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Abstract: This review covers twenty four Pt(II) complexes of the inner coordination sphere Pt(κ3–P1

N1N2)(Y), (Y = Cl, CL); Pt(κ3–P1N1X1)(Y), (X1 = O1 and Y = P2L, Cl, I); (X1 = C1 and Y = NL, Cl);
(X1 = S1 and Y = Cl, I); (X1 = Se1 and Y = Cl); Pt(κ3–N1P1N2)(Cl), Pt(κ3–S1P1S2)(Cl), Pt(κ3–P1S1Cl1)(Cl)
and Pt(κ3–P1Si1N1)(OL). These complexes are crystallized in three crystal classes: monoclinic
(16 examples), triclinic (5 examples), and orthorhombic (3 examples). Each κ3–ligand creates two
metallocyclic rings with various combinations of the respective metallocyclic rings. If the common
central ligating atom is N1, the 5 + 5 membered, 5 + 5, 5 + 6, 6 + 5, and 6 + 6; if the common central
ligating atom is P1: 5 + 5, and 6 + 6; if the common central ligating atom is S1 or Si1, 5 + 6-membered.
The structural parameters (Pt-L, L-Pt-L) are analysed and discussed with an attention to the distortion
of a square-planar geometry about the Pt(II) atoms as well as trans-influence. The sums of the Pt-L
(x = 4) bond distances the growing with the covalent radius of the Y atoms. Noticeably, the distortion
of the square-planar geometry is growing with the decreasing size of the inner coordination sphere
about the Pt(II) atom. There is a relation between the degree of distortion (
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rings with various combinations of the respective metallocyclic rings. If the common central ligating 
atom is N1, the 5 + 5 membered, 5 + 5, 5 + 6, 6 + 5, and 6 + 6; if the common central ligating atom is 
P1: 5 + 5, and 6 + 6; if the common central ligating atom is S1 or Si1, 5 + 6-membered. The structural 
parameters (Pt-L, L-Pt-L) are analysed and discussed with an attention to the distortion of a square-
planar geometry about the Pt(II) atoms as well as trans-influence. The sums of the Pt-L (x = 4) bond 
distances the growing with the covalent radius of the Y atoms. Noticeably, the distortion of the 
square-planar geometry is growing with the decreasing size of the inner coordination sphere  Ʈ
Keywords: structure; Pt(κ3–P1X1X2)(Y); Pt(κ3–X1P1X2)(Y); distortion; trans-influence 

1. Introduction
Platinum exists in a wide range of oxidation states from zero to +6, including non-

integral, Pt(2.25), Pt(2.81), Pt(3.25) and Pt(3.5). Of these, particularly in four- and six- co-
ordinated, +2 and +4 oxidation states are the most common. The many platinum coordi-
nation complexes have been surveyed [1–3], converting the crystallographic and struc-
tural data of almost two thousand monomeric examples. 

About 10% of these complexes exist as isomers. Their structural data were analysed 
and classified [4]. Included are distortion (65%) cis-trans (30%), mixed isomers (cis-trans 
and distortion) and ligand isomers. Despite the importance of cis-trans geometry in the 
chemistry of Pt(II), the distortion isomers atom is far more common. 

Recently, we detail analysed the structural data of distortion isomers of the cis-Pt(II) 
complexes, and none of the cis-isomer has a trans-partner. The distortion isomers differ 
mostly in Pt-L distances as well as the values of the L-Pt-L angles [5]. Another review has 
focused on the ligand isomers of Pt(II) complex [6]. 
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4) and the numbers of
the metallocycles rings. The distortion diminishing is in the order of: 0.058 (5 + 5) > 0.037 (6 + 5) >
0.023 (5 + 6) > 0.022 (6 + 6) membered.

Keywords: structure; Pt(κ3–P1X1X2)(Y); Pt(κ3–X1P1X2)(Y); distortion; trans-influence

1. Introduction

Platinum exists in a wide range of oxidation states from zero to +6, including non-
integral, Pt(2.25), Pt(2.81), Pt(3.25) and Pt(3.5). Of these, particularly in four- and six-
coordinated, +2 and +4 oxidation states are the most common. The many platinum coordi-
nation complexes have been surveyed [1–3], converting the crystallographic and structural
data of almost two thousand monomeric examples.

About 10% of these complexes exist as isomers. Their structural data were analysed
and classified [4]. Included are distortion (65%) cis-trans (30%), mixed isomers (cis-trans
and distortion) and ligand isomers. Despite the importance of cis-trans geometry in the
chemistry of Pt(II), the distortion isomers atom is far more common.

Recently, we detail analysed the structural data of distortion isomers of the cis-Pt(II)
complexes, and none of the cis-isomer has a trans-partner. The distortion isomers differ
mostly in Pt-L distances as well as the values of the L-Pt-L angles [5]. Another review has
focused on the ligand isomers of Pt(II) complex [6].

Organomonophosphines as a soft P-donor ligand are very useful for building a
wide variety of platinum complexes. Research activity in this field is always very ac-
tive. Organophosphines on the basis of donor atoms can be divided into four sub-groups:
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homodentate (P, PP, PPP, PPPP), heterobi- (PO, PN, PB, PS) and heterotridentate (POP, PNP,
PCP, PBP, PSP, PSiP) as well as tetradentate (P4, P3Si, P2N2, P2S2, P2C2, PN3) [7–9].

The aim of this survey is to correlate the structural parameters available for heterotri-
dentate organomonophosphines of the types: Pt(κ3–P1N1X1)(Y) (X = N2, O1, C1, S1, Se1),
Pt(κ3–N1P1N2)(Cl), Pt(κ3–S1P1S2)(Cl), Pt(κ3–P1S1Cl1)(Y) and Pt(κ3–P1Si1N1)(OL).

2. Results and Discussion

2.1. Pt(κ3–P1N1N2)(Y) Derivatives

There are nine examples of the Pt(κ3–P1N1N2)(Y) type, and their structural parameters
are gathered in Table 1 (A: Pt(κ3-P1N1N2)(Y)). In triclinic [Pt{κ3–But

2P1(CH2)(C5H3N1)
(CH2)N2Et2}(Cl)].C6H6 (at 120 K) [10], heterotridentate κ3–P1N1N2 ligand creates two five-
membered metallocyclic rings with the central common ligating N1 atom of P1C2N1C2N2

type with the values of the respective rings of 85.5◦ (P1-Pt-N1) and 83.4◦ (N1-Pt-N2). The
Cl− completed a square-planar geometry about Pt(II) atom. The remaining L-Pt-L bond
angles open in the sequence 92.6◦ (N2–Pt–Cl) < 98.5◦ (P1–Pt–Cl) < 168.0◦ (P1–Pt–N2) <
176.0◦ (N1–Pt–Cl). The Pt-L bond distance elongates in the order: 1.997 Å (Pt–N1 trans to
Cl) < 2.149 Å (Pt–N2 trans to P1) < 2.236 Å (Pt–P1) < 2.296 Å (Pt–Cl).

Table 1. Structural data for Pt(κ3–P1N1N2)(Y) and Pt(κ3–P1N1X1)(Y) (X1 = O1, C1, S1 or Se1),
(Y = variable monodentate atoms/ligands) a.

Complex
Space gr.
Cryst. cl.

Z

a [Å]
b [Å]
c [Å]

α[◦]
β[◦]
γ[◦]

Chromophore
(Chelate Rings)
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4
b

Pt-L c

[Å]
L-Pt-L c

[◦]
Ref.

REFCODE

A: Pt(κ3-P1N1N2)(Y)

[Pt{κ3-But
2P(CH2)(C5H3N1).

(CH2)N2Et2}(Cl)].C6H6
(at 120 K)

tr
Pı̄
2

9.158(0)
10.963(0)
16.018(0)

77.29(0)
76.97(0)
69.11(0)

PtP1N1N2Cl
P1C2N1C2N2

0.044

P1 2.236(1)
N1 1.997(2)
N2 2.149(2)
Cl 2.296(2)

P1 ,N1 85.5 d

N1 ,N2 83.4 d

P1 ,N2 168.0
P1 ,Cl 98.5
N2 ,Cl 92.6

N1 ,Cl 176.0

[10]
WOGDAY

[Pt{κ3-Ph2P1(C7H5N1).
(C2H2O)N2C6H4OH)}(CH3)].

(CHCl3)
(at 150 K)

tr
Pı̄
2

9.917(1)
11.944(2)
14.872(2)

99.17(0)
103.82(0)
112.53(0)

PtP1N1N2C
P1C3N1C2N2

0.032

P1 2.179(1)
N1 2.050(2)
N2 2.089(2)

H3C 2.045(2)

P1 ,N1 95.3 e

N1 ,N2 80.5 d

P1 ,N2 173.7
P1 ,C 89.0
N2 ,C 95.5
N1 ,C 174.7

[11]
GAJMOV

[Pt{κ3-Ph2P1(C7H5N1).
(C2H2O)N2(C6H4OH)}(CH3)].

1.5 toluene
(at 150 K)

m
P21/c

4

11.882(1)
14.184(1)
21.892(1)

103.75(0)
PtP1N1N2C

P1C3N1C2N2

0.027

P1 2.184(2)
N1 2.061(3)
N2 2.075(3)

H3C 2.051(2)

P1 ,N1 95.4 e

N1 ,N2 81.0 d

P1 ,N2 176.4
P1 ,C 90.5
N2 ,C 93.0
N1 ,C 174.0

[11]
GAJMUB

[Pt{κ3-Ph2P1(C7H5N1).
(C3H6)N2(C7H5O2)}(CH3)].

2 toluene
(at 150 K)

m
P21/c

4

14.859(0)
15.607(0)
16.287(0)

95.88(0)
PtP1N1N2C

P1C3N1C2N2

0.033

P1 2.189(1)
N1 2.077(2)
N2 2.070(2)

H3C 2.062(2)

P1 ,N1 95.2 e

N1 ,N2 80.3 d

P1 ,N2 175.4
P1 ,C 89.4
N2 ,C 94.9
N1 ,C 172.6

[11]
GAJNAI

[Pt{κ3-Ph2P1(C7H5N1)(C6H4)N2

(C10H9NO3)}(CH3)]Et2O
(at 150 K)

m
P21/c

4

10.992(0)
20.133(0)
16.933(0)

101.72(0)
PtP1N1N2C

P1C3N1C2N2

0.040

P1 2.184(1)
N1 2.087(2)
N2 2.086(2)

H3C 2.062(2)

P1 ,N1 92.6 e

N1 ,N2 79.4 d

P1 ,N2 171.8
P1 ,C 91.5
N2 ,C 96.6
N1 ,C 173.7

[12]
QICYAD

[Pt{κ3-Ph2P1(C7H5N1)(C5H7O)
N2(C10H10N2)}(CH3)]H2O

(at 93 K)

m
P21/c

4

8.739 (1)
14.988(2)
25.469(2)

94.23(0)
PtP1N1N2C

P1C3N1C2N2

0.052

P1 2.190(1)
N1 2.061(2)
N2 2.094(2)

H3C 2.083(2)

P1 ,N1 89.4 e

N1 ,N2 79.6 d

P1 ,N2 169.0
P1 ,C 92.2
N2 ,C 93.7

N1 ,C 172.1

[13]
DIYYIU

[Pt{κ3-Ph2P1(C7H5N1)(C2H2O)
N2(C6H4OH)}(CH3)]CHCl3

(at 150 K)

m
P21/c

4

10.191(0)
16.863(1)
17.525(1)

97.30(0)
PtP1N1N2C

P1C3N1C2N2

0.030

P1 2.183(1)
N1 2.059(1)
N2 2.061(1)

H3C 2.055(1)

P1 ,N1 95.1 e

N1 ,N2 81.0 d

P1 ,N2 175.8
P1 ,C 91.2
N2 ,C 92.6
N1 ,C 173.4

[14]
CAJLAC
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4
b

Pt-L c

[Å]
L-Pt-L c

[◦]
Ref.

REFCODE

[Pt{κ3–Ph2P1(C7H6N1 = NCC1 .
C5H6)}(Cl)]
(at 150 K)

tr
Pı̄
2

7.431(2)
10.031(3)
14.797(5)

101.10(0)
95.70(0)
98.76(0)

PtP1N1N2C
P1C3N1NCN2

0.038

P1 2.219(1)
N1 2.164(2)
N2 2.050(1)
Cl 2.297(2)

P1 ,N1 95.8 e

N1 ,N2 79.3 d

P1 ,N2 173.0
P1 ,Cl 90.8
N2 ,Cl 94.2

N1 ,Cl 173.4

[15]
XUYWEU

[Pt{κ3-Ph2P1(C7H5N1)(C7H8N)
(C7H8N2)}(Cl)]PF6

m
P21/c

4

18.910(3)
10.098(1)
19.429(3)

118.93(1)
PtP1N1N2Cl
P1C3N1CN2

0.020

P1 2.234(1)
N1 2.120(1)
N2 2.104(1)
Cl 2.284(1)

P1 ,N1 93.3 e

N1 ,N2 85.6 d

P1 ,N2 178.7
P1 ,Cl 91.8
N2 ,Cl 89.2
N1 ,Cl 174.0

[16]
IFUQEF

B: Pt(κ3–P1N1O1)(Y)

[Pt{κ3-Ph2P1(C8H6N1)(N.
C7H5O1)}{κ1-Ph2P.

(C15H13N2O)}].CH2Cl2
(at 200 K)

tr
Pı̄
2

12.614(2)
13.671(2)
15.754(3)

100.26(0)
99.33(0)

110.68(0)

PtP1N1O1P
P1C2N1NCO1

0.067

P1 2.233(2)
N1 1.985(2)
O1 2.050(2)
LP 2.261(1)

P1 ,N1 83.6 d

N1 ,O1 78.8 d

P1 ,O1 162.4
P1 ,P 102.9
O1 ,P 94.7

N1 ,Cl 173.3

[17]
EFODAE

[Pt{κ3-Ph2P1(C6H4N1).
(C7H4ClO1)}(P(p-tolyl3)]ClO4

(at 200 K)

m
P21/c

4

12.614(14)
20.280(20)
16.972(17)

98.96(1)
PtP1N1O1P

P1C2N1C3O1

0.028

P1 2.21(1)
N1 2.05(2)
O1 2.03(2)

LP 2.269(1)

P1 ,N1 82.7
N1 ,O1 91.2
P1 ,O1 172.1

P1 ,P 99.6
O1 ,P 86.5

N1 ,P 177.7

[18]
KAVZOX

[Pt{κ3-Ph2P1(C6H4N1).
(C8H7OO1)}

(Cl)]

m
P21/n

4

12.350(12)
12.138(14)
15.550(17)

97.70(1)
PtP1N1O1Cl
P1C2N1C3O1

0.007

P1 2.195(1)
N1 2.005(2)
O1 2.080(2)
Cl 2.303(1)

P1 ,N1 83.6 d

N1 ,O1 92.3 e

P1 ,O1 178.5
P1 ,Cl 93.5
O1 ,Cl 87.9

N1 ,Cl 178.9

[18]
KAVZAJ

[Pt{κ3-Ph2P1(C6H4N1).
(C8H7OO1)}(I)](CH2Cl2)

m
P21/c

4

10.446(11)
16.389(17)
16.507(0)

100.241(1)
PtP1N1O1I

P1C2N1C3O1

0.014

P1 2.207(1)
N1 2.011(2)
O1 2.045(2)
I 2.620(1)

P1 ,N1 84.8 d

N1 ,O1 91.9 e

P1 ,O1 176.6
P1 ,I 92.6
O1 ,I 89.2

N1 ,I 178.2

[18]
KAVZEN

[Pt{κ3-Ph2P1(C8H7N1O1)}(Cl)]
or

Pna21
4

18.88(2)
13.10(1)
9.66(1)

PtP1N1O1Cl
P1C3N1C3O1

0.027

P1 2.206(1)
N1 1.88(1)
O1 2.14(1)
Cl 2.386(4)

P1 ,N1 94.8(4) e

N1 ,O1 93.3(4) e

P1 ,O1 175.5
P1 ,Cl 89.1(2)
O1 ,Cl 84.0(2)
N1 ,Cl174.8

[19]
DERNIX

C: Pt(κ3–P1N1C1)(Y)

[Pt{κ3-Ph2P1(C7H6N1 = NC.
C1C5H6)}(Cl)]

(at 120 K)

m
P21/n

4

8.632(4)
17.191(8)
15.216(7)

96.3(0)
PtP1N1C1Cl

P1C2N1NCC1

0.060

P1 2.291(2)
N1 1.972(2)
C1 2.023(2)
Cl 2.309(1)

P1 ,N1 85.2 d

N1 ,C1 78.7 d

P1 ,C1 163.9
P1 ,Cl 99.9
C1 ,Cl 84.0
N1 ,Cl174.6

[20]
YEHMOP

[Pt{κ3-Ph2P1(C7H5N1).
(C7H8C1)}(py)]BF4

(at 100 K)

m
P21

4

9.356(0)
19.892(1)
15.084(1)

90.76(0)
PtP1N1C1N

P1C3N1C2C1

0.042

P1 2.292(1)
N1 2.000(2)
C1 2.035(2)

pyN 2.026(1)

P1 ,N1 92.1 e

N1 ,C1 82.3 d

P1 ,C1 174.3
P1 ,N 92.4
C1 ,N 93.6

N1 ,Cl170.7

[21]
NIVCAX

D: Pt(κ3–P1N1S1)(Y)

[Pt{κ3-Ph2P1(C6H4CHN1NC.
(S1)NHMe}(Cl)]

m
P21/c

4

14.695(6)
16.683(7)
19.297(9)

102.83(6)
PtP1N1S1Cl

P1C3N1NCS1

0.022

P1 2.239(5)
N1 2.03(2)
S1 2.298(5)
Cl 2.304(5)

P1 ,N1 95.8(4) e

N1 ,S1 84.9(4) d

P1 ,S1 177.8(2)
P1 ,Cl 89.5(2)
S1 ,Cl 89.8(2)

N1 ,Cl174.4 (4)

[22]
HAFMOQ

[Pt{κ3-Ph2P1(C7H5N1)(MeS1).
(But.NH2)}(I)]

tr
Pı̄
2

10.529(1)
11.558(1)
14.550(1)

77.37(1)
84.45(1)
79.72(1)

PtP1N1S1I
P1C3N1C3S1

0.023

P1 2.240(2)
N1 2.056(6)
S1 2.363(2)
I 2.580(1)

P1 ,N1 89.1(1) e

N1 ,S1 93.2(1) e

P1 ,S1 176.2(2)
P1 ,I 93.6(2)
S1 ,I 84.2(2)

N1 ,I 175.4(2)

[23]
ROBHOP
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Table 1. Cont.

Complex
Space gr.
Cryst. cl.

Z

a [Å]
b [Å]
c [Å]

α[◦]
β[◦]
γ[◦]

Chromophore
(Chelate Rings)
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atom is N1, the 5 + 5 membered, 5 + 5, 5 + 6, 6 + 5, and 6 + 6; if the common central ligating atom is 
P1: 5 + 5, and 6 + 6; if the common central ligating atom is S1 or Si1, 5 + 6-membered. The structural 
parameters (Pt-L, L-Pt-L) are analysed and discussed with an attention to the distortion of a square-
planar geometry about the Pt(II) atoms as well as trans-influence. The sums of the Pt-L (x = 4) bond 
distances the growing with the covalent radius of the Y atoms. Noticeably, the distortion of the 
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1. Introduction
Platinum exists in a wide range of oxidation states from zero to +6, including non-

integral, Pt(2.25), Pt(2.81), Pt(3.25) and Pt(3.5). Of these, particularly in four- and six- co-
ordinated, +2 and +4 oxidation states are the most common. The many platinum coordi-
nation complexes have been surveyed [1–3], converting the crystallographic and struc-
tural data of almost two thousand monomeric examples. 

About 10% of these complexes exist as isomers. Their structural data were analysed 
and classified [4]. Included are distortion (65%) cis-trans (30%), mixed isomers (cis-trans 
and distortion) and ligand isomers. Despite the importance of cis-trans geometry in the 
chemistry of Pt(II), the distortion isomers atom is far more common. 

Recently, we detail analysed the structural data of distortion isomers of the cis-Pt(II) 
complexes, and none of the cis-isomer has a trans-partner. The distortion isomers differ 
mostly in Pt-L distances as well as the values of the L-Pt-L angles [5]. Another review has 
focused on the ligand isomers of Pt(II) complex [6]. 
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4
b

Pt-L c

[Å]
L-Pt-L c

[◦]
Ref.

REFCODE

E: Pt(κ3–P1N1Se1)(Cl)

[Pt{κ3-Ph2P1(C7H5N1).
(C3H6Se1)(Ph)}(Cl)]BF4

(at 150K)

m
P21/c

4

9.869(0)
23.847(0)
11.740(0)

99.65(0)
PtP1N1Se1Cl
P1C3N1C3Se1

0.012

P1 2.407(14)
N1 2.028(4)
Se1 2.489(1)
Cl 2.308(1)

P1 ,N1 87.5(1) e

N1 ,Se1 95.7(1) e

P1 ,Se1 176.7(1)
P1 ,Cl 93.0(1)
Se1 ,Cl 83.7(1)
N1 ,Cl 178.8(1)

[24]
MULZIC

Footnotes: a Where more than one chemically equivalent distance or angle is present, the mean value is tabulated.
The first number in parentheses is the e.s.d. and the second is the maximum deviation from the mean. b Parameter

Crystals 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/crystals 

Review 

Heterotridentate Organomonophosphines in Pt(κ3-X1P1X2)(Y) 
(X1,2 = N1,2 or S1,2), Pt(κ3-P1N1X1)(Y) (X1 = O, C, S or Se)  
Pt(κ3–P1S1Cl1)(Cl) and Pt(κ3–P1Si1N1)(OL)—Structural Aspects 
Milan Melník 1,2,* and Peter Mikuš 1,3 

1 Comenius University Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear 
Pharmacy, Odbojárov 10, SK-832 32 Bratislava, Slovakia; qmelnik@stuba.sk 

2 Slovak Technical University, Faculty of Chemical and Food Technology,  
Radlinskeho 9, SK-812 37 Bratislava, Slovakia 

3 Comenius University Bratislava, Faculty of Pharmacy, Toxicological and Antidoping Centre, 
Odbojárov 10, SK-832 32 Bratislava, Slovakia 

* Correspondence: mikus@fpharm.uniba.sk

Abstract: This review covers twenty four Pt(II) complexes of the inner coordination sphere Pt(κ3–P1 
N1N2)(Y), (Y = Cl, CL); Pt(κ3–P1N1X1)(Y), (X1 = O1 and Y = P2L, Cl, I); (X1 = C1 and Y = NL, Cl); (X1 = S1 
and Y = Cl, I); (X1 = Se1 and Y = Cl); Pt(κ3–N1P1N2)(Cl), Pt(κ3–S1P1S2)(Cl), Pt(κ3–P1S1Cl1)(Cl) and Pt(κ3–
P1Si1N1)(OL). These complexes are crystallized in three crystal classes: monoclinic (16 examples), 
triclinic (5 examples), and orthorhombic (3 examples). Each κ3–ligand creates two metallocyclic 
rings with various combinations of the respective metallocyclic rings. If the common central ligating 
atom is N1, the 5 + 5 membered, 5 + 5, 5 + 6, 6 + 5, and 6 + 6; if the common central ligating atom is 
P1: 5 + 5, and 6 + 6; if the common central ligating atom is S1 or Si1, 5 + 6-membered. The structural 
parameters (Pt-L, L-Pt-L) are analysed and discussed with an attention to the distortion of a square-
planar geometry about the Pt(II) atoms as well as trans-influence. The sums of the Pt-L (x = 4) bond 
distances the growing with the covalent radius of the Y atoms. Noticeably, the distortion of the 
square-planar geometry is growing with the decreasing size of the inner coordination sphere  Ʈ
Keywords: structure; Pt(κ3–P1X1X2)(Y); Pt(κ3–X1P1X2)(Y); distortion; trans-influence 

1. Introduction
Platinum exists in a wide range of oxidation states from zero to +6, including non-

integral, Pt(2.25), Pt(2.81), Pt(3.25) and Pt(3.5). Of these, particularly in four- and six- co-
ordinated, +2 and +4 oxidation states are the most common. The many platinum coordi-
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Recently, we detail analysed the structural data of distortion isomers of the cis-Pt(II) 
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focused on the ligand isomers of Pt(II) complex [6]. 
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4, degree of distortion. c The chemical identity of the coordinated atom ligand is specific in these columns.
d Five-membered metallocyclic ring. e Six-membered metallocyclic ring.

In following six complexes: triclinic [Pt{κ3–Ph2P1(C7H5N1)(C2H2O)N2(C6H4OH)}(CH3)].
CHCl3 (at 150 K) [11], monoclinic [Pt{κ3–Ph2P1(C7H5N1)(C2H2O)N2(C6H6OH)}(CH3)].1.5toluene
(at 150 K) [11] [Pt{κ3–Ph2P1(C7H5N1)(C3H6)N2(C7H5O2)}(CH3)].2 toluene (at 150 K) [11],
monoclinic [Pt{κ3–Ph2P1(C7H5N1)(C6H4)N2(C10H9NO3)}(CH3)].Et2O (at 150 K) [12], mon-
oclinic [Pt{κ3–Ph2P1(C7H5N1)(C5H7O)N2(C10H10N2)}(CH3)].H2O (at 93 K) [13], and mon-
oclinic [Pt{κ3–Ph2P1(C7H5N1)(C2H2O)N2(C6H4OH)}(CH3)].CHCl3 (at 150 K) [14] each
κ3–P1N1N2 ligand creates six- and five-metallocyclic rings with the centre common ligating
N1 atom of the P1C3N1C2N2 type. In each complex the methyl group completed a distorted
square-planar geometry about each Pt(II) atom. The mean values for the respective chelate
rings are: 93.8(±4.0)◦ (P1-Pt-N1) and 80.3(±1.2)◦ (N1-Pt-N2). The remaining L-Pt-L bind
angles open in the sequence (mean values): 90.9(1.9)◦ (P1–Pt–C) < 94.4(2.2)◦ (N2–Pt–C) <
173.4(1.3)◦ (N1–Pt–C) < 173.7(4.7)◦ (P1–Pt–N2). The Pt-L bond distance elongates in the
order (mean values): 2.060(±23)Å (Pt–C, trans to N1) < 2.066(±21)Å (Pt–N1, trans to C) <
2.079(±15)Å (Pt–N2, trans to P1) < 2.186(±7)Å (Pt–P1, trans to N2).

The structure of the triclinic [Pt{κ3–Ph2P1(C7H5N1)(NC5H4N2)}(Cl)] (at 150 K) is
shown in Figure 1, as an example [15]. As can be seen, the κ3–P1N1N2 ligand forms six-
and five-membered metallocyclic rings of the P1C3N1NCN2 type with the centre common
ligating N1 atom. The chlorido ligand completed a distorted square-planar geometry about
the Pt(II)atom. The values of the respective rings are 95.8◦ (P1-Pt-N1) and 79.3◦ (N1-Pt-N2).
The remaining bind angles open in the sequence: 90.8◦ (P1–Pt–Cl) < 94.2◦ (N2–Pt–Cl) <
173.0◦ (P1–Pt–N2) < 173.4◦ (N1–Pt–Cl). The Pt-L bond distance elongates in the order:
2.053 Å (Pt–N1, trans to Cl) < 2.086 Å (Pt–N2, trans to P1) < 2.200 Å (Pt–P1) < 2.297 Å
(Pt–Cl).

In the monoclinic [Pt{κ3–Ph2P1(C7H6N1)(C7H8N)(C7H8N2)}(Cl)].PF6 [16] the κ3–P1N1N2

ligand creates two six-membered metallocyclic rings with the centre common ligating N1

atom of the P1C3N1C3N2 type. The values of the chelate rings are 93.3◦ (P1-Pt-N1) and
85.6◦(N1-Pt-N2). The remaining bind angles open in the order: 90.9◦ (N2–Pt–Cl) < 91.8◦

(P1–Pt–Cl) < 174.0◦ (N1–Pt–Cl) < 178.7◦ (P1–Pt–N2). The Pt-L bond distance elongates in
the order: 2.104 Å (Pt–N2, trans to P1) < 2.120 Å (Pt–N1, trans to Cl) < 2.234 Å (Pt–P1) <
2.284 Å (Pt–Cl).

2.2. Pt(κ3–P1N1O1)(Y) Derivatives

Structural data for five Pt(κ3–P1N1O1)(Y) derivatives are gathered in Table 1 (B: Pt(κ3–
P1N1O1)(Y)). In the triclinic [Pt{κ3–Ph2P1(C8H6N1)(NC7H5O1)}{κ1–Ph2P(C15H13N2O)}].CH2Cl2
(at 200 K) [17] the κ3–P1N1O1 ligand with monodentate PL donor ligand builds up a
distorted square-planar geometry about the Pt(II) atom (PtP1N1O1P). The κ3–P1N1O1

ligand forms two five-membered metallocyclic rings with the centre common ligating N1

atom of the P1C2N1NCO1 type, with the values of the chelate rings of 83.6◦ (P1-Pt-N1) and
78.8◦ (N1-Pt-O1). The remaining L-Pt-L bind angles open in the sequence: 94.7◦ (O1–Pt–P) <
102.9◦ (P1–Pt–P) < 162.4◦ (P1–Pt–O1) < 173.3◦ (N1–Pt–P). The Pt-L bond distance elongates
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in the order: 1.985 Å (Pt–N1, trans to P) < 2.050 Å (Pt–O1, trans to P1) < 2.233 Å (Pt–P1) <
2.261 Å (Pt–P).
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In the monoclinic [Pt{κ3–Ph2P1(C6H4N1)(C7H4ClO1)}{P(p-tolyl)3}].ClO4 (at 200 K) [18]
a distorted square-planar geometry about the Pt(II) atom is built up by the κ3–P1N1O1

ligand with P(p-tolyl)3. The κ3–P1N1O1 ligand forms five- and six-membered metallocyclic
rings with the common N1 atom of the P1C2N1C3O1 type with the values of the chelate
rings of 82.7◦ (P1-Pt-N1) and 91.2◦ (N1-Pt-O1). The remaining L-Pt-L bind angles open in
the order: 86.5◦ (O1–Pt–P) < 99.6◦ (P1–Pt–P) < 172.1◦ (P1–Pt–O1) < 177.7◦ (N1–Pt–P). The
Pt-L bond distance elongates in the order: 2.03 Å (Pt–O1 trans to P1) < 2.05 Å (Pt–N1 trans
to P) < 2.21(1) Å (Pt–P1) < 2.269 Å (Pt–P).

Two monoclinics [Pt{κ3–Ph2P1(C6H4N1)(C8H7OO1)}(Z)] (Z = Cl or I) are isostruc-
tural [18]. The κ3–P1N1O1 with Z builds up distorted square-planar geometry about the
Pt(II) atoms. The values of P1C2N1C3O1 metallocyclic rings are 83.6◦ (P1-Pt-N1) and 92.3◦

(N1-Pt-O1) when Z = Cl; for Z = I, the values are 84.8◦ and 91.9◦, respectively. The re-
maining L-Pt-L bind angles open in the order: 87.9◦ (O1–Pt–Cl) < 93.5◦ (P1–Pt–Cl) < 178.5◦

(P1–Pt–O1) < 178.9◦ (N1–Pt–Cl); vs. 89.2◦ (O1–Pt–I) < 92.6◦ (P1–Pt–I) < 176.6◦ (P1–Pt–O1) <
178.2◦ (N1–Pt–I). As can be seen, the L-Pt-L angles for Cl− complex are somewhat larger
than for I− complex, except O1-Pt-X. The Pt-L bond distance elongates in the order: 2.005 Å
(Pt–N1, trans to Cl) < 2.080 Å (Pt–O1, trans to P1) < 2.195 Å (Pt–P1) < 2.303 Å (Pt–Cl); vs.
2.011 Å (Pt–N1, trans to I) < 2.045 Å (Pt–O1, trans to P1) < 2.207 Å (Pt–P1) < 2.620 Å (Pt–I).

In orthorhombic [Pt{κ3–Ph2P1(C8H7N1O1)}(Cl)] [19], the κ3–P1N1O1 ligand form two
six-membered metallocyclic rings of the P1C3N1C3O1 type with the central common lig-
ating N1 atom. The clorido ligands completed a distorted square-planar geometry about
the Pt(II) atom. The values of the chelate rings are 94.8◦ (P1-Pt-N1) and 93.3◦ (N1-Pt-O1).
The remaining L-Pt-L bind angles open in the order: 84.0◦ (O1–Pt–Cl) < 89.1◦ (P1–Pt–Cl)
< 174.8◦ (N1–Pt–Cl) < 175.5◦ (P1–Pt–O1). The Pt-L bond distance elongates in the order:
1.88 Å (Pt–N1, trans to Cl) < 2.14 Å (Pt–O1, trans to P1) < 2.206 Å (Pt–P1) < 2.386 Å (Pt–Cl).
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2.3. Pt(κ3–P1N1C1)(Y) Derivatives

There are two monoclinic complexes [Pt{κ3–Ph2P1(C7H6N1 = NCC1C5H6)}(Cl)] (Figure 2)
(at 120 K) [20] and [Pt{κ3–Ph2P1(C7H5N1)(C7H8C1)}(py)].BF4 (at 100 K) [21] (Table 1
(C: Pt(κ3–P1N1C1)(Y))). In the former complex, the κ3–P1N1C1 ligand forms two five-
membered metallocyclic rings of the P1C2N1NCC1 type, with the values of the chelate
rings of 85.2◦ (P1-Pt-N1) and 78.7◦ (N1-Pt-C1), respectively. The clorido ligands completed
a distorted square-planar geometry about the Pt(II) atom. The remaining L-Pt-L bind
angles open in the order: 84.0◦ (C1–Pt–Cl) < 99.9◦ (P1–Pt–Cl) < 163.9◦ (P1–Pt–C1) < 174.6◦

(N1–Pt–Cl). The Pt-L bond distance elongates in the order: 1.972 Å (Pt–N1, trans to Cl) <
2.023 Å (Pt–C1, trans to P1) < 2.291 Å (Pt–P1) < 2.309 Å (Pt–Cl).
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Figure 2. Structure of [Pt{κ3–Ph2P1(C7H6N1 = NCC1C5H6)}(Cl)] [20].

In the complex cation, the N-donor atom of pyridine completed the inner coordination
sphere about the Pt(II) atom (PtP1N1C1N). The κ3–ligand creates six- and five-membered
metallocycles of the P1C3N1C2C1 type. The values of the respective chelate rings are 92.1◦

(P1-Pt-N1) and 82.3◦ (N1-Pt-C1). The remaining L-Pt-L bind angles open in the order:
92.4◦ (P1–Pt–N) < 93.6◦ (C1–Pt–N) < 170.7◦ (N1-Pt-Cl) < 174.3◦ (P1–Pt–C1). The Pt-L bond
distance elongates in the order: 2.000 Å (Pt-N1 trans to N) < 2.026 Å (Pt–N1) < 2.035 Å
(Pt–C1, trans to P1) < 2.292 Å (Pt–P1).

2.4. Pt(κ3–P1N1S1)(Y) Derivatives

There are two such derivatives, monoclinic [Pt{κ3–Ph2P1 (C6H4CHN1NC(S1) NHMe}
(Cl)] [22] and triclinic [Pt{κ3–Ph2P1(C7H5N1)(MeS1)(ButNH2)}(I)] [23] (Table 1 (D: Pt(κ3–
P1N1S1)(Y))). In the monoclinic complex, the κ3–P1N1S1 ligand with chlorido builds up
distorted square-planar geometry about the Pt(II) atom. The κ3–P1N1S1 ligand in the
chlorido complex creates six- and five-membered metallocyclic rings with the centre com-
mon ligating N1 atom of the P1C3N1NCS1 type. The values of the chelate rings are 95.8◦

(P1-Pt-N1) and 84.9◦ (N1-Pt-S1). The remaining L-Pt-L bind angles open in the order: 89.5◦

(P1–Pt–Cl) < 89.8◦ (S1–Pt–Cl) < 174.4◦ (N1–Pt–Cl) < 177.8◦ (P1-Pt-S1). The Pt-L bond dis-
tance elongates in the order: 2.03 Å (Pt–N1, trans to Cl) < 2.239 Å (Pt–P1, trans to S1) <
2.298 Å (Pt–S1) < 2.304 Å (Pt–Cl).

In the triclinic complex, the κ3–P1N1S1 ligand creates two six-membered metallocyclic
rings of the P1C3N1C3S1 type with the values of the chelate rings of 89.1◦ (P1-Pt-N1) and
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93.2◦ (N1-Pt-S1). The remaining L-Pt-L bind angles open in the order: 84.2◦ (S1–Pt–I) <
93.6◦ (P1–Pt–I) < 175.4◦ (N1–Pt–I) < 176.2◦ (P1–Pt–S1). The Pt-L bond distance elongates
in the order: 2.056 Å (Pt–N1, trans to I) < 2.240 Å (Pt–P1, trans to S1) < 2.363 Å (Pt–S1) <
2.580 Å (Pt–I).

2.5. Pt(κ3–P1N1Se1)(Y) Derivatives

Monoclinic [Pt{κ3–Ph2P1(C7H5N1)(C3H6Se1)(Ph)}(Cl)].BF4 (at 150 K) [24] is the only
example of κ3–P1N1Se1 type. The Cl− anion completed a distorted square-planar geometry
about the Pt(II) atom. The κ3–P1N1Se1 ligand creates two six-membered metallocyclic
rings with the centre common ligating N1 atom of the P1C3N1C3Se1 type. The values of
the chelate rings are 87.5◦ (P1-Pt-N1) and 95.7◦ (N1-Pt-Se1). The remaining L-Pt-L bind
angles open in the order: 83.7◦ (Se1–Pt–Cl) < 93.0◦ (P1–Pt–Cl) < 176.7◦ (P1–Pt–Se1) < 178.8◦

(N1–Pt–Cl). The Pt-L bond distance elongates in the order: 2.028 Å (Pt–N1, trans to Cl) <
2.308 Å (Pt–Cl) < 2.407 Å (Pt–P1, trans to Se1) < 2.489 Å (Pt–Se1).

2.6. Pt(κ3–N1P1N2)(Cl) and Pt(κ3–S1P1S2)(Cl) Derivatives

Their structural data are gathered in Table 2. In orthorhombic [Pt{κ3–N1(C6H6)N(C6H10)
NP1(Pri)(C6H6)N2}(Cl)]Cl.H2O (at 150 K) [25] heterotridentate κ3–N1P1N2 ligand with Cl−

anion builds up a distorted square-planar geometry about the Pt(II) atom. The κ3–N1P1N2

ligand forms two six-membered metallocyclic rings with the centre common ligating P1

atom of the N1C2NP1NC2N2 type. The values of the chelate rings are: 91.1◦ (N1-Pt-P1) and
91.0◦ (P1-Pt-N2). The remaining L-Pt-L bind angles open in the order: 90.4◦ (N1–Pt–Cl) <
91.0◦ (N2–Pt–Cl) < 173.0◦ (P1–Pt–Cl) < 175.4◦ (N1–Pt–N2). The Pt-L bond distance elongates
in the order: 2.035 Å (Pt–N1, trans to N2) < 2.039 Å (Pt–N2) < 2.187 Å (Pt–P1. trans to Cl) <
2.375 Å (Pt–Cl).

Table 2. Data for Pt(κ3–X1P1X2)(Cl), Pt(κ3–P1S1Cl1)(Cl) and Pt(κ3–P1Si1N1)(OL) derivatives mon-
odentate atoms/ligands) a.

Complex
Space gr.
Cryst. cl.

Z

a [Å]
b [Å]
c [Å]

α [◦]
β [◦]
γ [◦]

Chromophore
(Chelate Rings)
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1. Introduction
Platinum exists in a wide range of oxidation states from zero to +6, including non-

integral, Pt(2.25), Pt(2.81), Pt(3.25) and Pt(3.5). Of these, particularly in four- and six- co-
ordinated, +2 and +4 oxidation states are the most common. The many platinum coordi-
nation complexes have been surveyed [1–3], converting the crystallographic and struc-
tural data of almost two thousand monomeric examples. 

About 10% of these complexes exist as isomers. Their structural data were analysed 
and classified [4]. Included are distortion (65%) cis-trans (30%), mixed isomers (cis-trans 
and distortion) and ligand isomers. Despite the importance of cis-trans geometry in the 
chemistry of Pt(II), the distortion isomers atom is far more common. 

Recently, we detail analysed the structural data of distortion isomers of the cis-Pt(II) 
complexes, and none of the cis-isomer has a trans-partner. The distortion isomers differ 
mostly in Pt-L distances as well as the values of the L-Pt-L angles [5]. Another review has 
focused on the ligand isomers of Pt(II) complex [6]. 
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4
b

Pt-L c

[Å]
L-Pt-L c

[◦]
Ref.

REFCODE

[Pt{κ3-N1(C6H6)N(C6H10)N..
P1(Pri) (C6H6)N2}(Cl)].H2O

(at 150 K)

or
P212121

6

14.373(0)
9.906(0)

17.590(0)

PtN1P1N2Cl
N1C2NP1NC2N2

0.032

N1 2.035
P1 2.187
N2 2.039
Cl 2.375

N1 ,P1 91.1 e

P1 ,N2 91.0 e

N1 ,N2 175.4
N1 ,Cl 90.4
N2 ,Cl 91.0
P1 ,Cl 173.0

[25]
IRAWOO

[Pt{κ3-PriS1(C6H4)P1 .
(C6H4SPri) (C6H4)S2}(Cl)]

(at 123 K)

m
P21/n

4

8.790(0)
18.706(1)
15.508(1)

95.89(0)
PtS1P1S2Cl
S1C2P1C2S2

0.055

S1 2.289
P1 2.189
S2 2.292
Cl 2.374

S1 ,P1 88.2 d

P1 ,S2 87.7 d

S1 ,S2 162.1
S1 ,Cl 93.0
S2 ,Cl 90.8

P1 ,Cl 178.3

[26]
EZORAO

[Pt{κ3-ButS1(C6H4)P1 .
(C6H4SBut)(C6H4)S2}(Cl)].0.5CHCl3

(at 123 K)

m
P21/n

4

10.250(1)
18.715(2)
15.320(1)

96.65(0)
PtS1P1S2Cl
S1C2P1C2S2

0.063

S1 2.287
P1 2.198
S2 2.297
Cl 2.360

S1 ,P1 88.7 d

P1 ,S2 88.8 d

S1 ,S2 158.7
N1 ,Cl 92.8
N2 ,Cl 90.8
P1 ,Cl 178.6

[26]
EZOQIV

[Pt{κ3-Ph2P1(C23H28S1).
(B)(Ph2)Cl1)}(Cl)].2CH2Cl2

(at 123 K)

or
Pna21

4

21.373(0)
8.959(0)

25.330(3)

PtP1S1Cl1Cl
P1C2S1C2BCl1

0.033

P1 2.212
S1 2.243
Cl1 2.391
Cl2 2.321

P1 ,S1 87.9 d

S1 ,Cl1 87.1 e

P1 ,Cl1 174.7
P1 ,Cl 93.4
Cl1 ,Cl 91.7
S1 ,Cl 173.3

[27]
DASMER

[Pt{κ3-cyh2P1(C6H4)Si1 .
(CH3)(C7H6)N1(CH3)2)}.

(OSO2CF3)]
(at 123 K)

m
P21/c

4

19.851(1)
20.837(3)
15.443(2)

99.52(0)
PtP1Si1N1O

P1C2Si1C3N1

0.033

P1 2.228
Si1 2.260
N1 2.177
LO 2.353

P1 ,Si1 85.8 d

Si1 ,N1 82.7 e

P1 ,N1 169.2
P1 ,O 95.0
N1 ,O 86.4
Si1 ,O 179.0

[28]
WUXFAI

Footnotes: a Where more than one chemically equivalent distance or angle is present, the mean value is tabulated.
The first number in parentheses is the e.s.d. and the second is the maximum deviation from the mean. b Parameter
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Two monoclinic complexes [Pt{κ3–PriS1(C6H4)P1(C6H4SPri)(C6H4)S2}(Cl)] (Figure 3)
(at 123 K) [26] and [Pt{κ3–ButS1(C6H4)P1(C6H4SBut)(C6H4)S2}(Cl)].0.5CHCl3 (at 123 K) [26]
have a similar structure. In each, the κ3–S1P1S2 ligand forms two five-membered metal-
locycles with the centre common ligating P1 atom of the S1C2P1C2S2 type. In the former
complex, the values of the chelate rings are 88.2◦ (S1-Pt-P1) and 87.7◦ (P1-Pt-S2). The
remaining L-Pt-L angles open in the order: 90.8◦ (S2–Pt–Cl) < 93.0◦ (S1–Pt–Cl) < 162.1◦ (S1–
Pt–S2) < 178.3◦ (P1–Pt–Cl). In the latter complex, the L-Pt-L angles open in the order: 88.7◦

(S1–Pt–P1) < 88.8◦ (P1–Pt–S2) < 90.8◦ (S2–Pt–Cl) < 158.7◦ (S1–Pt–S2) < 178.6◦ (P1–Pt–Cl).
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The Pt-L bond distance elongates in the order (mean values): 2.194(±4) Å (Pt–P1, trans
to Cl) < 2.288 Å (Pt-S1 trans to S2) < 2.294 (±3) Å (Pt–S2) < 2.367 (±7) Å (Pt–Cl).

2.7. Pt(κ3–P1S1Cl1)(Cl) and Pt(κ3–P1Si1N1)(OL) Derivatives

Their structural data are given in Table 2. In the orthorhombic [Pt{κ3–Ph2P1(C23H28S1)
(B)(Ph2)Cl1}(Cl)]·2CH2Cl2 (Figure 4) (at 123 K) [27] heterotridentate κ3–P1S1Cl1 ligand with
the Cl− anion builds up a distorted square-planar geometry about the Pt(II) atom. The
κ3–P1S1Cl1 forms five- and six-metallocyclic rings of the P1C2S1C2BCl1 type. The values of
the respective chelate rings are 87.9◦ (P1-Pt-S1) and 87.1◦ (S1-Pt-Cl1). The remaining L-Pt-L
bind angles open in the order: 91.7◦ (Cl1–Pt–Cl) < 93.4◦ (P1–Pt–Cl) < 173.3◦ (S1–Pt–Cl) <
174.7◦ (P1–Pt–Cl1). The Pt-L bond distance elongates in the order: 2.212 Å (Pt–P1, trans to
Cl1) < 2.243 Å (Pt–S1, trans to Cl) < 2.321 Å (Pt–Cl) < 2.391 Å (Pt–Cl1).

Structure of the monoclinic [Pt{κ3–cyh2P1(C6H4)Si1(CH3)(C7H6)N1(CH3)2}(OSO2CF3)] [28]
is shown in Figure 5. The κ3–P1Si1N1 ligand with OL builds up a distorted square-planar
geometry about the Pt(II) atom. The chelate ligand forms five- and six-membered metallo-
cyclic rings with the central common ligating Si1 atom of the P1C2Si1C3N1 type. The values
of the respective angles are 85.8◦ (P1-Pt-Si1) and 82.7◦ (Si1-Pt-N1). The remaining L-Pt-L
bind angles open in the order: 86.4◦ (N1–Pt–O) < 95.0◦ (P1–Pt–O) < 169.2◦ (P1–Pt–N1) <
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179.0◦ (Si1–Pt–O). The Pt-L bond distance elongates in the order: 2.177 Å (Pt–N1, trans to
P1) < 2.228 Å (Pt–P1) < 2.260 Å (Pt–Si1, trans to O) < 2.353 Å (Pt–O).
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As can be seen (Tables 1 and 2), organomonophosphines as heterotridentate ligands
used (except for the P atom) a wide variety of heteroatoms for coordination to Pt(II) atoms.
There are twenty four Pt(II) complexes which crystalized in three crystal classes: monoclinic
(16 examples), triclinic (5 examples) and orthorhombic (3 examples). Each heterotridentate
ligand forms two metallocyclic rings. The metallocycles based on the heteroatom involved
in these metallocycles can divided into four subgroups:

I. 5 + 5—membered: P1C2P1C2N2 (1 example), P1C2N1NCO1 (1 example), P1C2N1NCC1

(1 example) and S1C2N1C2S2 (2 examples)
II. 6 + 5—membered: P1C3N1C2N2 (6 examples), P1C3N1NCN2, (1 example), P1C3N1C2C1,

(1 example) and P1C3N1NCS1 (1 example)
III. 5 + 6—membered: P1C2N1C3O1 (3 examples), P1C2S1C2BCl1, (1 example) and

P1C2Si1C3N1 (1 example)
IV. 6 + 6—membered: P1C3N1C3N2, P1C3N1C3O1, P1C3N1C3S1, P1C3N1C3Se1 and

N1C2NP1NC2N2 (each 1 example)

In the Pt(κ3–P1N1X)(Y), (X = N2, O1, C1, S1, or Se1) complexes (Table 1) the total mean
values of Pt-L bind distance elongate in the sequences:

Pt-P1 (trans to X): 2.20 Å (N2) < 2.22 Å (O1) < 2.23 Å (C1) < 2.24 Å (S1) < 2.40 Å (Se1);
Pt-X1 (trans to P1): 2.03 Å (C1) < 2.065 Å (O1) < 2.085 Å (N2) < 2.330 Å (S1) < 2.489 Å (Se1);
Pt-N1 (trans to Y): 1.985 Å (P2) < 2.00 Å (N3) < 2.02 Å (Cl) < 2.03 Å (I) < 2.065 Å (C2);
Pt-Y1 (trans to N1): 2.005 Å (N3) < 2.068 Å (C2) < 2.260 Å (P2) < 2.304 Å (Cl) < 2.600 Å (I).
These correspond quite were with the trans influence of the X1 /ligand.

3. Conclusions

This review covers 24 monomeric four-coordinated Pt(II) complexes. The inner coordi-
nation sphere about the Pt(II) atoms are built up heterotridentate organomonophosphines
with the monodentate atom/ligand. The κ3—ligands create a variety of metallocyclic rings.

There are at least two contributing factors to the size of the L-Pt-L chelate bond angles,
both ligand based. One is steric constraints imposed by the ligand, and the other is the
need to accommodate the imposed ring size. The effect of both steric and electronic can be
seen from the values of the chelate angles (mean values):

5 + 5—membered
P1C2N1/N1NCO1 83.6/78.8◦; P1C2N1/N1NCC1 85.2/78.7◦; S1C2P1/P1C2S2 88.5/88.2◦;

P1C2N1/N1C2N2 85.5/83.4◦

6 + 5—membered
P1C3N1/N1C2C1 92.1/82.3◦; P1C3N1/N1C2N2 93.8/80.2◦; P1C3N1/N1NCN2 94.5/82.5◦;

P1C3N1/N1NCS1 95.8/84.9◦;
5 + 6 membered
P1C2Si1/Si1C3N1 85.6/82.7◦; P1C2S1/S1C2BCl1 87.9/87.1◦; P1C2N1/N1C3O1 83.7/91.8◦

6 + 6 membered
N1C2NP1/P1NC2N2 91.1/91.0◦; P1C3N1/N1C3O1 94.8/93.3◦; P1C3N1/N1C3S1 89.1/93.2◦;

P1C3N1/N1C3Se1 82.5/95.2◦

It is well known that in four coordinates, Pt(II) prefer a square-planar geometry. The
utility of a simple metric to assess molecular shape and degree of distortion as well is best
exemplified by the
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4 range from 0.00 for perfect square-planar geometry to 1.00 for a
perfect tetrahedral, since 360 − 2 (109.5)/141.

Summary of the total mean values of trans- α- L-Pt-L (L are terminal ligating atoms
of the respective chelate) and trans- β- L’-Pt-Y (L’ central ligating atom of the rings) bond
angles and of
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As can be seen (Table 3) where β-angles are almost constant, the α-angles are mostly
growing with the membered of the respective rings. The distortion of the square- planar
geometry about the Pt(II) atoms is diminishing.

Table 3. Summary of metallocyclic rings, trans-L-Pt-L angles and parameter
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4

5 + 5—membered 163.0 176.2 0.058

6 + 5—membered 172.9 173.6 0.037

5 + 6—membered 174.2 177.5 0.023

6 + 6—membered 176.5 175.6 0.022

In general, distortion of the square-planar geometry about the Pt(II) atoms is diminish-
ing in the order of the respective complexes (total mean values): 0.059 (PtS1P1S2)(Y) > 0.051
(PtP1N1C1)(Y) > 0.033 (PtP1Si1N1)(Y) ~ 0.033 (PtP1S1Cl1)(Y) > 0.032 (PtN1P1N2)(Y) > 0.028
(PtP1N1O1)(Y) > 0.023 (PtP1N1S1)(Y) > 0.012 (PtP1N1Se1)(Y)

Noticeably, in some complexes there is a relationship between the inner coordination
sphere about the Pt(II) atom and the degree of distortion. When the volume of the inner
coordination sphere is growing, the distortion is lowering and vice versa, as can be seen
from the parameters of the sums of the four Pt-L bond distances and parameters of
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1. Introduction
Platinum exists in a wide range of oxidation states from zero to +6, including non-

integral, Pt(2.25), Pt(2.81), Pt(3.25) and Pt(3.5). Of these, particularly in four- and six- co-
ordinated, +2 and +4 oxidation states are the most common. The many platinum coordi-
nation complexes have been surveyed [1–3], converting the crystallographic and struc-
tural data of almost two thousand monomeric examples. 

About 10% of these complexes exist as isomers. Their structural data were analysed 
and classified [4]. Included are distortion (65%) cis-trans (30%), mixed isomers (cis-trans 
and distortion) and ligand isomers. Despite the importance of cis-trans geometry in the 
chemistry of Pt(II), the distortion isomers atom is far more common. 

Recently, we detail analysed the structural data of distortion isomers of the cis-Pt(II) 
complexes, and none of the cis-isomer has a trans-partner. The distortion isomers differ 
mostly in Pt-L distances as well as the values of the L-Pt-L angles [5]. Another review has 
focused on the ligand isomers of Pt(II) complex [6]. 
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Abstract: This review covers twenty four Pt(II) complexes of the inner coordination sphere Pt(κ3–P1 
N1N2)(Y), (Y = Cl, CL); Pt(κ3–P1N1X1)(Y), (X1 = O1 and Y = P2L, Cl, I); (X1 = C1 and Y = NL, Cl); (X1 = S1 
and Y = Cl, I); (X1 = Se1 and Y = Cl); Pt(κ3–N1P1N2)(Cl), Pt(κ3–S1P1S2)(Cl), Pt(κ3–P1S1Cl1)(Cl) and Pt(κ3–
P1Si1N1)(OL). These complexes are crystallized in three crystal classes: monoclinic (16 examples), 
triclinic (5 examples), and orthorhombic (3 examples). Each κ3–ligand creates two metallocyclic 
rings with various combinations of the respective metallocyclic rings. If the common central ligating 
atom is N1, the 5 + 5 membered, 5 + 5, 5 + 6, 6 + 5, and 6 + 6; if the common central ligating atom is 
P1: 5 + 5, and 6 + 6; if the common central ligating atom is S1 or Si1, 5 + 6-membered. The structural 
parameters (Pt-L, L-Pt-L) are analysed and discussed with an attention to the distortion of a square-
planar geometry about the Pt(II) atoms as well as trans-influence. The sums of the Pt-L (x = 4) bond 
distances the growing with the covalent radius of the Y atoms. Noticeably, the distortion of the 
square-planar geometry is growing with the decreasing size of the inner coordination sphere  Ʈ
Keywords: structure; Pt(κ3–P1X1X2)(Y); Pt(κ3–X1P1X2)(Y); distortion; trans-influence 

1. Introduction
Platinum exists in a wide range of oxidation states from zero to +6, including non-

integral, Pt(2.25), Pt(2.81), Pt(3.25) and Pt(3.5). Of these, particularly in four- and six- co-
ordinated, +2 and +4 oxidation states are the most common. The many platinum coordi-
nation complexes have been surveyed [1–3], converting the crystallographic and struc-
tural data of almost two thousand monomeric examples. 

About 10% of these complexes exist as isomers. Their structural data were analysed 
and classified [4]. Included are distortion (65%) cis-trans (30%), mixed isomers (cis-trans 
and distortion) and ligand isomers. Despite the importance of cis-trans geometry in the 
chemistry of Pt(II), the distortion isomers atom is far more common. 

Recently, we detail analysed the structural data of distortion isomers of the cis-Pt(II) 
complexes, and none of the cis-isomer has a trans-partner. The distortion isomers differ 
mostly in Pt-L distances as well as the values of the L-Pt-L angles [5]. Another review has 
focused on the ligand isomers of Pt(II) complex [6]. 

Citation: Melník, M.; Mikuš, P.  

Heterotridentate  

Organomonophosphines in  

Pt(κ3-X1P1X2)(Y) (X1,2 = N1,2 or S1,2), 

Pt(κ3-P1N1X1)(Y) (X1 = O, C, S or Se) 

Pt(κ3–P1S1Cl1)(Cl) and  

Pt(κ3–P1Si1N1)(OL)—Structural  

Aspects. Crystals 2022, 12, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Andrei Vladimiro-

vich Shevelkov 

Received: 21 November 2022 

Accepted: 1 December 2022 

Published: 6 December 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

Copyright: © 2022 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

4) are:
Pt(κ3–P1N1N2)(Y): 8.394 Å vs. 0.036(Y = CL); 8.647 Å vs. 0.034 (Y = Cl)
Pt(κ3–P1N1O2)(Y): 8.556 Å vs. 0.048(Y = PL); 8.594 Å vs. 0.011 (Y = Cl); 8.883 Å vs.

0.014 (Y = I)
Pt(κ3–P1N1S1)(Y): 8.891 Å vs. 0.023 (Y = Cl); 9.231 Å vs. 0.022 (Y = I)
Pt(κ3–P1N1Se1)(Cl): 9.226 Å vs. 0.012
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Abbreviations

But
2P1(CH2)(C5H3N1)(CH2)N2Et2 (2-(di-t-butylphosphinomethyl)-6-diethyl-

aminomethyl)pyridine)
ButS1(C6H4)P1(C6H4SBut)(C6H4)S2) (2-((2-(t-butylsulfanyl)phenyl)(2-t-butyl-sulfanyl)

phenyl)phosphino)benzenethiazato
cyh2P1(C6H4)Si1(CH3)(C7H6N1(Me2)) ((2-(dicyclohexylphosphanyl)(2-(dimethyl-amino)

methyl)phenyl)methylsilyl)
m monoclinic
N1(C6H6)N(C6H10)NP1(Pri)(C6H6)N2 (2-isopropyl-1,3-bis(2-pyridylmethyl)-octahydro-

1H-1,3,2-benzodiazophosphore
or orthorhombic
Ph2P1((C6H4CHN1NC(S1).NHMe) (2-(diphenylphosphino)thiosemicarbazide
Ph2P1(C23H28S1)(B(Ph2)Cl1) ((2,7-di-t-butyl-5-((chloro)(diphenyl)-25-boranyl)-

9,9-dimethyl-9H-thioxantin-4-yl)(diphonylphosphine)
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Ph2P1(C6H4N1)(C7H4ClO1)(C7H8N2) (4-chloro-2-(((2-(diphenylphosphino)phenylimino)
methylphenylate

Ph2P1(C6H4N1)(C8H7NOO1) (2-(((2-(diphenylphosphino)phenylimino)methyl-
4-methoxyphenylato)

Ph2P1(C7H5N1)(C2H2O)N2(C6H4OH) (N-(2-(diphenylphosphinobenzylidene)-N-
(2-hydroxyphenyl)glycinamidato)

Ph2P1(C7H5N1)(C2H2O)N2(C6H4OH) (N2-(2-(diphenylphosphino)benzylidene)-N-
(3-hydroxyphenyl)glycinamidato

Ph2P1(C7H5N1)(C2H2O)N2(C7H6OH) (N-(2-(diphenylphosphino)benzylidene)-N-
(2-hydroxymethylphenyl)glycine-amidato)

Ph2P1(C7H5N1)(C3H6)N2(C7H5O2) (N-(2-((2-(diphenylphosphino)benzylidene)amino)
propyl)-2-hydroxybenzamidato)

Ph2P1(C7H5N1)(C5H7O)N2(C10H10N2) R7C-(N-(5,7-(dimethyl-1,8-naphtylridin-2-yl)-N2-
(2-(diphenylphosphinyl)benzylidene) valinamidato)

Ph2P1(C7H5N1)(C6H4)N2(C10H9NO3) (N2-benzyloxycarbinol)-N-(2-(((2-(diphenylphosphanyl)
phenyl)methylidene) amino)phenyl)glycinamide)

Ph2P1(C7H5N1)(C7H8C1)(C7H8N2) (2-(1b)-1-(((2-diphenylphosphinobenzylidene)amine)
ethyl)phenyl)

Ph2P1(C7H5N1)(MeS1)(ButNH2) (N-{N-[2-(diphenylphosphino)benzylidene)]-}
{D/L-methionyl}-terc-butylamine

Ph2P1(C7H5N1)(NC5H4N2) (2-(2-(diphenylphosphino)benzylidene)-1-
(pyridine-2-yl)diazanido

Ph2P1(C7H5N1C3H6Se1(Ph) (N-(2-(diphenylphosphino)benzylidene)-N-
(3-(phenylseleno)propyl)amine

Ph2P1(C7H5N1O1) (2-diphenylphosphino)-2-aminobenzaldehyde)
Ph2P1(C7H6N1)(C7H8N)(C7H8N2) (N2-(2-(diphenylphosphino)benzyl)-N,N-bis

(2-pyridyl-2-ethyl)amine)
Ph2P1(C7H6N1)(NC7H5O1)Ph2P2(C15H13N2O) (N-(2-(diphenylphosphino)-1-phenylformyl)

benzohydiazino)-N-(2-(diphenylphosphino)-1-
phenylvinyl)benzohydeazone)

Ph2P1(C7H6N1 = NCC1C5H6) (2-((2-(diphenylphosphino)-4-methylphenyl)diazinyl)-
5-methylphenyl)pyridine

PriS1(C6H4)P1(C6H4SPri).(C6H4)S2) (2-(((2-(isopropysulfanyl)phenyl)(2-isopropylsulfanyl)
phenyl)phosphino)benzenethiazato)

py pyridine
tr triclinic
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