature and Superconductivity, Institute of
Low Temperature and Structure Research, Polish Academy of Sciences, (ILT&SR PAS), in
Wrocław, Poland, utilizing the stationary uniaxial heat flow method. The chosen samples
were of cylindrical shape with an average diameter of φ = 2.75 mm and height of 3.55 mm
(dnd_crmc1) and 3.89 mm (dnd_crmc2). On the top of each sample, a resistive heater was
attached with special glue in order to induce heat flux along the sample. On the other
end, the sample was anchored to the so-called cold finger serving as a heat bath reservoir.
The temperature gradient was measured with two constantan–manganin thermocouples
spaced between each other at 1.1 mm (dnd_crmc1) and 1.24 mm (dnd_crmc2), respectively.
The details of the operation of the experimental device can be found in [28]. Additional
experiments were performed utilizing the Physical Property Measurement Systems (PPMS)
from Quantum Design, operating in the Thermal Transport Option with the stationary
method chosen for measurements. A picture of the sample mounted on the TTO sample
puck is shown in Figure 1. The methodology is analogous to the one implemented in
the ILT&SR PAS device. Interested readers are referred to the operator’s manual [29]
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or [30]. The advantage of performing additional studies on the commercial setup is the
extended temperature range down to 1.8 K, and the reason to continue performing the
experiments on the specially constructed device is its higher accuracy, especially at higher
temperatures, where the multiple shielding provides excellent isolation, and all the parasitic
effects are eliminated.
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Figure 1. Detonated nanodiamond ceramic sample mounted on the TTO sample puck of PPMS in a
4-wire contact configuration.

2.3. Heat Capacity

As in the case of thermal conductivity, heat capacity measurements were also per-
formed in two complementary devices. The calorimetric system at the Low Temperature
Laboratory of the Universidad Autónoma de Madrid (UAM) essentially uses two kinds of
methods which, according to the investigated temperature range, can be selected: namely,
a particular quasi-adiabatic continuous method in a wide temperature range, and the
thermal relaxation method typically below 30 K, in turn being able to choose between the
standard relaxation method and a non-standard, faster relaxation one [31,32]. The standard
relaxation method requires first the achievement of the steady-state equilibrium between
cooling and heating power, and second the recording of the temperature relaxation after
switching off the heating power. A faster relaxation method skips waiting for the equilib-
rium condition and utilizes the heating curve of the recorded data. As in all calorimetric
heat-capacity experiments, a separate measurement of the empty cell is performed and
subtracted from the final results to assess the net specific heat. The commercial device,
again the Physical Property Measurement System from Quantum Design, but here operat-
ing in the Heat Capacity Option, at the disposal of the ILT&SR PAS, utilizes the standard
relaxation method [33]. The main advantages of the versatile calorimetric setup at UAM, in
relation to the commercial device, are the possibility to change the measuring method in a
particular temperature range and to cool the sample cell with relatively high cooling rates
(in the commercial one limited to an effective pace of about 10 K/min). Another signifi-
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cant advance that distinguishes the UAM system is the possibility to also measure liquid
materials by means of a specially designed calorimetric sample cell. Further information
on the setup can be found in [31,32]. The details of the heat capacity measurements in the
commercial device are provided in [34]. The illustration of particular samples mounted into
the calorimeters is presented in Figure 2. One should notice that the UAM setup contains
much more sample space—the sapphire disk, on which the sample is mounted, is around
φ = 25.4 mm in diameter and the sample can be placed as a whole, while the sample table
of the commercial PPMS is a square approximately 3 × 3 mm and a small sample piece
needs to be cut out. The weights of the particular samples used for the measurements are
summarized in Table 1.
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Figure 2. Detonated nanodiamond ceramic samples in different experimental setups for heat capacity
measurements. (Left): dedicated calorimetric cell of the cryostat at UAM; (Right): sample puck of
commercial PPMS at ILT&SR PAS.

Table 1. Sample masses of particular detonated nanodiamond samples used in different experimen-
tal setups.

Sample Mass UAM
[mg]

Mass PPMS
[mg]

dnd_crmc1 53.08 5.35
dnd_crmc2 57.25 2.87

3. Results and Discussion
3.1. Thermal Conductivity

Thermal conductivity measurements were carried out in a temperature range of
1.8 K–300 K (in PPMS setup) and 4.2 K–300 K (in ILT&SR design setup). The results are
presented in Figure 3 (red symbols—dnd_crmc1 sample sintered at 1600 ◦C; blue symbols—
dnd_crmc2 sample sintered at 1000 ◦C; filled stars symbols correspond to experiments
performed on the specially designed cryostat; empty symbols refer to PPMS measurements).
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Figure 3. Thermal conductivity as a function of temperature for detonated nanodiamond ceramic
samples sintered at different temperatures and measured in two different setups.

The thermal conductivity of the detonated nanodiamond ceramics decreases mono-
tonically upon lowering the temperature in the whole investigated temperature range. For
the samples sintered at 1600 ◦C (red symbols) the agreement between the results obtained
in different setups is satisfactory. What can be seen in the graph, especially at high tem-
peratures, is the additional radiative contribution to the total thermal conductivity. This
issue of the PPMS system was thoroughly described before in the literature [35]. Above
150 K the relative difference is 0.13 W/mK on average, which then drops evenly down
to approximately 0.03 W/mK at 50 K. At the lowest investigated temperatures, thermal
conductivity measured in both experimental setups overlaps within the experimental error.
In the second case of detonated nanodiamond ceramic sintered at 1000 ◦C the situation is
more complex from the start. There is no straightforward agreement between the results
obtained in the two cases. The reason behind this might be the fact that the experiments
were performed on two different samples (unlike in the previous case), both sintered at
1000 ◦C, but with different sintering times, which could also have influenced the resulting
sample properties, as shown in Figure 3. Increasing the sintering time from 11 to 25 s at
1000 ◦C clearly improves the thermal conductivity by a factor of 2. While keeping the
sintering time constant, at 25 s, and changing the temperature from 1000 ◦C to 1600 ◦C, the
thermal conductivity increases by 1.5 at room temperature. The studies of the sintering
temperature’s powerful influence on the resulting thermal conductivity were presented
in [20], c.f. Table 1 of [36]. In our case, an additional reason for this perceptible differ-
ence in absolute values of thermal conductivity might be the changing contribution of the
phonon processes responsible for the thermal transport mechanisms. As the samples are
polycrystalline ceramics, what is reflected, among others, by the observed temperature
dependence of the κ(T), the prevailing factor strongly affecting the heat flow in the bulk
material is the multiple grain boundaries. The particularly sensitive region, where the
phonon scattering processes on grain boundaries have their most relevant contribution
to hindering the thermal transport, is the low temperature. For this reason, the range of
interest is presented in a close-up in Figure 4.
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Figure 4. Low temperature thermal conductivity of differently prepared detonated nanodiamond
ceramics. Insert: κ(T) data in a linear scale up to 10 K.

The phenomena observed in the investigated materials are of complex nature. They
comprise a nanoscale behavior of a different type stemming from the building nanomaterial
of the ceramics, but also a macroscale contribution due to the ceramic grainy structure itself.
The alternation of the dominant heat transfer mechanism for the case of diamond-based
materials was stressed in [37]. At the lowest temperatures, the investigated ceramics exhibit
more than three orders of magnitude lower values of thermal conductivity coefficient than
in the case of a bulk diamond [38] nearing the lower limit of the thermal conductivity
of disordered crystals proposed by Cahill et al. [39]. The temperature dependence of the
detonated nanodiamond resembles in shape the κ(T) results of diamond films [40] but
again with substantially lower values, yet corresponds to results of previous nanodiamond
composite samples [21,22,41]. In Figure 4, up to 10 K, the thermal conductivity coefficient
as a function of temperature was approximated with κ ~ T1.07 (sample sintered at 1000 ◦C)
and κ ~ T 1.1 (sample sintered at 1600 ◦C), shown additionally as an insert in Figure 4. Such
a low value of the exponent is mostly caused by the strong hindrance of the heat flow due
to grain boundaries.

3.2. Heat Capacity

The heat capacity investigations, as in the case of thermal conductivity coefficient,
were performed on two complementary setups. The PPMS measurements were carried out
in the temperature range 1.8 K–300 K. The results are presented in Figure 5 in a log–log
scale (red open circles describe the data from sample sintered at 1600 ◦C; blue open squares
the ones from sample sintered at 1000 ◦C). Detailed studies in the range 1.8 K–30 K were
additionally carried out on the specially designed low temperature calorimetric system at
the UAM. The low temperature analysis covering the experimental data from both setups
is presented in Figures 6 and 7.

Unlike thermal conductivity data, the specific heat in the two detonated nanodiamond
ceramics is found to be almost identical at the investigated temperatures. The temperature
relation nicely corresponds to the results of Vasiliev et al. [23]. Above 50 K the temperature
dependence can be roughly approximated with Cp ~ T 1.97. The room temperature values
are 658 mJ/g K and 710 mJ/g K for the dnd_crmc1 (sintered at 1600 ◦C) and dnd_crmc2
(sintered at 1000 ◦C), respectively, which is a bit higher than the specific heat of nanodia-
mond arrays 630 mJ/g K by Su et al. in [19], or diamond/carbon composites with different
ratios of sp2/sp3-bonded carbon which yielded from 510 mJ/g K up to 610 mJ/g K c. f.
Table 1 in [21].
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Figure 6. Low temperature specific heat in Cp/T representation as a function of square temperature
for differently sintered detonated nanodiamond ceramics, measured at two complementary setups.

For the lower temperatures, additional measurements were carried out utilizing
the UAM setup. Following the designation of the thermal conductivity data, the filled
stars symbols correspond to the experiments taken at specially designed setups, the open
symbols to those in a commercial device. As for the colors, like throughout the paper, red
color accounts for ceramics sintered at 1600 ◦C and blue for the ones sintered at 1000 ◦C.
Results are presented in Figure 6.
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Figure 7. Low temperature specific heat displayed as Cp/T3: T of detonated nanodiamond ceramics
sintered at different temperatures.

Looking at the low temperature behavior, one can still not distinguish between the
experimental data of particular ceramic samples down to about 4 K. Furthermore, as the
temperature dependence is almost the same below, it could be stated that the sintering
temperature does not appear to have any influence on the low-temperature-specific heat.
However, there is a small but clear difference in absolute values obtained on particular
devices. One of the reasons behind this might be the individual systematic errors of
the calorimeters, the other stemming from the particular sample pieces used during the
experiments. In the case of the commercial setup, the sample size was limited by the
measuring table dimensions and needed to be cut out of the cylindrical ceramic, and the
UAM calorimeter allowed the use of the whole sample, which could result in different
contributions of the defective regions in the bulk piece of the ceramic. Given the Cp/T
as a function of T2 representation (Figure 6), one clearly confirms the presence of a linear
term in Cp(T). The obtained coefficients of ~20 × 10−6 J/gK2 are one order of magnitude
larger than the typical values of a linear term found in glasses due to TLS, although they
are comparable to those found in some disordered crystals [42]. Therefore, its origin may
well be the same as in the latter. From the slope of the fit, the Debye temperature was
calculated to be 482 K (±6 K) for both samples. The obtained value of θD is high, close to
the nanodiamond thin films by Wang et al. [43], but certainly below the one of crystalline
bulk diamond [44].

An unexpected, a very pronounced upturn in the specific heat with lowering the
temperatures is present in both samples, most likely reminiscent of a low-T Schottky
anomaly attributable to some impurity inherent to the fabrication process. Those Schottky-
like contributions could also affect the slight discrepancies between absolute specific heat
values obtained for the corresponding ceramic samples in different calorimetric setups
(entire sample for UAM calorimetric device, a piece for PPMS system).

In Figure 7 the specific heat is represented as Cp/T3 vs. T, so that the departure of the
low-temperature data from the Debye behavior expected for crystalline materials is more
clearly evidenced.
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3.3. Thermal Diffusivity

One of the parameters conditioning the possible application of a material is its abil-
ity to dissipate heat, known as thermal diffusivity α, which can be evaluated using the
formula below:

α =
κ

$·Cp
(1)

where κ stands for thermal conductivity at a given temperature; Cp is the specific heat
at the same temperature; $ is the density of the material. The density of the measured
nanodiamond ceramics was determined, based on their geometrical dimensions and sample
masses, to be 2.40 ± 0.12 kg/m3 and 2.49 ± 0.13 kg/m3 for the dnd_crmc1 (sintered at
1600 ◦C) and dnd_crmc2 (sintered at 1000 ◦C), respectively. Although the approximation is
rough, similar $ values are found in the literature [41,45]. The calculations were performed
based on the thermal conductivity and heat capacity measurements carried out on the same
samples in the PPMS setup, as it included the whole temperature range of interest. The
results are presented in Figure 8.
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Figure 8. Thermal diffusivity of detonated nanodiamond ceramics sintered in different temperatures.

The temperature dependence of thermal diffusivity for both ceramic samples of deto-
nated nanodiamonds exhibits a relatively similar behavior shifted slightly along the Y axis.
With higher sintering temperature, one observes a slight increase in thermal diffusivity.
Starting from the lowest investigated temperatures thermal diffusivity drops by an order
of magnitude up to 25 K, then stabilizes finally with a further temperature increase one can
observe a smeared thermal diffusivity hump with a maximum around 120 K. At room tem-
perature the thermal diffusivity values are 1.22 mm2/s for the ceramic sintered at 1600 ◦C
and half the value for the one sintered at 1000 ◦C. Such low values of thermal diffusivity
parameter are mostly caused by the ceramic microstructure and the high thermal resistance
at grain boundaries, which was previously shown in thermal conductivity results.

3.4. Phonon Mean Free Path

In order to bring the nature of main phonon scattering mechanisms closer, one can
estimate the phonon mean free path lph based on the simple kinetic gas equation:

κ(T) = 1/3·Cp(T)·v·lph(T) (2)
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where κ(T) is the thermal conductivity, Cp(T) stands for the specific heat and v is the sound
velocity, which was assumed to be 13,430 m/s from ref. [40]. The results of the calculations
are presented in Figure 9.
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of temperature.

For the calculations of the phonon mean free path the results of temperature-dependent
thermal conductivity coefficient and heat capacity measured with PPMS setup were again
used. The phonon mean free path relation of particular detonated nanodiamond ceramics
looks very much like the thermal diffusivity parameter, which is a natural consequence of
the similarity of Equations (1) and (2) used for the estimation of particular properties. The
shape of individual curves shows much resemblance with the phonon mean free path data
of diamond films presented in [40] but with somewhat lower absolute values. The obtained
results once again prove the earlier conclusions. The strongly hindered heat flow in the
investigated materials is confirmed by the relatively small values of the phonon mean free
path. One can also notice a slight change of slope in the phonon mean free path temperature
relation below 4 K, which was inherited from the Schottky anomaly in specific heat.

4. Conclusions

Thermal properties of detonated nanodiamond ceramics sintered in different condi-
tions were studied both in specially designed setups and commercial devices. The resulting
temperature dependence of thermal conductivity is dominated by the polycrystalline char-
acter of the ceramics in the whole investigated temperature range. At room temperature,
increasing the sintering temperature from 1000 ◦C to 1600 ◦C induces an enhancement of
heat flow by a factor of 1.5. On the other hand, reducing the sintering time from 25 s to
11 s, for the ceramics sintered at 1000 ◦C, causes a drop in thermal conductivity value by
half. Low-temperature behavior indicates a strong influence of grain boundaries phonon
scattering processes. Specific heat data do not exhibit the previous large sensitivity to the
sample preparation. Only at the lowest temperatures an unexpected upturn in Cp/T vs. T2

is evidenced reminiscent of the Schottky anomaly, inherited probably from the fabrication
process. The linear contribution to the specific heat is also present with a value of approx.
20 µJ/gK and the calculated Debye temperature is 482 ± 6 K. The departure from the
classical Debye behavior is clearly evidenced.
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