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Abstract: This paper investigates a theoretical model for the interaction between electrons and holes
(E/H) in elastic non-local semiconductors. When the medium is activated by photo-energy because
of high temperatures, an optical-elastic-thermal-diffusion (OETD) process occurs and is described by
this mathematical-physical model. A study is conducted on the impact of the Hall current brought
on by the collapse of a strong magnetic field on the exterior of the non-local semiconductor medium.
A Hall effect is brought on by the magnetic field’s effect on the density of magnetic flux. The Laplace
transform with initial conditions of the dimensionless main physical fields in one dimension (1D) is
used to demonstrate this. Mathematically, in the Laplace domain, the generic linear solutions for the
strain and temperature distributions, as well as charge carrier holes and electrons, are derived. The
key physical fields’ complete solutions in the time domain are obtained by numerically simulating a
few thermal, mechanical, and optical conditions at the free surface of the semiconductor using the
Laplace inverse approximation technique. For silicon material, the photo-thermoelasticity theory’s
Hall current effect, non-local parameter, and effects of thermal relaxation durations are graphically
displayed and analyzed.

Keywords: electrons and holes; Hall current; plasma; Laplace transform; photo-excitation; semiconductors

1. Introduction

Moving charge carriers in modern physics studies are particle-free, yet they neverthe-
less carry electric charges, as is seen from the study of semiconductors. Electrons, ions, and
holes are only a few examples of the many charge carriers. Charge carriers in semiconduc-
tor material are electrons and holes. The lowest levels of the semiconductors’ atoms contain
free electrons at absolute temperatures (the valence energy band). In this case, neither
the electrons nor the electric current can migrate or move from one location to another.
Since semiconductors’ internal resistance reduces as temperature rises, some electrons may
be able to move from the valence band to the conduction band as the temperature rises
gradually. There will always be a hole in the valence band whenever an electron reaches
the conduction band. Therefore, in semiconductors, electrons and holes are close by. In
any event, the free electrons are what generate the electric current in a semiconductor.
The pores also conduct the electric current in some particular circumstances where the
material is exposed to temperature gradients. Recently, the importance of technological
semiconductors has increased through their use in many important industrial applications
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such as electronics, complex electrical circuits, and aviation, in addition to their various
uses in the production of green or renewable energy through photovoltaic cells.

Recently, the Hall effect has been employed to investigate a few physical characteristics
of semiconductor materials’ charge transfer processes. When a magnetic field perpendicular
to the direction of the current was applied to a semiconductor material, Edwin Hall [1]
found that the locations and concentration of electrons varied from the steady state. In
this instance, the magnetic field and current were proportional to the potential difference
between two particles. The Hall effect is the result of moving charges of electrons and
holes caused by a high magnetic field. By monitoring the Hall voltage, current, and sample
geometry, one can determine the type of material, particularly semiconductors used in
mobile chargers, in terms of positive and negative conductivity.

When studying semiconductors, particularly when they are subjected to a thermal
(temperature) gradient as a result of the absorbed optical radiation, electronic (ED) and
thermoelastic (TE) deformations take place. Transports of electrons and holes cause plasma
waves, and the density of their carriers causes the ED to form. In this case, the photothermal
(PT) approach can be used. The TE deformation, on the other hand, results from the thermal
excitation mechanisms that cause a particle to vibrate. Once the ED and TE deformations
have been taken into consideration, the photo-thermoelasticity hypothesis is obtained.
When the impact of thermal and elastic relaxation durations on the governing equations of
thermoelasticity theory was taken into account, Biot [2], Lord and Shulman [3], and Green
and Lindsay (GL) [4] developed the thermoelastic models. By analyzing these models, it
was demonstrated that waves can move at particular speeds, supporting the underlying
physical premises. A generalized thermoelasticity (GTE) theory has been applied in a
variety of ways to numerous elastic materials by numerous scientists [5–7]. When the link
between thermal, elastic, and magnetic waves are explored, the two temperature theory is
applied in the framework of GTE theory under the effect of gravity subjected to thermal
shock [8,9]. Maruszewski researched the interactions between the optical and elastic
properties of a few semiconductor materials while using a thermodynamic approach [10].

The overlap between thermal, elastic, and optical elastic characteristics during diffu-
sion transport processes of electrons/holes charges is described by a number of theoretical
physical mathematical models for semiconductor materials without the impact of Hall
current and non-local materials [11,12]. The wave propagation transport through an
elastic-thermal-diffusive of semiconductors was studied by Sharma et al. [13]. When a
semiconductor sample is subjected to a photoacoustic sensitivity examination, the mass
and heat diffusion are acquired [14]. Modern technology allows us to measure the physi-
cal characteristics of semiconductors when photo-excited transport processes occur [15].
In order to explore the optical, thermal, and elastic properties of semiconductor mate-
rials under various external fields, numerous researchers then established a connection
between the theory of thermoelasticity and the photothermal theory [16–20]. The Hall
current effect of microtemperature semiconductor material under the influence of a mag-
netic field was investigated by Lotfy et al. Mahdy et al.’s [21] investigation looked at
the effect of the electromagnetic field on the Hall current during the exit of laser pulses
from a semiconductor with a fractional thermal order. The interaction between holes
and electrons during thermo-diffusive processes is not taken into account in the analysis
above of the photo-thermoelasticity theory [22–27]. In general, semiconductors’ ability
to conduct the current through holes, or the electron voids in the valence band, is just as
significant as their ability to conduct the current through electrons. On the other hand,
Zhou et al. [28] studied the thermoelastic damping material according to the frequency
shift and the nonlocal single-phase-lag effect for micro/nano-ring in the thermal field;
this material is called nonlocal-dual-phase-lag (DPL). Lata and Singh [29] investigated
the Hall current influence for a non-locality magneto-thermoelastic solid medium with
fractional order heat transfer according to the normal load. However, the coupling between
holes and electrons should be taken into account while studying semiconductor materials.
The electrons/holes’ recombination in this scenario should be described by the governing
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equation of the mathematical-physical model. In general, non-local semiconductors’ ability
to conduct the current through holes, or the electron voids in the valence band, is just as
significant as their ability to conduct current through electrons.

In this paper, the effects of the Hall current during the recombination of electrons
and holes under the influence of a strong magnetic field are investigated. The photo-
thermoelasticity theory takes into consideration the photo-generated charges that have
optical, elastic, and thermal properties in non-local semiconductor media. When mass and
heat are transported during thermo-diffusive processes, the primary equation is taken into
one dimension (1D) for electronics and thermoelastic deformation. In order to explore the
photo-thermoelasticity models of the non-local semiconductor medium with Hall impact, a
novel mathematical model is created in this instance. The Laplace domain is used to obtain
the analytical solutions. The primary fields are obtained numerically by applying some
approximation to the Laplace transform inversion operations. The numerical simulation
is created using the silicon material’s physical properties. The results are graphically
displayed and explained.

2. Basic Equations

A strong magnetic field
⇀
H = (0, H0, 0) in the direction of the y-axis is applied

when the semiconductor material is perfectly conducting. The induced magnetic field
hi = (0, h2, 0) = (0, h, 0) is produced in the same direction in this instance. Elec-
tronic/thermoelastic deformation is caused by optical energy and a strong magnetic field,
and this results in an induced electric field Ei = (0, 0, E) that is obtained in the opposite
direction. On the other hand, the direction Ei is in the same direction that current density
Jr = (0, 0, J3) takes, if the linearized electromagnetic properties of the semiconductor
medium satisfy the homogeneity with isotropic and optical properties (see Scheme 1).
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Scheme 1. Schematic of the problem.

The Hall current can be calculated using the generalized versions of electromagnetic
Ohm’s law as shown below [28–32]:

Jr = σ0 (Ei + µ0εijr

(
uj,t −

µ0
ene

Jj

)
Hr

Fi = µ0εijr Jj Hr , (i, j, r = (1 = x, 2 = y, 3 = z))

}
(1)

where uj = (ux, uy, uz) stands for the displacement tensor, µ0 for magnetic permeability,
and uj,t =

.
uj for particle velocity. The electrical conductivity of the semiconductor material

during electronic deformation is given by σ0 = netξ e2/me, where e denotes the electron
charge, ne the electron number density, tξ the electron collision time, and me the electron
mass. The Lorentz force, on the other hand, measures the pressure force of a strong magnetic



Crystals 2022, 12, 1680 4 of 17

field and is known as Fi. Assume that an extremely strong magnetic field with intensity H0
falls on the medium’s outer surface and that the induced electric field is ignored, or that
E = 0. In the case of a 1D deformation, the strain tensor can be stated as e = ux = ∂u

∂x , and
the displacement quantity can be written as ui = (ux(x, t), 0, 0) = (u, 0, 0) for the direction
of the x-axis. In contrast, the components of the current density (J1 = Jx = 0 J2 = Jy = 0) as
determined by Ohm’s law for conduction (Equation (1)) can be expressed in the direction
of z-axis as follows:

J3 = Jz =
σ0µ0H0

1 + m2

(
∂u
∂t

)
(2)

Due to a voltage differential caused by a powerful external magnetic field, the Hall current
impact cannot be disregarded when studying the semiconductor material (SEMF). According
to the SEMF effect, the deformation processes (ED and ED) of non-local semiconductor
material are brought on by the force of magnetic lines. The electron frequency ωe = eµ0 H0/me
is used to obtain the Hall current parameter m = tξωe in Equation (2) above.

However, the influence of Lorentz’s force Fi = (Fx, 0, 0), which may be rewritten
as follows, can be used to determine the strength of the magnetic field during a 1D elec-
tronic/thermoelastic deformation:

Fx =

(
σ0µ2

0H2
0

1 + m2

)
∂u
∂t

(3)

Both theoretical and experimental research have been conducted on the interactions
between plasma waves and electromagnetic waves [33]. In a semiconductor material, free
electrons and holes travel along a straight channel known as plasma distribution. On the
other hand, unbound electrons and holes somewhat alter their orientation as a result of
collisions with interior particles. In reality, free electrons and holes forcefully follow a
1D or straight path when the semiconductor is exposed to a laser or light beam and an
external magnetic field. The other three 1D quantities can be taken into account to examine
this occurrence during the photo-excited energy when the interaction between holes and
electrons is experienced. The electron concentration is massaged by the carrier density N
(x, t), which harms the electron charge carrier (plasma wave). The thermal influences of
the medium or thermal waves are measured by the temperature T (x, t). However, the hole
charge carrier H(x, t) can be used to measure the concentration of holes. In the absence
of body forces and heat sources, the basic model that represents the interactions between
thermal, plasma, elastic, and holes in 1D can be written as [9]:

K(1 + τθ
∂
∂t )

∂2T
∂x2 + mnq

∂2 N
∂x2 + mhq

∂2 H
∂x2 − ρ(an

1
∂N
∂t + ah

1
∂H
∂t )−

(1 + τq
∂
∂t )
[
ρ Ce

∂T
∂t + ρ T0αn

∂N
∂t + ρ T0αh

∂H
∂t + T0γ ∂

∂x
∂u
∂t

]
=

[
ρan

1
tn N +

ρah
1

th H
]

 (4)

mqn
∂2T
∂x2 + Dnρ ∂2 N

∂x2 − ρ(1− an
2 T0αn + tn ∂

∂t )
∂N
∂t

−an
2

[
ρ Ce

∂T
∂t + ρ T0αh

∂H
∂t + T0γ ∂

∂x
∂u
∂t

]
= − ρ

tn
1
(1 + tn ∂

∂t )N
(5)

mqh
∂2T
∂x2 + Dhρ ∂2 H

∂x2 − ρ(1− ah
2 T0αh + th ∂

∂t )
∂H
∂t

−ah
2

[
ρ Ce

∂T
∂t + ρ T0αn

∂N
∂t + T0γ ∂

∂t
∂u
∂x

]
= − ρ

th
1
(1 + th ∂

∂t )H
(6)

The equation of motion in this scenario may be created using the Hall current phe-
nomenon, which shows what happens when an electrical current flows through a non-local
semiconductor medium positioned in a high magnetic field:

ρ (1− ξ2
1

∂2

∂x2 )
∂2u
∂t2 = (2µ + λ ) ∂2u

∂x2 − γ(1 + τθ
∂
∂t )

∂T
∂x −

δn
∂N
∂x − δh

∂H
∂x −

(
σ0µ2

0 H2
0

1+m2

)
∂u
∂t

 (7)
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Differentiating Equation (7) relative to coordinate x, yields:

ρ(1− ξ2
1

∂2

∂x2 )
∂2e
∂t2 = (2µ + λ ) ∂2e

∂x2 − γ(1 + τθ
∂
∂t )

∂2T
∂x2−

δn
∂2 N
∂x2 − δh

∂2 H
∂x2 −

(
σ0µ2

0 H2
0

1+m2

)
∂e
∂t

 (8)

where an
1 =

aQn
aQ

, ah
1 =

aQh
aQ

, an
2 =

aQn
an

and ah
2 =

aQh
ah

.
The constitutive relation (stress) for 1D deformation can be expressed as follows using

the associated heat, electron, elastic, and hole fields:

(1− ξ2
1

∂2

∂x2 )σij = σ′ ij,
σ′xx = (2µ + λ)e− (γ(1 + τθ

∂
∂t )T + δhH + δnN) = σ.

}
(9)

The dimensionless quantities are presented with the following significant simplification:

(x′, u′, ξ ′1) =
ω∗(x,u, ξ1)

CT
, (t′, τ′q, τ′θ , tn ′, th ′, tn

1
′, th

1
′
) = ω∗(t, τq, τθ , tn, th, tn

1 , th
1),

β2 =
C2

T
C2

L
, k = K

ρCe
, σ′ ij =

σij
2µ+λ , N′ = δn(N)

2µ+λ , C2
T = 2µ+λ

ρ , I′ = I
2µ+λ ,

ω∗ = Ce(λ+2µ)
K , (δn, δh) =

(δnn0,δhh0)
γT0

, T′ = γ(T)
2µ+λ , H′ = δn(H)

2µ+λ , C2
L = µ

ρ .

 (10)

The following results are obtained by applying Equation (10) to Equations (4)–(6), (8),
and (9) after removing the primes for convenience:{

(1 + τθ
∂
∂t )

∂2

∂x2 − (1 + τq
∂
∂t )

∂
∂t

}
T +

{
α1

∂2

∂x2 − α2(1 + τq
∂
∂t )− α3

∂
∂t − α4

}
N+{

α5
∂2

∂x2 − (1 + τα
∂
∂t )α6 − α7

}
H − (1 + τq

∂
∂t )ε1

∂e
∂t = 0

 (11)

{
∂2

∂x2 − α8
∂
∂t

}
T +

{
α9

∂2

∂x2 − (α10 + tn ∂
∂t )α11 + (1 + tn ∂

∂t )
α11
tn

}
N−

α12
∂H
∂t − α13

∂e
∂t = 0

}
(12)

{
∂2

∂x2 − α18
∂
∂t

}
T +

{
α14

∂2

∂x2 − (α15 + th ∂
∂t )α16

∂
∂t + (1 + th ∂

∂t )α17

}
H−

α19
∂N
∂t − α20

∂e
∂t = 0

}
(13)

(
∂2

∂x2 −
[
(1− ξ2

1
∂2

∂x2 )
∂2

∂t2 +

(
M

1 + m2

)
∂

∂t

])
e− (1 + τθ

∂

∂t
)

∂2T
∂x2 −

∂2N
∂x2 −

∂2H
∂x2 (14)(

e− ( (1 + τθ
∂

∂t
)T + N)

)
− H = σ (15)

where M =
σ0t∗µ2

0 H2
0

ρ is the magnetic pressure number (Hartmann number). However, the
coefficients in the previous equations are:

α1 =
mnqαt
dn K , α2 = T0αn

Ce
, α3 =

an
1

Ce
, α4 =

an
1 γ

Ceτn(2µ+λ)
, α5 =

γmhq h0
(2µ+λ)K , α6 = T0 αh K h0

Ce
,

α7 =
ah

1γω∗

thK , α8 =
an

2 K
mqn

, α9 = Dnραt
mqn dn

, α10 = 1− an
2 T0αn, α11 = αtK

mqn dnCe
, α12 =

an
2 γh0αhω∗

mqn
,

α13 =
an

2 γ2T0ω∗

ρ mqn
, α14 = Dnh0γ

C2
T mqh

, α15 = 1− ah
2T0αn, α16 = γh0ω∗

mqh
, α17 = γh0ω∗

mqhτh
1

, α18 = ah
2

K
mqh

,

α19 =
ah

2γT0αn(2µ+λ)ω∗

mqhδn
, α20 =

ah
2γ2T0 ω∗

mqhρ , α21 = δh
ρ(2µ+λ)

, ε1 = T0γ2ω∗

ρK ,

where α1 to α21 displays the optical-elastic-thermal coupling parameters and ε1 refers to
the thermoelastic coupling parameter.

Partial differential equations (PDEs) (10) through (13) that characterize the photo-
thermoelastic problem in this study are too complex for most of the engineering applications.
As a result, PDEs are transformed into ordinary differential equations using the Laplace
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transform (ODEs). It is crucial to consider the beginning circumstances when trying to
solve a problem. When using the Laplace transform, some initial conditions are presented
in order to mathematically address the issue. The beginning conditions in this situation can
be thought of at time t = 0 with the homogeneity qualities as follows:

e(x, t)|t=0 = ∂e(x, t)
∂t

∣∣∣
t=0

= 0, T(x, t)|t=0 = ∂T(x, t)
∂t

∣∣∣
t=0

= 0,

H(x, t)|t=0 = ∂H(x, t)
∂t

∣∣∣
t=0

= 0, N(x, t)|t=0 = ∂N(x, t)
∂t

∣∣∣
t=0

= 0
(16)

3. The Mathematical Solutions

Laplace transforms, which may be built for function
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where, 
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∞∫

0
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where, 

(x, t) exp(−st) d t (17)

Applying Laplace transforms to the basic dimensionless system Equations (11)–(16)
with the assistance of Equation (16) for initial conditions results in:(

q1 D2 − q2

)
T +

(
α1D2 − q3

)
N +

(
α5D2 − q4

)
H − q5e = 0 (18)(

D2 − q7

)
T +

(
α9D2 − q6

)
N − q8H − q9e = 0 (19)(

D2 − q10

)
T +

(
α14D2 − q11

)
H − q12N − q13e = 0 (20)(

D2 −
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where, 

)
e− q14D2T − α∗21D2(N + H) = 0 (21)

σxx = e − ( (1 + sτθ)T + N)− H (22)

where,

D = d
dx , q1 = (1 + τθ

∂
∂t ),<H = s2 + s M

1+m2 , q2 = (1 + τq
∂
∂t ) s,
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 (34)

where, 

= <H
1+ξ2

1s2 , q14 = 1+τθ s
1+ξ2

1s2

q4 = (1 + τq
∂
∂t )α6 + α7,q6 = (α10 + tns)α11 − (1 + tns) α11

tn , α∗21
1

1+ξ2
1s2 ,

q3 =
(

α2(1 + τq
∂
∂t ) + α3

∂
∂t + α4

)
, q11 = (α15 + ths)α16s− (1 + ths)α17,

q5 = (1 + τq s)ε1 s, q7 = α8 s, q8 = α12s, q12 = α19s, q13 = α20s, q9 = α13 s, q10 = α18s.

The elimination method can be used to find the solutions to the main quantities
T, u, N, and H of the system of Equations (18)–(21). In this case, the equation that follows
can be written as:

(D8 −∏
1

D6 + ∏
2

D4 −∏
3

D2 + ∏
4
)
{

H, N, T, e
}
(x, s) = 0 (23)

The basic coefficients of Equation (23) can, however, be determined using the computer
programming software Mathematica and have the following form:

∏1 = −1
(α9α14q1−α1α14−α5α9)

(α14q1(
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where, 
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where, 

+ q7)− α1α∗21q9 − α9q4−
α1α∗21q13 − α5α9q10 + α14α9q2 − α9α∗21q5 + α9q1q11 + α14q1q6+
q6(α14q1 − α5)− α1(q11 − q8) + α5(q12 + q13)− α14(q3 + q5))

 (24)
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∏2 = 1
(α9α14q1−α1α14−α5α9)
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where, 
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−α14q1q6) + α1(α21q7q13 − α∗21q9q10 − q14(q8q13 − q9q11)) + α5q14(q6q13−
q9q12)− α9α∗21(q2q13 − q5q10) + α9q14(q4q13 − q5q11) + α14q14(q3q9 − q5q6)−
α∗21q1(q6q13 + q9q12)−
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where, 

(α1(q8 − q11) + α5q12 − α9q4 − α14q3) + α1(q7q11−
q8q10) + α5(q6q10 − q7(q12 + q13) + q9q10)− α9(q2q11 − q4q10)−
α14(q2(q6 − q9)− q7(q3 + q7)− α∗21(q3q13 − q5(q6 + q12))− q1(q6q11−
q8(q12 + q13) + q9q11)− q3(q8 − q11) + q4(q6 + q9 − q12 + q13)− q5(q8 − q11)


(25)

∏4 =
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where, 

(−q2q6q11 + q2q8q12 + q3(q7q11 − q8q10) + q4(q6q10 − q7q12))

(−α9α14q1 + α1α14 + α5α9)
(26)

∏3 = −1
(α9α14q1−α1α14−α5α9)

{
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where, 
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+α∗21(q2(q6q13 − q9q12)− q3(q7q13 − q9q10)− q5(q6q10 − q7q12))+

q3q14(q8q13 − q9q11)− q4q14(q6q13 − q9q12)− q5q14(q6q11 − q8q12) +
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i
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H H s H Hθ

α
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α α
α
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+ += 

+ + + 
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 (34)

where, 

(
q3(q8 − q11)− q4(q6 − q12)) + q2(q6q11 − q8q12 − q8q13 + q9q11)− q3(q7q11−
q8q10)− q4(q6q10 − q7(q12 + q13) + q9q10) + q5(q8q10 − q8q10)}


(27)

Equation (23) can be factored as follows to obtain the real roots:(
D2 −m2

1

)(
D2 −m2

2

) (
D2 −m2

3

)(
D2 −m2

4

){
T, e, N, H

}
(x, s) = 0 (28)

where m2
i (i = 1, 2, 3, 4) is the characteristic equation’s roots (27), which may be found

when x → ∞ . The roots’ positive four real components can be chosen in this case. The
linearity-based solutions for the primary field can be rewritten as:

T(x, s) =
4

∑
i=1

Bi(s) e−mix (29)

However, the following physical values can be expressed in the form of the linear
solutions:

N(x, s) =
4

∑
i=1

B′ i(s) e−mix =
4

∑
i=1

H1iBi(s) e−mix (30)

e(x, s) =
4

∑
i=1

Bi
′′ (s) exp(−mix) =

4

∑
i=1

H2i Bi(s) exp(−mix) (31)

H (x, s) =
4

∑
i=1

B′′′ i(s) exp(−mix) =
4

∑
i=1

H3i Bi(s) exp(−mix) (32)

σ (x, s) =
4

∑
i=1

(
B′′′ ′ i (s)

)
exp(−mix) =

4

∑
i=1

(H4i Bi(s) ) exp(−mix) (33)

and
H1i = −

α14m6
i +c7m4

i +c8m2
i +c9

α9α14m6
i +c4m4

i +c5m2
i +c6

,

H2i =
c10m6

i +c11m4
i +c12m2

i
α9α14m6

i +c4m4
i +c5m2

i +c6
,

H3i = −
α9m6

i +c1m4
i +c2m2

i +c3

α9α14m6
i +c4m4

i +c5m2
i +c6

,

H4i = α23(H2i − ((1 + sτθ)H1i + 1)− α22H3i).

 (34)
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where,

c1 = α9(−q13q14 − RH − q10)− q6 − q9 + q12 + q13
c2 = RHα9q10 + q9q13q14 − q9q12q14 + RH(q6 − q12) + q6q10 − q7q12 − q7q13 + q9q10
c3 = RH(−q6q10 + q7q12)
c4 = −RHα9α14 − α9α21q13 − α9q11 − α14q6 − α14q9)
c5 = RHα9q11 + RHα14q6 + α21q6q13 − α21q9q12 + q6q11 − q8q12 − q8q13 + q9q11
c6 = RH(−q6q11 + q8q12)
c7 = α14(−q9q14 − RH − q7) + α21(q9 − q13) + q8 − q11

c8 = RHα14q7 + α21(q7q13 − q9q10)− q8q13q14 + q9q11q14 − RH(q8 − q11) + q7q11 − q8q10
c9 = RH(−q7q11 + q8q10)
c10 = α9(α14q14 − α21 − α14)
c11 = α9α21q10 + α9q11q14 − α14q6q14 − q8q12q14 + α14q7 + α21(q6 − q12)− q8 + q11
c12 = −α21q6q10 + α21q7q12 + q6q11q14 − q8q12q14 − q7q11 + q8q10

4. Boundary Conditions

When specific conditions are applied to the non-local semiconductor’s free surface at
x = 0, the value of the parameters Bi can be derived. The medium is unbounded at infinity;
thus, the positive exponentials for the roots can be discarded.

(I) A thermal condition that can be represented as follows can be used to describe the
isothermal type:

T( 0, t) = 0 (35)

Applying Laplace transforms and the dimensionless property to the thermal condition
(I) results in:

4

∑
n=1

Bi(s) = 0 (36)

(II) As a stress condition, the traction free at the boundary can be expressed at x = 0
as a mechanical ramp type using the Laplace transform:

σ(x, t) =


0 t ≤ 0
t
t0

0 < t ≤ t0

1 t > t0

(37)

however,
4

∑
i=1

H4i Bi(s) = F(s)
(
1− e−st0

)
t0s2 (38)

(III) In the context of the photo-excitation with diffusion processes, the plasma state
can be selected during the recombination processes at the surface x = 0. Using the Laplace
transform for the carrier density in this instance results in:

N(0, s) =
s̃

Crystals 2022, 12, x FOR PEER REVIEW 11 of 21 
 

 

0(0, )
e

s nN s
D

=


 (39)

Therefore: 
4

0
1

1
( )i i

i e

snH s
D=

Β =


 (40)

(IV) In contrast, during the recombination diffusion with photo-excitation processes 
for a non-local medium, the hole charge carrier field arises at the surface 0x = , and in 
the equilibrium case, this can be chosen as follows: 

0( 0 , )H s h=  (41)

Yields: 
4

3 0
1

( )i i
i
H s h

=

Β =  (42)

where s  is the recombination speed, eD  represents the diffusion coefficient of elec-

trons, and   is arbitrary. 

5. Inversion Processes of the Laplace Transforms 
To obtain complete solutions for the key fields in the time domain, the Laplace trans-

form should be inverted. The primary quantities are produced with the use of the Matlab 
(2022a, Zagazig university, Zagazig, Egypt) computer program and the numerically ap-
plied Riemann sum approximation. According to the integral form of the Laplace trans-
form, the inverse of any function ( , )x s  in this case is expressed as: 
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exp( )( , ) exp( ) ( , )
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π
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1

1( , ) ( , ) ( , )( 1)
2

nt N
n

k

e ikx t x n Re x n
t t

π′

=

 ′ = + + − ′ ′ 
    (45)

where 1i = − , n R∈  (real numbers), N  is a freely selected number, and the no-
tation Re roughly represents the real component while the symbol nt ′ 4.7≈  expresses 
it [12]. 
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6.1. The Photo-Thermoelasticity Models 

Three models of non-local photo-thermoelasticity theory can be generated based on 
the values of thermal and elastic relaxation times. However, in this study, three models 
based on the photo-thermoelasticity hypothesis can be found, as follows [1–6]: 

1. When q<ττθ≤0 , in order to obtain the dual phase lag DPL model; 

n0

De
(39)

Therefore:
4

∑
i=1

H1iBi(s) =
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the values of thermal and elastic relaxation times. However, in this study, three models 
based on the photo-thermoelasticity hypothesis can be found, as follows [1–6]: 

1. When q<ττθ≤0 , in order to obtain the dual phase lag DPL model; 

s̃n0

De
(40)

(IV) In contrast, during the recombination diffusion with photo-excitation processes
for a non-local medium, the hole charge carrier field arises at the surface x = 0, and in the
equilibrium case, this can be chosen as follows:

H(0, s) = h0 (41)
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Yields:
4

∑
i=1

H3i Bi(s) = h0 (42)

where s̃ is the recombination speed, De represents the diffusion coefficient of electrons, and
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is arbitrary.

5. Inversion Processes of the Laplace Transforms

To obtain complete solutions for the key fields in the time domain, the Laplace trans-
form should be inverted. The primary quantities are produced with the use of the Matlab
(2022a, Zagazig university, Zagazig, Egypt) computer program and the numerically applied
Riemann sum approximation. According to the integral form of the Laplace transform, the
inverse of any function Z(x, s) in this case is expressed as:

Z(x, t′) = L−1
{
Z(x, s)

}
=

1
2πi

∫ n+i∞

n−i∞
exp(st′)Z(x, s)ds (43)

The inversion method of Equation (42) can be recast as follows in the time domain:

Z(x, t′) =
exp(nt′)

2π

∫ ∞

∞
exp(iβt)Z(x, n + iβ)dβ (44)

When the interval [0, 2t′] is expanded in a closed form using Equation (43) as a guide,
the following results:

Z(x, t′) =
ent′

t′

[
1
2
Z(x, n) + Re

N

∑
k=1

Z(x, n +
ikπ

t′
)(−1)n

]
(45)

where i =
√
−1, n ∈ R (real numbers), N is a freely selected number, and the notation Re

roughly represents the real component while the symbol nt′≈ 4.7 expresses it [12].

6. Special Cases
6.1. The Photo-Thermoelasticity Models

Three models of non-local photo-thermoelasticity theory can be generated based on
the values of thermal and elastic relaxation times. However, in this study, three models
based on the photo-thermoelasticity hypothesis can be found, as follows [1–6]:

1. When 0 ≤ τθ < τq, in order to obtain the dual phase lag DPL model;
2. When τθ = 0, 0 < τq, in order to obtain the Lord and S, hulman (LS) model;
3. When τθ = τq = 0.0, one obtains the coupled thermoelasticity (CT) model.

6.2. Influence of Magnetic Field

The issue is studied without considering the impact of the Hall current when the
effects of a strong magnetic field is disregarded (H0 = 0). However, the influence of the
magnetic field (H0 6= 0) is considered when the Hartmann number and Hall current are
present. The motion equation is simplified in this situation to [34]:

ρ (1− ξ2
1

∂2

∂x2 )
∂2u
∂t2 = (2µ + λ )

∂2u
∂x2 − γ(1 + τθ

∂

∂t
)

∂T
∂x
− δn

∂N
∂x
− δh

∂H
∂x

(46)

6.3. The Non-Local Thermoelasticity Theory without Electrons/Holes Interaction

The generalized thermoelasticity theory is only used to study the problem when the
influence of the magnetic field is taken into account, leaving out the effects of electrons and
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holes, or N = 0 and H = 0. As shown in [5,6], the system of controlling equations in this
instance is reduced to only two equations with the Hall current effect.

K(1 + τθ
∂

∂t
)

∂2T
∂x2 − (1 + τq

∂

∂t
)

[
ρ Ce

∂T
∂t

+ T0γ
∂e
∂t

]
= 0 (47)

ρ(1− ξ2
1

∂2

∂x2 )
∂2e
∂t2 = (2µ + λ )

∂2e
∂x2 − γ(1 + τθ

∂

∂t
)

∂2T
∂x2 −

(
σ0µ2

0H2
0

1 + m2

)
∂e
∂t

(48)

6.4. The Generalized Non-Local Magneto-Photo-Thermoelasticity Theory

The problem is only explored using the generalized magneto-photo-thermoelasticity
theory when the effect of the holes’ carrier charge field is disregarded, or H = 0. Under the
influence of the magnetic field, the system of equations in this example is reduced to three
equations, as shown in [20]:

mqn
∂2T
∂x2 + Dnρ ∂2 N

∂x2 − ρ(1− an
2 T0αn + tn ∂

∂t )
∂N
∂t −an

2

[
ρ Ce

∂T
∂t + T0γ ∂e

∂t

]
=

− ρ
tn
1
(1 + tn ∂

∂t )N

 (49)

K(1 + τθ
∂
∂t )

∂2T
∂x2 − (1 + τq

∂
∂t )
[
ρ Ce

∂T
∂t + ρ T0αn

∂N
∂t + T0γ ∂e

∂t

]
+

mnq
∂2 N
∂x2 − ρan

1
∂N
∂t = 0

}
(50)

ρ (1− ξ2
1

∂2

∂x2 )
∂2e
∂t2 = (2µ + λ ) ∂2e

∂x2 − γ(1 + τθ
∂
∂t )

∂2T
∂x2−

δn
∂2 N
∂x2 − δh

∂2 H
∂x2 −

(
σ0µ2

0 H2
0

1+m2

)
∂e
∂t

 (51)

6.5. The Non-Local Semiconductor Medium

The non-local photo-thermoelasticity theories are obtained under the influence of the
Hall current and variable thermal conductivity when the electron/hole interaction is taken
into account, and when the effects of the non-local scale parameter are ignored (ξ1 = 0.0).

7. Numerical Results and Discussions

The dimensionless thermal, strain, carrier density, hole carrier charge field, and stress in
1D in the time domain can be computed and graphically depicted using the Riemann sum
approximation and numerical inversion of Laplace transform. Silicon (Si), a semiconductor
material, may be used in this simulation. The SI unit uses the input parameters of the Si
material and the magnetic field parameters, which are shown in the following Table 1 [35,36].

7.1. The Photo-Thermoelasticity Models

The distributions of the main real dimensionless fields along the axial direction at
a short moment t = 0.02 are shown in the first group depicted in Figure 1. In order
to describe the non-local photo-thermoelasticity models under the influence of a strong
magnetic field and the Hall current effect, comparisons are made based on the variation of
thermal relaxation times. With the help of the first subfigure, which depicts the isothermal
condition that prevails at the non-local silicon medium’s outer surface, it is possible to study
the dimensionless temperature distributions. The first subfigure shows how photo-thermal
excitation and strong magnetic field pressure cause the dimensionless thermal wave values
to start at their minimum value near the edge of the medium, and then increase with
increasing distance until they approach the maximum value before decreasing gradually.
On the other hand, the thermal wave propagates exponentially to approach zero inside the
medium to reach the equilibrium state. The second subfigure shows the distributions of the
dimensionless mechanical force or normal stress (mechanical wave) throughout the axial
distance. The mechanical wave distributions meet the mechanical ramp-type requirement,
which begins at a positive value on the edge of the non-local medium and progressively
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rises to a maximum value close to the surface (due to the pressure force of a strong magnetic
field or Hall current). The mechanical wave progressively diminishes as it gets further
from the outside surface, then increases and declines smoothly again as it approaches the
zero line and seeks to attain equilibrium. The third subfigure shows how the thermal
and elastic relaxation times affect the distributions of dimensionless hole carrier charges
throughout the axial distance. The hole carrier charge distributions start from positive
maximum values at the boundary edge of the non-local medium with a fast decrease to
approach the minimum value during the processes of holes and plasma recombination.
However, in the second range, the hole carrier charge distributions inside the material
approach the stable situation for a brief period of time (as a result of the lack of excited
electrons inside the material) before decreasing and becoming convergent to the zero line.
According to the plasma recombination processes, the carrier density that represents the
plasma waves (electron charge field distribution) starts from a positive value at the edge,
as seen in the fourth subfigure. The optical-thermal energy and Hall current cause plasma
waves to steadily increase towards the surface until they reach their maximum values. After
briefly resting within the non-local semiconductor medium, they then begin to gradually
decrease. In order to achieve stability, the plasma waves eventually start to get closer to the
zero line. It adopts an exponentially significant behavior that is in line with the findings of
the experiment.

Table 1. The physical parameters of Si material in SI units.

Unit Symbol Value

N/m2 λ
µ

6.4× 1010

6.5× 1010

kg/m3 ρ 2330

K T0 800

sec (s) τ 5× 10−5

K−1 αt 4.14× 10−6

Wm−1K−1 k 150

J/(kg K) Ce 695

m/s s̃ 2

H/m µ0 4π × 10−7

VK−1

mqn 1.4× 10−5

mnq 1.4× 10−5

mqh −0.004× 10−6

mhq −0.004× 10−6

m2s−1 Dn 0.35× 10−2

m2s−1 Dh 0.125× 10−2

m2/s αn 1× 10−2

m2/s αh 5× 10−3



Crystals 2022, 12, 1680 12 of 17Crystals 2022, 12, x FOR PEER REVIEW 15 of 21 
 

 

  
Figure 1. The key physical distributions’ variation in relation to distance under the influence of Hall 
current and non-local parameters, as predicted by photo-thermoelasticity models. 

7.2. The Impact of Hall Current 
The second group (Figure 2) shows how the principal fields ( , ,T Hσ , and N  dis-

tributions) are affected by a strong magnetic field with a Hall current effect as a function 
of axial distance x . Two alternatives are investigated in this group using the DPL model 
for silicon non-local semiconductor material for small-time 0.02t = . When the Hart-
mann number (the strength of magnetic pressure) has a value, the first example depicts 
the distribution of magnetic fields in the presence of the Hall current. The other depicts 
how physical fields are distributed when no significant magnetic field or Hall current are 
present. A cloud of surface electrons is created as a result of violent collisions between 
internal particles within the semiconductor medium caused by optical excitation and the 
compressive intensity of the strong magnetic field with the Hall current (plasma). This 
case deviates from the case of no magnetic excitation in terms of how all physical quanti-
ties propagate as waves. However, the inner particles (with the spin movement of parti-
cles) in the non-local semiconductor lattice are rearranged when a strong magnetic field 
with the Hall current is present. Increased holes and free electrons on the semiconductor’s 

0 2 4 6 8
x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
CT Model
LS Model
DPL Model

0 2 4 6 8
x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
CT Model
LS Model
DPL Model

0 2 4 6 8
x

-1

-0.5

0

0.5

1

1.5
CT Model
LS Model
DPL Model

0 2 4 6 8
x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
CT Model
LS Model
DPL Model

Figure 1. The key physical distributions’ variation in relation to distance under the influence of Hall
current and non-local parameters, as predicted by photo-thermoelasticity models.

7.2. The Impact of Hall Current

The second group (Figure 2) shows how the principal fields (T, σ, H, and N distribu-
tions) are affected by a strong magnetic field with a Hall current effect as a function of axial
distance x. Two alternatives are investigated in this group using the DPL model for silicon
non-local semiconductor material for small-time t = 0.02. When the Hartmann number
(the strength of magnetic pressure) has a value, the first example depicts the distribution of
magnetic fields in the presence of the Hall current. The other depicts how physical fields
are distributed when no significant magnetic field or Hall current are present. A cloud
of surface electrons is created as a result of violent collisions between internal particles
within the semiconductor medium caused by optical excitation and the compressive inten-
sity of the strong magnetic field with the Hall current (plasma). This case deviates from
the case of no magnetic excitation in terms of how all physical quantities propagate as
waves. However, the inner particles (with the spin movement of particles) in the non-local
semiconductor lattice are rearranged when a strong magnetic field with the Hall current is
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present. Increased holes and free electrons on the semiconductor’s outer surface as a result
of the Hall current boost the flow of the electric current inside the semiconductor.
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Figure 2. In both the presence and absence of the Hall current effect, the main field distributions
against distance vary, according to the DPL model in non-local case.

7.3. The Impact of Non-Local Parameter

The third group (Figure 3) illustrates how a non-local parameter affects the main
quantities (T, σ, H, and N distributions) as a function of axial distance x. This group uses
the DPL model to examine two possibilities while taking the influence of the Hall current for
small-time t = 0.02. The first example shows the non-locality semiconductor distribution
when the non-local parameter (ξ1 6= 0) has a value. The other illustrates the distribution of
physical fields in the absence of a significant non-local parameter (local, ξ1 = 0). From this
group, it can be seen that all the field quantities under study exhibit a rise in non-locality.
The temperature field is the lone exception. When compared to other distributions, the
significance of the profile non-locality in temperature reduces. The non-locality remarkably
influences all distributions. All physical fields are significantly impacted by non-locality.
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This is most likely caused by the following mechanism: to characterize the non-local effect
on the distribution of the field variables of interest, the photo-elastic non-locality was
introduced directly into the equation of motion and the constitutive equations rather than
the heat conduction equation, as shown in the figures.
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7.4. The 3D Graph

According to the DPL model for the non-local medium, Figure 4 (the fourth group)
depicts three-dimensional (3D) graphs under the influence of a strong magnetic field and
the Hall current effect. The variations of the wave distribution of fundamental physical
quantities are examined in this figure in relation to changes in both time t and distance x.
The dimensionless time t range can be obtained when 0 ≤ t ≤ 3× 10−2 . With regard to
this group, time variation has an impact on how waves spread across all physical fields that
satisfy the boundary conditions. However, the axial distance and time scale variations affect
how large the wave propagations are in all physical fields. According to the steady-state,
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we see that as distance and time increase, all wave propagation disappears and moves
closer to the zero line.
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8. Conclusions

In this research, the mathematical-physical models of non-local semiconductor materi-
als are examined in the context of the creation of free charge carriers (electron–hole pairs)
by electron excitation under the thermal influence of a light source. Here, a semiconducting
material exposed to a strong magnetic field is used to study the thermal (temperature
distribution), mechanical (normal stress distribution), and plasma (carrier electron/hole
distribution) waves propagation. The newly developed model is based on the recombi-
nation of holes and electrons during elastic and electronic deformation in one dimension.
The processes of optical energy and photo-excited diffusion are considered. Due to the
pressure force of a strong magnetic field’s influence, the Hall current with a Hartmann
number is obtained. The distribution of the physical fields’ wave propagation is impacted
by the variations in relaxation time values. The wave propagation of the physical quantities
under study is also impacted by the Hall current, which is a side effect of the strong mag-
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netic field. This is because some materials, particularly non-local semiconductor materials,
might undergo modifications as a result of the magnetic field, according to scientific theory.
However, changes in time and distance affect how the main fields’ waves propagate. An
example of an electromagnetic impact is the Hall influence. Scientists can therefore learn a
great deal about semiconductors, linear Hall sensors, and Hall potentiometers by studying
the Hall current. In numerous scientific disciplines, including automation technology,
measurement technology, and electronics technology, the Hall effects are used extensively.
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Nomenclature

λ, µ Counterparts of Lame’s parameters,
n0 Equilibrium carrier concentration (electrons concentration)
h0 Equilibrium holes concentration
T0 Absolute temperature
γ = (3λ + 2µ)αt The volume coefficient of thermal expansion
σij Components of the stress tensor
ρ Density of the medium
αh, αn Holes and electrons thermo-diffusive parameters
τθ , τq The elastic and thermal relaxation times
tn, th The electrons and holes relaxation times
αt The coefficient of linear thermal expansion
τq The elastic relaxation time
τθ Thermal relaxation time
Ce Specific heat at constant strain of the medium
K The thermal conductivity of the medium
τ∗ The photogenerated carrier lifetime
Eg The energy gap of the medium of semiconductor
δn = (2µ + 3λ)dn The electrons elasto-diffusive parameter
δh = (2µ + 3λ)dh The holes elasto-diffusive parameter
dn The coefficients of electronic deformation
dh The coefficients of hole deformation
mnq, mqn, mhq, mqh Peltier-Dufour- Seebeck-Soret-like constants
Dn, Dh The diffusion coefficients of the electrons and holes
aQn, aQh, aQ, an, ah The flux-like constants
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