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Abstract: Motivated by an important application in the chemical and pharmaceutical industries, we
consider the non-stationary growth of a polydisperse ensemble of crystals in a continuous crystallizer.
The mathematical model includes the effects of crystal nucleation and growth, fines dissolution, mass
influx and withdrawal of product crystals. The steady- and unsteady-state solutions of kinetic and
balance equations are analytically derived. The steady-state solution is found in an explicit form and
describes the stationary operation mode maintained by the aforementioned effects. An approximate
unsteady-state solution is found in a parametric form and describes a time-dependent crystallization
scenario, which tends toward the steady-state mode when time increases. It is shown that the particle-
size distribution contains kinks at the points of fines dissolution and product crystal withdrawal.
Additionally, our calculations demonstrate that the unsteady-state crystal-size distribution has a bell-
shaped profile that blurs with time due to the crystal growth and removal mechanisms. The analytical
solutions found are the basis for investigating the dynamic stability of a continuous crystallizer.

Keywords: crystal growth; nucleation; evolution of particulate assemblages; mathematical modeling;
analytical solutions

1. Introduction

Volumetric and directional crystallization processes are the basis for many technologi-
cal processes for growing crystals with certain physical and chemical properties [1–5]. As a
rule, in highly supersaturated solutions and supercooled melts, nucleation occurs on micro-
scopic inclusions that are always present in the liquid phase (e.g., particles of dissolved
impurity, dust or foreign microparticles present in the liquid). Then, if the size of the formed
particles of the solid phase exceeds the critical size, the crystallites are viable and capable
of growth. If the size of the formed particles is smaller than the critical size, such particles
dissolve. The more the system is supersaturated (supercooled), the more viable crystals will
be present, and the greater the nucleation rate (frequency). As a rule, this important feature
of a metastable system is described by means of the experimentally well-founded Meirs law
for nucleation kinetics or the theoretical the Weber–Volmer–Frenkel–Zel’dovich (WVFZ)
kinetics law [6–8]. In addition to the nucleation kinetics, the bulk-phase-transformation
process is significantly influenced by a number of other factors. These include, for example,
the crystal growth rate law (quasi-stationary, non-stationary, empirical) [9–14]; the shape
hypothesis of growing crystals (spherical and ellipsoidal or irregular shape approxima-
tions) [15–20]; external mass inflows or heat dissipation through system boundaries [21–25];
the type and shape of the crystallizer [26,27]; the presence or absence of stirring in the bath
liquid [28,29], crystal discharge from the crystallizer [30,31]; the presence or absence of
crystal fragmentation, attrition, coagulation and Ostwald ripening processes [32–38]; simul-
taneous occurrence of nucleation and directional solidification [39,40]; and other factors.
Simultaneous consideration of all these characteristics in a single mathematical model of
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the crystallizer is hardly possible due to its extreme complexity. Therefore, one way is to
take into account in the model the most important factors for a particular type of process
under study. For example, an analytical theory with an allowance for the heat exchange
of a supercooled liquid with the environment while there is a constant withdrawal rate
of product crystals was constructed in references [24,30]. In addition, the influence of the
polymerization process on the operation of an ideal mixing crystallizer was investigated in
references [31,41], whereas the process of formation of self-oscillatory crystallizer operation
mode was investigated with the help of stability theory in references [21,42–44].

In the present work, an analytical theory is constructed which takes into account
simultaneously such processes as (i) nucleation and growth of crystals, (ii) their dissolution,
(iii) influx of impurity into the supersaturated liquid of the crystallizer and (iv) withdrawal
of product crystals from the supersaturated solution. The paper is organized as follows.
In Section 2, a mathematical model of the process is formulated and its analytical solution
is constructed. Also, in Section 2, an analysis of these solutions is performed. The main
conclusions are given in Section 3.

2. The Integro-Differential Model and Its Analytical Solution

Let us first formulate the mathematical model of the continuous operation of an
isothermal crystallizer with ideal mixing using the following physical assumptions: (i) the
critical radius of nucleating crystals that are capable of further growth is negligible; (ii) the
growth rate does not depend on the size of a crystal (kinetic mode); and (iii) there is no
crystal fragmentation, attrition, coagulation or Ostwald ripening. A scheme of a crystallizer
is shown in Figure 1. The working principle of this crystallizer is as follows [22]. A liquid
solution is supplied to the working chamber of the crystallizer. Its supersaturated state
is achieved through the cooling of the working chamber. Supersaturation of the solution
creates conditions for nucleation and growth of crystals. The product crystals that have
grown to a certain size are removed from the crystallizer.

Figure 1. A scheme of continuous crystallizer with ideal mixing, isothermal operation and
constant overall volume (liquid phase and growing crystals). The classification functions
h f (r) = R1(1− h(r− r f )) and hp(r) = 1 + R2h(r− rp) that, respectively, define the size-dependence
of fines dissolution and product withdrawal, are considered to be piecewise-constant.

Assuming that the growing crystals are spherical, let us write the kinetic equation for
the particle-radius distribution function n(r, t):

∂n
∂t

= −G(c)
∂n
∂r
− q

V
f (r)n(r, t), (1)

where r and t represent the radial and time variables; G(c) = kg[c(t)− cs]
g is the concentration-

dependent growth rate of crystals; c(t) and cs are the current concentration in the working
chamber and concentration at saturation; q is the feed rate; V is the total volume; and kg
and g are the growth rate constant and growth rate exponent. Generally speaking, the
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classification function f (r) can be chosen in various ways. Following the paper [22], let
us consider the simple case where withdrawal of product crystals and dissolution of fines
occur at the same rate q. Taking this into account, we chose f (r) as follows [22]:

f (r) = R1

(
1− h(r− r f )

)
+ 1 + R2h

(
r− rp

)
, (2)

where h(r) stands for the Heaviside step function, r f is the fines-removal cut size and rp
is the product-class cut size. By paying attention to Equation (2), we can see that crystals
dissolve at r < r f with the fines-removal constant R1 and do not dissolve at r ≥ r f . In
addition, if crystal size exceeds rp (r ≥ rp), such a product crystal is removed with the
withdrawal constant R2, and the crystal is returned to the system if r < rp.

Equation (1) should be supplemented by the initial and boundary conditions [22]

n(r, 0) = n0(r), n(0, t) =
B(c)
G(c)

, (3)

where B(c) = kb(c(t)− cs)
b is the nucleation rate, and kb and b are the nucleation rate

constant and nucleation-rate exponent.
The solute mass balance equation reads as [22]

M
dc
dt

=
q(ρ−Mc)

V
+

ρ−Mc
ε

dε

dt
+

qMc f

Vε
− qρ

Vε

1 + kvR2

∞∫
0

h
(
r− rp

)
n(r, t)r3dr

, (4)

where ρ is the crystal density, M is the molar mass of crystals, c f is the feed concentration,
kv is the volumetric shape factor and ε is the void fraction.

ε =
Vliquid

V
= 1− Vsolid

V
= 1− kv

∞∫
0

n(r, t)r3dr.

In addition, the initial concentration should be regarded as known; i.e., c(0) = c0. Note that
the last term in Equation (4) expresses the mass outflux due to the growth and withdrawal
of crystals.

Model (1)–(4) is a closed system and describes the evolution of the crystal system in
the supersaturated liquid of the crystalliser, taking into account the physical hypotheses
made above. Let us especially note that the model takes the initial state into account
only by means of an initial distribution function (first expression (3)) and known initial
concentration c0, although, at a very beginning, new aggregates of solid phase are formed
by the nucleation process. This is due to the fact that our model describes the process
of crystal-ensemble evolution in the crystallizer on macroscopic scales exceeding tens
of seconds in order of magnitude (see the more detailed explanation of characteristic
crystallization size and time scales at the end of this section).

Note that the model under consideration does not take into account the influence
of surface energy on the evolution of crystal ensemble. This, in particular, is caused by
considering an intermediate stage of phase transitions when particles (crystals) are located
far enough from each other and interactions between them can be neglected. On the other
hand, the surface tension leads to a shift in the phase transition temperature of each crystal
due to the Gibbs–Thomson effect [45]. This in turn changes the crystal growth rate G(c).
However, since our theory uses the empirical power law for G(c), the surface energy is not
explicitly present in the model.
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2.1. The Steady-State Solutions

Now, assuming that nothing depends on time t, we integrate Equation (1), keeping in
mind the boundary condition (3). The steady-state particle-radius distribution function
nss(r) has the form

nss(r) =



co exp
(
− q(1+R1)r

VG(css)

)
, 0 < r ≤ r f ,

co exp
(
− q(r+R1r f )

VG(css)

)
, r f < r < rp,

co exp
(
− q[(1+R2)r+R1r f−R2rp]

VG(css)

)
, rp ≤ r,

(5)

where the constant co is given by

co =
B(css)

G(css)
=

Λkb
kg

, Λ =
(css − cs)b

(css − cs)g .

The steady-state solute concentration css is defined by the solute mass balance (4) and
satisfies the integral equation

Mcssεss −Mc f + ρkv Ic = 0, (6)

where

Ic =

∞∫
0

[
1 + R2h(r− rp)

]
nss(r)r3dr, εss = 1− kv

∞∫
0

nss(r)r3dr.

Figure 2 illustrates the steady-state distribution function with different values of the
nucleation and growth rate constants. Due to the fines dissolution (at r < r f ) and the
withdrawal of product crystals (at r > rp), the particle distributions have kinks at points
r = r f and r = rp. As this takes place, the more intense the crystal nucleation (more
b), the higher in value the corresponding distribution function. As the crystal growth
rate increases (higher values of g), the particles reach size rp faster and withdraw from
the system.

Figure 2. The steady-state particle-radius distribution nrss = nss/Λ for different nucleation and growth
rate constants: b = g = 1 (solid line); b = 1, g = 1.5 (dashed line); b = 1.5, g = 1 (dotted line).
Parameter values for a laboratory-scale KCl crystallizer are [22]: r f = 0.2 mm, rp = 1 mm, R1 = 5,
R2 = 2, q = 0.05 L/min, V = 10.5 L, kb = 2.05 · 10−2 L3/(min mol4), kg = 9.15 · 10−2 mm L/(min mol),
ρ = 1989 gr/L, M = 74.551 gr/mol, kv = 0.1112, cs = 4.038 mol/L and css = 4.091 mol/L for the
solid line.
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2.2. The Unsteady-State Solutions

To find the unsteady-state solution, we introduce the modified time x and the natural
logarithm of the distribution function N as follows.

t(x) =
x∫

0

dx1

G(c(x1))
, N(r, x) = ln n(r, t). (7)

By rewriting (1) and (3) and using (7), we get

∂N
∂x

+
∂N
∂r

+
q
V

f (r)
G(c(x))

= 0,

N(r, 0) = ln n0(r), N(0, x) = ln Q(c(x)),
(8)

where Q(c(x)) = B(c(x))/G(c(x)). The boundary-value problem (8) can be solved using
the Laplace integral transform with respect to r as follows:

N∗(s, x) =
∞∫

0

exp(−sr)N(r, x)dr. (9)

Now, by rewriting (8) by means of (9) in the Laplace transform image space, we obtain

sN∗ +
dN∗

dx
= ln Q(c(x))− q

V
f ∗R(c(x)),

N∗ = (ln n0(r))
∗, x = 0,

(10)

where R(c(x)) = 1/G(c(x)). Here, s represents the Laplace transform variable and super-
script ∗ denotes the Laplace transform image space.

Integration of Equation (10) gives

N∗(s, x) = (ln n0(r))
∗ exp(−sx) +

x∫
0

exp(−s(x− x1)) ln Q(c(x1))dx1

− q
V

x∫
0

exp(−s(x− x1)) f ∗R(c(x1))dx1.

(11)

While taking the inverse Laplace transforms (δ(x) is the Dirac delta function) [46,47]

exp(−as)g∗(s)→


g(x− a), x > a ≥ 0

0, x < a

, exp(−as)→ δ(x− a)

into account, we arrive at the distribution function

n(r, x) =



n0(r− x)Q[c(r− x)] exp

− q
V

x∫
0

F(x1)R(c(x1))dx1

, r > x

Q[c(x− r)] exp

− q
V

x∫
0

F(x1)R(c(x1))dx1

, r < x

, (12)
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where

F(r, r1, x) =


f (r− (x− x1)), r > x− x1 ≥ 0

0, r < x− x1

and the initial distribution function n0(0) is normalized to unity. In this case, expression (12)
is continuous at r = x.

Thus, the exact analytical solution (12) defines the particle-radius distribution function
dependent on solute concentration, c. To plot n(r, x), let us develop below the following
approximate method. First of all, we consider here the case of insignificant changes in
the solute concentration (according to reference [22], the fluctuations in concentration are
a few tenths of a percent). In this case, to obtain a good (main) approximation of the
particle-radius distribution function n(r, x) = nm(r, x), one can change c(x) in (12) to a
constant solute concentration (e.g., by the initial or steady-state value css, which can be set
in the working chamber of the crystallizer at the initial start-up of its operation).

Keeping this in mind, the main contribution of the distribution function reads as

n(r, x) = n0(r, x) =



n0(r− x)Q(css) exp

− qR(css)

V

x∫
0

F(x1)dx1

, r > x

Q(css) exp

− qR(css)

V

x∫
0

F(x1)dx1

, r < x

. (13)

By substituting (13) into (4) and rewriting it in terms of the modified time variable x, we
come to

M
dc
dx

G(c(x)) =
q(ρ−Mc)

V
+

ρ−Mc
ε(x)

dε

dx
G(c(x)) +

qMc f

Vε(x)

− qρ

Vε(x)

1 + kvR2

∞∫
0

h
(
r− rp

)
n(r, t)r3dr

, ε(x) = 1− kv

∞∫
0

n(r, x)r3dr.
(14)

Now, taking the initial condition c(0) = c0 into account, we have the Cauchy problem for
the determination of main approximation c(x) = cm(x) for solute concentration (at n = nm
in Equation (14)). A more accurate approximation n(r, x) = n1(r, x) to the distribution
function (13) can be found by substitution of cm(x) from (14) into (12). In turn, by sub-
stituting this better approximation n1(r, x) into the Cauchy problem (14), we can find a
more precise approximation for c(x) = c1(x). As this takes place, Equation (7) determines
the real time as a function of modified time x. In other words, the solution is found in a
parametric form with x being the decision variable.

These solutions are shown in Figure 3. Here we see that the particle-size distributions
(curves marked by symbols for various x) approach the steady-state profile (solid line)
when time t and modified time x increase. This means that the solutions shown in Figure 3
are in the dynamic stability region. It can also be seen that the dissolution of small crystals
(at r < r f ) quickly reaches a stationary profile at a given crystallizer operating mode
(with constant inflow of substance) (all curves shown in Figure 3 practically coincide at
0 < r < r f ). The bell-shaped curves shown in Figure 3 at r > r f are blurred with time
due to the growth and withdrawal of crystals from the system at r = rp. Eventually, a
bell-shaped form disappears and the non-stationary distribution merges with the stationary
one (solid line in Figure 3).
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Figure 3. The unsteady-state particle-radius distribution at different decision variables x (symbols)
and the steady-state distribution function (solid line). System parameters correspond to Figure 2 with
b = g = 1. The initial distribution function n0 was chosen as a normal (Gaussian) distribution with a
standard deviation of 0.4 and zero mean.

Let us especially underline characteristic crystallization size and time scales of the
theory under consideration. Starting from heterogeneous nucleation in supersaturated
solutions, they can be estimated as follows: (i) size of critical nuclei is in the order of
1–10 µm [6], (ii) typical induction times from which primary nucleation kinetics can be
established are greater than 10 s [48], (iii) typical sizes of crystals are in the order of
10−4–10−3 m [22], (iv) the typical crystal growth time is greater than 10 s [48], (v) the
characteristic length scale of a crystallizer is greater than 0.1 m−3 [22] and (vi) the typical
macroscopic time of crystallization is greater than 1000 s [22].

3. Conclusions

In this paper, a theory of continuous operation mode of a crystallizer was developed
with allowances for (i) ideal mixing, (ii) isothermal conditions, (iii) constant volumes of
solid and liquid phases, (iv) negligible size of nucleating crystals, (v) size-independent
growth rate of evolving crystals, (vi) simultaneous crystal nucleation, evolution and fines
dissolution, (vii) withdrawal of product crystals and (viii) no crystal fragmentation, attrition,
coagulation or Ostwald ripening. The theory was developed on the basis of a population-
balance approach. Thus, our theory is based on the nonlinear first-order kinetic equation
for the particle-size distribution function and the integro-differential mass balance equation
describing the evolution of solute concentration. The exact steady-state solution to this
nonlinear model was found analytically, i.e., the steady-state particle-size distribution in
various domains of crystal sizes has been derived (Equation (5)). In addition, the steady-
state solute concentration is defined by a transcendental equation (Equation (6)). Next,
while introducing the logarithm of the distribution function, we rewrote the kinetic equation
in integrable form. Using the Laplace transform with respect to the spatial coordinate, this
equation was solved analytically. As a result, the unsteady-state particle-size distribution
function was found to be dependent on the solute concentration (Equation (12)). To solve
this equation together with the integro-differential mass balance equation, we applied
the iterative method. Taking small changes in the solute concentration into account, we
found the main contributions to the distribution function nm (Equation (13)) and solute
concentration cm (the Cauchy problem (14) with n = nm). To obtain a more precise
distribution function n1, we substituted cm into Equation (12) and arrived at n1(r, x). Then,
by substituting n1 into the Cauchy problem (14), we came to c1(x). The iterative procedure
can then, in principle, be continued many times. However, our calculations have shown
that the first iteration yields a solution that converges on the main approximation.
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An important point is that our non-stationary solution tends toward the steady-state
solution when time increases. By this we mean that the analytical solution found is stable
at a chosen set of parameter values used for calculations. Generally speaking, of course,
should we study whether the crystallization process is dynamically stable? To answer
this question, one can develop the linear and non-linear dynamic stability theories for the
process under consideration. As this takes place, the linear theory only enables us to find
a neutral stability surface by dividing the stable and unstable crystallization regions. To
calculate the amplitudes of self-oscillatory crystallization, it is necessary to construct a
weakly nonlinear stability theory. For this purpose, the cubic terms must be left in the
perturbation equations according to the Landau–Hopf nonlinear stability theory. Such a
theory can be developed in the near future in the spirit of previous studies of dynamic
stability [49–54].
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