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Abstract: In the field of environmental sustainability, the development of highly efficient photocat-
alytic under a wide wavelength range with band engineering is regarded as a promising strategy to
enhance photocatalytic dye degradation. Here, we report on CaMnO3−δ and Pr0.5Ca0.5MnO3 per-
ovskite materials prepared by a sol-gel combustion method. From X-ray photoelectron spectroscopy
(XPS), the particle surfaces of both compounds are oxygen deficient, while the surface hydroxyl and
carbonyl groups’ adsorption on the surface of Pr0.5Ca0.5MnO3 particles is more pronounced. FT-FIR
spectroscopy has been used to investigate the covalent bonds and oxygen vacancy characteristics.
Photocatalytic activities were investigated by the degradation of methylene blue and methyl orange
under UV light. It was observed that both dye molecules are more degraded over CaMnO3−δ. The
underlying mechanisms behind the photoexcitation and degradation process are established via the
Spin-polarized Density Functional Theory (DFT).

Keywords: photocatalyst; perovskite; dye degradation; CaMnO3

1. Introduction

Today, the serious environmental problems due to the growth of fossil fuel consump-
tion have attracted special attention to developing efficient and nontoxic materials to assist
in solving these issues. Photocatalysis is a promising technology in the field of clean en-
ergy applications to prevent organic pollutants from potentially causing environmental
degradation. Many efforts have been made on various materials to develop new semicon-
ductor photocatalysts [1,2] and find out the photocatalytic mechanism. Among the studied
materials, rare earth ABO3 perovskite compounds with unusual physical and chemical
properties have shown photophysical properties due to the polaron formations inside the
crystal lattice [3,4]. The effects of doping and nanosized crystalline are effective parameters
in these physical and chemical properties. The perovskite structure consists of oxygen
octahedra, where the B cation (Mn ion) is the atom in the center of the octahedron, and the
A cation (Pr and Ca ions) is the atom outside the octahedron. The position of oxygen atoms
around the transition metal cations B in the ABO3 perovskites determines the exciting prop-
erties. The transfer of electrons between the B-sites is not direct transfer but through the
intervention of the oxygen atoms surrounding the transition metal atoms in the B-site [5,6].
The electronic and magnetic properties of the perovskite change by the distortion of the
octahedral reflects the importance of the mixed-valence states of the transition metal at
B-site and the corner-shared octahedral BO6 in these materials [7–9]. Moreover, the small
ionic radii of the A cations cause BO6 octahedral tilting. This tilting turns the cubic lattice
structure to the lower symmetry orthorhombic crystal structure [10,11]. In perovskite
compounds, octahedral tilting influences the electronic structure, electron or hole transport,
and dielectric properties [12,13].
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The perovskite-like materials such as tantalate, titanate, ferrite, and manganites have
exhibited visible light photocatalytic activity because of the exclusive electronic properties
correlated with the crystal structures [14–16]. The optimized bandgap in such materials,
the doping concentration of the divalent element, explains and enhances photocatalytic
performance and the separation of charge carriers. These compounds represent the bandgap
values of the produced visible-light absorption as well as the UV region [17]. The potentials
of optimizing the bandgap and the lattice distortion to capture charge carriers presented
in such materials affect the efficiency of photocatalysts [18]. A simple member of the
manganite compounds, CaMnO3, represents the bandgap of about 1.6 eV between the O
2p valence band and Mn 3d conduction bands. The Mn 3d orbitals split into the triply
degenerated Mn t2g and doubly degenerated Mn eg states originating from the crystal field
splitting [6,19]. Hence, there are two relative electron transitions in the energy range of 1 eV
to 6 eV. The UV transition at the higher energies of 4–5 eV corresponds to the transitions
between the O 2p states and the minority-spin states, while the lower energies are assigned
to the transitions between the O 2p and majority-spin states. These transitions are of interest
to the polaron physics of manganites. In addition, manganese-containing compounds can
be considered promising candidates for functional water oxidation [20–23] inspired by the
natural photosynthesis process in which the Ca2Mn3O8, CaMn2O4, and CaMnO3 clusters
are identified as the catalytic site for the four-electron involved water oxidation [24].

Doping CaMnO3 by the trivalent ions (Pr) inserts the extra electrons into the antibond-
ing eg states of the Mn 3d orbitals. These electrons form polarons and cause octahedral
distortion [10]. Therefore, octahedral distortion affects the conduction band distributions
as well as the valance band top [25]. Oxygen vacancy is another approach to modify-
ing the conduction band distribution of electronic states [26]. Water oxidation and O2
reduction depend on the photoinduced reactions and potential levels of the valence and
conduction bands with respect to the oxidation and reduction of potential levels. Thus,
doping and deficiencies in the lattice offer great potential for band structure engineering
and consequently designing new photocatalysts. The photocatalytic properties and the
relative mechanism for the transitions, particularly at lower energies (visible region), draw
the attention to sunlight. The effects of UV transitions in perovskites corresponded to
the transition between the O 2p states and minority-spin states of the conduction band
are still missing. Here, oxygen deficiencies, as well as doping agents, have been used to
prepare the CaMnO3 manganite structure with Mn3+ and Mn4+ coexistence to investigate
the mechanism of the photocatalytic activities in the UV radiation region.

In this work, nanosized CaMnO3−δ (CMO) and Pr0.5Ca0.5MnO3 (PCMO) were charac-
terized by FT-FIR spectroscopy and XPS and the photocatalytic activity in the UV region
for the decomposition of methyl orange (MO) and methylene blue (MB) was investigated.
To better understand the photocatalytic behavior of ABO3 perovskites, the band structures
of the compounds were discussed concerning the photocatalytic activities. To shed light on
the experimental finding, first-principle calculations based on the density functional theory
(DFT) were carried out to assess the influences of oxygen vacancy on the electronic density
of states (DoS).

2. Materials and Methods
2.1. Preparation of Samples

The CMO and PCMO nanoparticles were prepared by gel combustion method. Cal-
cium nitrate tetrahydrate Ca(NO3)2·4H2O (99%), manganese nitrate tetrahydrate
Mn(NO3)2·4H2O (99.5%), praseodymium nitrate hexahydrate Pr(NO3)3·6H2O (99.9%)
and gelatin were used. In order to prepare the primary sol, appropriate amounts of nitrates
were dissolved in distilled water, stirring at room temperature for 20 min. Then, the gelatin
solution was added to the sol and stirred at 60 ◦C for 2 h. The final gel was obtained
by heating the sol at 90 ◦C. Finally, the brownish gel was dried at 200 ◦C for 5 min. The
nanoparticles were prepared after calcining the samples at 900 ◦C for 5 h. The preparation
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methods, as well as the structural analysis by X-ray diffraction and Rietveld refinement,
have been published recently [27].

2.2. Characterizations and Photocatalysis Experiments

The structural, microstructural, electrocatalytic, and in situ investigations of CMO
and PCMO nanopowders have been previously reported [27,28]. Here, the infrared optical
density Od for both compounds was obtained in the 150–700 cm−1 using a far-infrared
Fourier spectrometer (FT-FIR). The powders were pressed into pellets under a vacuum
followed by finely milling and mixing with CsI in the ratio of 1:100 in weight.

X-ray Photoelectron Spectroscopy (XPS) was performed in a custom-designed system
with an Al-Kα X-ray source (1486.6 eV), steps of 0.1 eV and 20 eV pass energy. Chemical
compositions of particles have been investigated using core-level photoemission spec-
tra from Ca 2p, Pr 3d, Mn 2p, and O 1s regions collected in normal emission at room
temperature. The binding energies were referenced to Au-4f at 84 eV.

In order to collect the photoemission spectra, the monochromator and exit slit was
set to cff = 2.25 and 111 µm, respectively. The step size for Ca 2p and O 1s spectra was
20 meV. All spectra were collected using pass energy of 20 eV and a dwell time of 100 ms.
The intensities have been scaled and normalized with reference to impinging photon flux.
A blend of linear and Shirley-type backgrounds was subtracted. Experiments have been
conducted according to the protocol given in Ref. [29].

The photocatalytic reaction in the ultraviolet region was performed with a 200 W HBO
Mercury short-arc lamp as an ultraviolet light source with a peak irradiance at 365 nm and
intensity of 50 mW/cm2 at the sample position. The concentration of MB and MO dyes
was chosen as 5 ppm. The amount of photocatalyst was 50 mg in 50 mL of deionized water.
The solution was stirred in darkness for 30 min to complete the adsorption–desorption
equilibrium between the dye and the catalyst. The solution temperature was kept at 25 ◦C
throughout the experiment. After darkness, solutions were exposed to light. Aliquots were
taken at the time interval of 20 min. The solution was then centrifuged, and its absorption
spectrum was recorded by UV-Visible spectrometer.

2.3. Theoretical Method

Calculations were performed based on the Spin-polarized Density Functional Theory
(DFT) [30]. The exchange-correlation functional is approximated with the HSE06 func-
tional [31] to obtain a proper description of the Mn 3d orbitals, as implemented in the
Vienna Ab initio Simulation Package (VASP) [32,33]. The typical value of 0.2 is employed as
a mixing factor. We used 2 × 2 × 2 supercells of the primitive perovskite cell for CaMnO3,
corresponding to 20 atoms. The total energy was sampled on a well-converged 4 × 4 × 4
k-point grid together with projector-augmented wave theory [34] and a 520 eV plane-wave
cutoff. The total energy is converged within 1 × 10−5 eV per supercell. For Pr0.5Ca0.5MnO3,
a larger supercell has been considered with the CE-type order, corresponding to 80 atoms,
sampled on a 2 × 2 × 2 k-point grid. Oxygen vacancy in the perovskite is assessed in
the low-vacancy limit, one O vacancy per supercell. The structures were allowed to relax
until the convergence of the forces on the atom were lower than 1 × 10−2 eV Å−1. The
minimum distance between O vacancies considered as at least 10 Å minimized the fictitious
interactions across periodic boundaries [6].

3. Results and Discussion
3.1. Structural and Microstructural Properties

The XRD patterns of the single CMO and PCMO are shown in Figure 1. We identified
the orthorhombic space group of Pnma (no. 62) for the crystal structure. While the ionic
radius of Pr3+ (1.13 Å) is close to that of Ca2+ (1.12 Å), the lattice constants enlarge with an
increase in Pr content, as has already been published [27]. The lattice expansion is because
of the Mn–O bond length increases caused by electron insertion into the antibonding Mn eg
orbitals. The surface morphology has been investigated by scanning electron microscopy
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(SEM), and a representative SEM image for the micrographs of undoped and Pr-doped
CaMnO3 is shown in Figure 2. The samples were composed of nanoparticles with an
average particle size of 70 nm. Phase identification, lattice parameters, and microstructural
analysis were published in previous work [27].
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3.2. Spectroscopic Analysis

In our previous work [27], X-ray absorption spectroscopy of the Mn-L edge gave the
Mn valence of the undoped calcium manganite about 2.95, confirming the oxygen deficiency
in the structure, which is very common in Ca-rich manganites. The structural properties of
the samples obtained by Rietveld refinement indicated that Mn–O bond length increases
with the increase of eg electron occupation of the antibonding Mn (eg)–O (2p) levels.
Here, FT-FIR spectroscopy has been used to investigate the covalent bond characteristics
and the position of oxygen vacancies. The infrared optical densities of polycrystalline
Ca1−xPrxMnO3 (x = 0.00 and 0.50) at 300 K are shown in Figure 3. The numerous peaks
in the spectra relating to the infrared active transverse optical TO modes show strong
deviations from a cubic symmetry to orthorhombic in both compounds. Two strong, broad
peaks are contributing several smaller peaks at 414 cm−1 and 596 cm−1 have been observed
for Pr0.5Ca0.5MnO3. This is due to the lifting of the eg degeneracy (Jahn–Teller distortion)
because of the strong elongation of the Mn–O(1) bond and consequently splitting one
IR absorption band into two adjacent bands [35]. The spectra shown in Figure 3 appear
qualitatively similar in structure, exhibiting three main groups centered around 200, 400,
and 600 cm−1. The low-energy modes are the bending band and are expected to be
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sensitive to the MnO6 octahedra tilting distortions. On the other hand, the high-energy
modes (centered around 600 cm−1) are thought to involve mainly stretching vibrations
of MnO6 octahedra. The frequencies of these modes are expected to be directly related to
the interatomic distances of Mn–O bonds. Therefore, the structure of the bending band
and Mn–O bonds in CMO with oxygen vacancies should appear significantly reduced
compared to the fine structure of PCMO.
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The phonon modes below 270 cm−1 for all samples correspond to mixed vibrations
of Ca/Pr atoms and octahedral [35]. Because the strong orthorhombic lattice is strongly
distorted, none of the modes observed above 280 cm−1 can be considered as purely bending
or stretching, as these modes considerably depend on the changes of both the Mn–O–Mn
bond angles and the Mn–O bond lengths [36]. The phonon modes between 280 and
350 cm−1 correspond to the motions in which the Mn displacements are comparable with
O atoms. For higher frequencies, the displacements of Mn and Ca/Pr atoms and phonons
involve mostly the motions of oxygen atoms [35,36]. As shown in Figure 3 for CaMnO3−δ,
the peaks relating to the vibration of apical and in-plane oxygen are indexed with (1) and
(2), respectively. For the modes at 354, 368, 396, 514, and 560 cm−1, the in-plane oxygen
vibrations dominate. For those at 430, 460, and 640 cm−1, the motions of the oxygen atoms
in apical sites play the main role [35]. The infrared absorption spectrum of polycrystalline
CaMnO3 reported and thoroughly discussed by Fedorov et al. [35] is similar to our results
for CaMnO3−δ with a significant difference. The absorption bands corresponding to the
vibration of apical oxygen atoms are so close to the results reported, while the vibration
of Mn–O(2) considerably shifts compared to the results obtained for CaMnO3 which was
free from oxygen vacancies. This may be due to the fact the oxygen vacancies are more or
less localized in in-plane sites and consequently can affect the ion conductivity and the
photocatalytic properties.

Figure 4a shows the survey XPS spectra obtained for CaMnO3−δ and Pr0.5Ca0.5MnO3.
As shown in this figure, no other impurity elements were observed. Figure 4b,c show the
doublet XPS spectrum of Ca 2p at binding energies around 345.5 and 349 eV assigning
to Ca 2p3/2 and Ca 2p1/2, respectively. Ca2+ exhibits a binding energy (BE) shift toward
higher energies with increasing Pr content due to the changes in the nearest neighbors of
Ca atoms and, consequently, the electronic structure of the Ca atoms. In the case of the Ca
2p3/2 component, it can be seen that the peak is broadened in Pr0.5Ca0.5MnO3 compared
to undoped CaMnO3−δ. This can be due to the formation of CaCO3 and/or CaO at the
oxide surface due to Ca segregation [37]. The narrow scan spectrum of the oxygen 1s core
level of samples is shown in Figure 4d,e. The oxygen peaks corresponding to O 1s can be
resolved into two components at around 529 and 532.1 eV. This doublet peak of O 1s agrees
with the earlier reports on perovskite oxides [37–39]. This doublet peak corresponds to
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the chemical shifts in the oxygen core level arising out of two kinds of chemical bonding.
The lower binding energy component is assigned to the oxygen in the perovskite lattice
(metal-oxygen bonds). The next component at around 531.9 eV can be associated with CaO
and/or CaCO3 formed at the surface due to Ca segregation. In PCMO, the peak at BE
energies of 532 eV has a higher intensity than the 529 eV line compared to CMO, indicating
that Pr substitution in Ca sites helps to more occurrence probability of surface Ca/Pr–O
bonds and Ca segregation [37].
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Pr0.5Ca0.5MnO3 taken in normal emission using an Al Kα X-ray source. The peaks in the O 1s region
were assigned to lattice oxygen and surface hydroxyl groups, carbonyl groups, and CaO/CaCO3.

The mixed-valence of surface manganese in perovskite manganites can be determined
by analyzing the manganese doublet spectra corresponding to the spin-orbit split of man-
ganese 2p peaks (Mn 2p3/2 and Mn 2p1/2) around 642.1 eV and 653.5 eV, respectively
(Figure 5). Quantitative deconvolution and curve fitting results for Mn 2p3/2 give evidence
for the existence of mixed-valence states of manganese. Here, the higher binding energy
component at 642.6 eV relates to Mn4+, and the other component at 641.5 eV is assigned to
Mn3+ [40]. The mixed-valence Mn ratios of Mn4+/Mn3+ of all samples are approximately
determined as 1.37 and 0.92 for CaMnO3−δ and Pr0.5Ca0.5MnO3, respectively. By compar-
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ing this ratio obtained by XPS from the surface of CaMnO3−δ nanoparticles from one side
and Mn valence estimated from XAS [27], it is observed that the surface of particles is more
oxygen-deficient than the bulk. However, the ratio of Mn4+/Mn3+ for both surface and bulk
of Pr0.5Ca0.5MnO3 particles is near one, which is consistent with the Mn valence obtained
by XAS. These shreds of evidence indicate that the surface of Pr0.5Ca0.5MnO3 particles
is more stable than CaMnO3−δ, consistent with in-situ HRTEM investigations reported
before [28]. The third peak in Figure 5 (green line) corresponds to the satellite structure
observed in about 5 eV higher binding energy than the Mn 2p3/2 clearly associated with
ligand 2p to Mn 3d charge transfer [41]. Note that the satellite component comes from
Mn4+, as shown in Figure 5b. In the case that the interaction between the 2p core hole
and the correlated 3d valence electrons is sufficiently strong, satellites are present in the
photoemission spectra accompanying the main lines.
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3.3. Photocatalytic Degradation Analysis

The photodegradation of MB and MO is given in Figure 6, which was carried out by
degrading MB and MO in an aqueous solution under irradiation of a 200W HBO Mercury
short-arc lamp as an ultraviolet light source. The decoloration rate of MB in the presence
of CMO reached 43% at 180 min, which was close to 41% obtained for PCMO. However,
the MO degradation performance of CMO and PCMO was limited to 23% and 21% within
three hours, respectively.

Photocatalytic oxidation of organic pollutants follows Langmuir–Hinshelwood ki-
netics in which only the first-order form (−ln(C0/C) = kappt) is accounted for when the
reactant concentration is very small [42]. In this equation, kapp is the apparent first-order
reaction constant, and C0 and C are the reactant concentrations at the initial and later
times, respectively. The photocatalytic activities of CMO and PCMO were evaluated by
comparing the kapp obtained from the plots of −ln(C0/C) against irradiation time (insets
of Figure 5) and listed in Table 1.

Table 1. Apparent first-order reaction constants obtained for MO and MB, and the band structure
parameters determined by ab initio studies.

Material Particle Size
(nm) [27]

Specific Surface
Area (cm2/mg)

kapp for MB
(10−3 min−1)

kapp for MO
(10−3 min−1)

CMO 70 81.63 3.98 2.56

PCMO 64 49.96 3.42 1.81
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CMO and PCMO exhibited apparent rate constants of 3.98 × 10−3 min−1 and
3.42 × 10−3 min−1 for MB decomposition, respectively, showing higher activities than
the values of 2.56 × 10−3 min−1 and 1.81 × 10−3 min−1 obtained for MO degradation. In
addition, the photocatalytic activity of nanosized CMO is slightly better than PCMO.

Here, the main factors, including specific surface area, amount of chemisorbed oxygen
at the surface of the particles, band structure, and electron-hole pair recombination rate, play
significant roles in the photocatalytic activities of CMO and PCMO samples. The specific
surface area has been obtained in our previous report [27] and given in Table 1. The higher
specific surface area of CMO in comparison with PCMO, can provide a higher density
of active sites [43,44]. In addition, the diffusion rate of the photogenerated electron-hole
pair must be longer than the particle size to avoid recombination [45]. It should be noted
that the recombination rate depends on the crystal phase and doping level. Nevertheless,
enhanced photo-catalytic performance through the high surface-area-to-volume ratio of
nanostructured PCMO can be achieved without detriment to the rates of charge carrier
recombination in the composites. Consequently, the recombination rate of the carriers on
the surface of the photocatalyst decreases with the decrease in particle size.

In addition to the surface area, the amount of chemisorbed oxygen usually associated
with the mixed-valence states of the transition metal ion B is correlated with the photocat-
alytic activity [46–48]. It should be noted that the surface measured under UHV conditions
can be restored by annealing at about 120 ◦C in 0.1 mbar O2.

Molecular oxygen has a great tendency to be adsorbed on a surface vacancy site, and
consequently, a surface-adsorbed O ad-atom is formed. As shown in Figure 4b, the content
of chemisorbed oxygen observed on the surface of PCMO particles is considerably higher
than CMO, while the amount of oxygen vacancies created on the surface and bulk of CMO
is much more pronounced. This may be due to the fact that in the ABO3 perovskites, the
AO-terminated facets showed stronger binding to the adsorbed oxygen [49]. In addition,
our FT-FIR results about CMO show that the oxygen vacancies are more or less localized in
BO2 sites rather than AO. Thus, the amount of chemisorbed oxygen more constructively
affects the photocatalytic activity of PCMO in comparison with CMO.

While all parameters play a role in photocatalytic activities, the activity can be de-
scribed dominantly through the factors such as geometry and the electronic structure of
the perovskites. The potential levels configuration of the reduced conduction band and the
oxidized valence band have to be compared with the O2/O2

− and the OH/H2O potential
levels, respectively [50].

To clarify the photodegradation mechanism of MB by CMO under UV light, several
scavengers were used. Generally, during the photodegradation of dyes, different reactive
species, such as OH and O2

−, are generated in addition to the e−/h+ pair. For example, the



Crystals 2022, 12, 1728 9 of 14

free electrons reduce the dissolved oxygen, resulting in the formation of superoxide ions,
while the holes may react with H2O and OH− to produce hydroxyl radicals [51]. The scav-
engers used in this work are EDTA for holes, K2S2O8 and AgNO3 as electron scavengers,
sodium azide (NaN3) for singlet oxygen (1O2), DMSO for OHbulk, sodium iodide (NaI)
for OHads, and tert-butanol as a free OH radical scavenger [52]. If the photodegradation
of MB by the catalyst is performed because of any of the reactive species, the reaction is
slowed down or inhibited in the presence of the corresponding scavenger [52]. For the
sake of comparison, the MB degradation in the absence of a catalyst under light exposure
was investigated for possible self-degradation of MB. Moreover, the MB degradation by
CMO without using a scavenger was carried out. Figure 7 shows the variation of C/C0 for
MB as a function of exposure time by adding different scavengers into the photocatalytic
system. As this figure shows, no degradation in the absence of the photocatalyst for MB
under light irradiation was observed. It means that MB is a photo-stable dye during our
experiments. Moreover, this figure shows that the dye was degraded 43% within 180 min
in the absence of any scavenger. Adding NaI, tert-butanol, DMSO, and EDTA had no
considerable influence on the photodegradation process. Thus OH radicals and holes are
not the main active species in MB photodegradation. As Figure 7 shows, the degradation
efficiency of MB over CMO significantly decreases with the addition of NaN3, indicating
that 1O2 is the main active species during the photocatalytic degradation process. Since
the photocatalytic degradation efficiency decreases in the presents of K2S2O8 and AgNO3,
electrons play a supplementary role. A possible mechanism for the degradation based on
our radical scavenger results is as follows. Under light irradiation, electrons are excited
from the valance band (VB) to the conduction band (CB) of CMO nanoparticles. Electrons
react with dye and dissolved oxygen molecules. The excited electrons reduce the dissolved
oxygen, resulting in the formation of singlet oxygen ions. These active singlet oxygen ions
and electrons degrade MB dye, which was adsorbed on the surface of nanoparticles. Note
that the interfacial modification and composition manipulation by coating provides an
efficient way for stabilizing and improving photocatalytic activity [53,54].
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3.4. Electronic Structure of CaMnO3−δ and Pr1−xCaxMnO3

In order to obtain the potential levels of the conduction band Mn t2g↓ and eg↑, the
theoretical calculation of the electronic band structures of CMO and PCMO was carried
out with the HSE06 functional. CaMnO3 is the simple member of the Pr1−xCaxMnO3
manganite. This compound has an orthorhombic perovskite structure. Mn and O ions
form a network of corner-sharing MnO6 octahedra with a formal valence of 4+ for the Mn
cations. Thus, the Mn atoms have a 3d3 configuration. It means three electrons in the t2g
orbitals and a strong crystal field splitting with the empty eg states. Ca donates its two
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valence electrons to the valence band of the O 2p character. In the CaMnO3, the size of the
Ca ions is sufficiently small so that the MnO6 octahedra tilt increases the ionic attraction.
The orientation of the tilt axis is determined by a bond angle force at the oxygen bridge.

The calculated DoS of stoichiometric CaMnO3 is shown in Figure 8a. The valance
band is dominated by O p states (red) with the contribution of Mn d orbitals (green and
yellow) at the bottom part of the valence band. Above the valence band, Mn d and Ca d
states (blue) form the conduction band. The empty Mn d states are associated with different
spin orientations according to their relative electron population, namely majority Mn eg
states (yellow) from 2 eV to 4 eV and minority Mn t2g (green) and Mn eg stats (yellow) from
4 eV to 7 eV.
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Figure 8. Total and projected DoS of (a) CaMnO3, (b) CaMnO3 including O-vacancy,
(c) Pr0.5Ca0.5MnO3, and (d) Pr0.5Ca0.5MnO3 including O-vacancy. The graph shows the total DoS
(grey) and the projected DoS for O p (red), Mn t2g (green), Mn eg (yellow), Ca d (blue), and Pr f
(magenta). The arrows indicate the dipole-allowed optical transitions within the Mn d orbitals (A)
and from O p states to the majority (B) and minority (C) Mn eg states.

In CaMnO3, each O atom at apical and in-plane sites is surrounded by the two Mn
atoms. The Mn–O bond lengths are similar in this structure, so O cages are not Jahn–Teller
distorted.

The formation of an oxygen vacancy leaves two Mn ions under coordination, and as
suggested by FT-FIR analysis, the O-vacancies are located at in-plane sites. The DoS for the
supercell with the oxygen vacancy in the neutral charge state is shown in Figure 8b. As
shown in this figure, the oxygen vacancy creates a deep level in the bandgap. This state is a
vacancy-assisted polaron that originates from the majority spin direction of Mn eg states.
The Fermi level shifts upward to the top part of the mid-gap states. More vacancy can
separate more states from the bottom part of the Mn eg state in the conduction band to the
top part of the valance band, as shown in Figure 8b.

In Pr0.5Ca0.5MnO3, which is oxygen stoichiometric as reported previously, each Mn
ion is sixfold coordinated with O atoms which form an octahedron cage around the Mn
ion. However, in the half-doped system, Pr0.5Ca0.5MnO3, the Zener polaron forms, which
is characterized by an electron shared by two ferromagnetically coupled Mn neighbors.
Characteristic of a Zener polaron are two neighboring Mn sites, both having a Jahn–Teller
expansion along the axis of the pair. In Pr0.5Ca0.5MnO3, the lower Jahn–Teller band is
itself split into two, of which only one is occupied. The origin of the splitting of the
lower Jahn–Teller band is due to the formation of an antibond with the bridging oxygen
ion [55,56].

The DoS for the half-doped system is shown in Figure 8c. The filled majority Mn eg
states are located on top of the valence band, and the empty majority Mn eg states are
located at the bottom part of the conduction band. The oxygen vacancy adds electrons in
the unoccupied majority Mn eg states in the half-doped system and shifts them down to
the top of the valence band. As shown in Figure 8d, the vacancy can separate more states
from the majority Mn eg state in the conduction band.
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As shown in Figure 8, photoexcited electrons can be placed in the Mn 3d t2g↓ con-
duction bands under UV light irradiation in both CaMnO3−δ and Pr0.5Ca0.5MnO3. The
Mn 3d t2g↓ conduction band level is more negative than the O2/O2

− reduction level, and
the hybridized O 2p and Mn eg↑1valence band levels are more positive than H2O/OH−

oxidation level [51].
The calculated absorption spectra for CaMnO3 and Pr0.5Ca0.5MnO3 are shown in

Figure 9. The Pr0.5Ca0.5MnO3 spectrum exhibits a considerable shift towards higher ener-
gies and a loss of absorption intensity between 2 eV and 4 eV compared to CaMnrO3. The
intensity reduction in the Pr0.5Ca0.5MnO3 is attributed to the empty Mn eg states, which
lower from CaMnO3 to Pr0.5Ca0.5MnO3. The Mn eg states become occupied by Pr doping,
and they become unable to be used for optical excitation. Thus, this analysis sheds light on
the experimentally obtained spectra of doped and undoped CaMnO3.
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Figure 9. Calculated absorption spectra for CaMnO3 (black) and Pr0.5Ca0.5MnO3 (red). The absorp-
tion edge from 2 eV to 4 eV is attributed to the occupation of the Mn eg states, which demonstrate
the lowering of the absorption intensity due to doping in Pr0.5Ca0.5MnO3, while they are empty and
thus visible in the spectrum of CaMnO3.

4. Conclusions

In this work, the photocatalytic dye decomposition over the perovskites CaMnO3−δ
and Pr0.5Ca0.5MnO3 under UV irradiation has been studied. The kinetics of photocat-
alytic oxidation of organic pollutants showed that CaMnO3−δ was slightly more active
than Pr0.5Ca0.5MnO3. The effects of surface oxygen vacancies and electronic structure on
photocatalytic degradation have been investigated by XPS and DFT. The surface oxygen
vacancies were found not to be a pivotal factor for improving the photocatalytic properties
as long as the O-vacancies occupied the BO2 positions. The content of chemisorbed oxy-
gen observed on the surface of PCMO particles is considerably higher than CMO, while
the amount of oxygen vacancies created on the surface and bulk of CMO is much more
pronounced. XPS studies showed the ratio of Mn4+/Mn3+ for both surface and bulk of
Pr0.5Ca0.5MnO3 particles. Based on the theoretical calculation of the electronic structure,
the photoexcitation of the electrons from the hybridized O 2p and Mn eg↑ valance band to
the Mn eg↑ and Mn eg↓ were responsible for the O2 reduction under UV irradiation. This
work may be useful for designing new Mn-based oxide photocatalysts.
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