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Abstract: The development of new techniques for the detection of microRNAs (miRNAs) is highly
desirable. Herein, a new crystalline three-component covalent organic framework (COF) termed EB-
TAPB-TFP COF was synthesized under solvothermal conditions utilizing 1,3,5-triformylphloroglucinol,
1,3,5-tris(4-aminophenyl)benzene and ethidium bromide as monomers. Interestingly, EB-TAPB-TFP
COF can be self-exfoliated into two-dimensional nanosheets (NSs) in an aqueous medium. The obtained
EB-TAPB-TFP NSs exhibited a remarkable fluorescence intensity enhancement in the presence of a DNA-
miRNA heteroduplex when compared to the presence of single-stranded DNA and other phosphate-
based small molecules, making it promising in the detection of miRNA without tagging any fluorescent
marker. Moreover, the EB-TAPB-TFP NSs can also be used as sensing material for the detection of a
DNA-miRNA heteroduplex using the quartz crystal microbalance technique, which is in good agreement
with the fluorescence sensing result. The exploration of COF-based sensors in this work demonstrates a
new pathway for the selective detection of miRNAs.

Keywords: covalent organic frameworks; fluorescent detection; microRNAs; quartz crystal microbalance

1. Introduction

MiRNAs are a class of endogenous, noncoding small RNA molecules (roughly 22 nu-
cleotides) that can serve as gene-expression regulators [1]. It has been proven that miRNAs
can be utilized as new potential diagnostic markers for diseases; thus, the detection of
miRNAs has attracted extensive attention over the past decade [2–4]. A series of different
traditional approaches (for instance, real-time polymerase chain reaction (RT-PCR) [5],
northern blotting [6] and microarray-based assays [7]) have been used wildly for the deter-
mination of miRNAs. However, the above-mentioned methods have some drawbacks, such
as being time-consuming, expensive, involving complicated steps, and so on. Therefore, on
the basis of new functional materials or sensing platforms, a great number of determination
technologies have been explored in recent years [8–10].

In this context, two-dimensional (2D) nanomaterials, such as metal–organic frame-
works (MOFs) [11–18], COFs [19–28], graphitic carbon nitride (g-C3N4) [29], transition
metal dichalcogenides (TMDs) [30], black phosphorene (BP) [31,32] and graphene [33,34],
have shown great potential for the detection of biomolecules. In particular, 2D COF NSs, a
new member in the family of 2D nanomaterials, have recently attracted much interest in
the field of biosensing owing to their low density, large surface area and excellent chemical
stability [19]. Indeed, two typical approaches have been exploited for the fluorescence
recognition of biomolecules when employing 2D COF NSs as sensing materials [35–38].
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In the first approach developed by Zhang and coworkers, ultrathin TPA-COF NSs were
prepared and utilized as a novel sensing platform for the highly sensitive and selective de-
termination of DNA [35]. Nevertheless, such a method can only identify DNA biomolecules
labeled with fluorescent dyes, which, to some extent, may limit their actual applications.
To address this issue, an alternative approach has been recently explored by Ajayaghosh’s
group, in which two-component fluorescence COF NSs were prepared for label-free DNA
detection [38]. However, the sensitivity of such a detection method still requires further
improvement. Furthermore, studies on the utilization of self-exfoliated 2D fluorescence
COF NSs for the label-free and sensitive detection of DNA or RNA remain extremely scarce,
and undoubtedly it is necessary for this to be further investigated.

Herein, by elaborately selecting the geometries of organic building blocks and their con-
nection patterns, a new three-component 2D COF, namely, EB-TAPB-TFP COF, was success-
fully synthesized using 1,3,5-triformylphloroglucinol (TFP), 1,3,5-tris(4-aminophenyl)benzene
(TAPB) and ethidium bromide (EB) as linkers. Interestingly, the obtained EB-TAPB-TFP
COF can be facilely self-exfoliated into nanosheets (EB-TAPB-TFP NSs) in water. The EB-
TAPB-TFP NSs were used as a fluorescence sensing platform for the specific recognition of a
PDNA-miRNA heteroduplex, prepared by hybridization of a probe DNA (PDNA) with its
complementary target miRNA (let-7). Such a platform allows the identification of total/partial
complementary label-free miRNA strands. Moreover, the EB-TAPB-TFP NSs can also be used
as sensing material for the determination of a PDNA-miRNA heteroduplex on a quartz crystal
microbalance (QCM) sensor, which is consistent with the result of fluorescence sensing. To
the best of the authors’ knowledge, this work presents the first case of the implementation of
COF-based miRNA detection within a QCM sensor.

2. Experimental Section
2.1. Reagents and Instruments

All of the chemicals and reagents were commercially available and used without addi-
tional purification. TAPB (99%) and TFP (99%) were purchased from Shanghai Kylpharm
Co., Ltd. (Shanghai, China). EB (99%), monobasic phosphate (MBP), dibasic phosphate
(DBP), adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine
triphosphate (ATP) were purchased from Macklin Inc. (Shanghai, China). HPLC-purified
miRNA and DNA were obtained from Sangon Biotech Co., Ltd. (Shanghai, China). The
sequences of DNA and miRNAs, including let-7a, let-7c, let-7b and miR221, are listed in
Table S1 in the Supporting Information.

Fourier transform infrared (FT-IR) spectra were recorded on a Spectrum Two Fourier
Transform Infrared Spectrometer (Perkin-Elmer, America). Power X-ray diffraction (PXRD)
patterns were acquired on a Ultima IV X-ray Powder Diffractometer (Rigaku, Japan)
operating at 40 mA and 40 kV using Cu Kα radiation (λ = 0.15418 nm). Thermogravimetric
analysis (TGA) was carried out using a TG 209 F3 Thermogravimetric Analyzer (Netzsch,
Germany) at a heating rate of 10 ◦C min−1 under nitrogen protection. Nitrogen adsorption–
desorption isotherms were measured at liquid nitrogen temperature, using an ASAP 2020
Plus HD88 surface area and porosity analyzer (Mike, America). The samples were degassed
for 12 h at 100 ◦C before the measurements. Surface areas were calculated by the Brunauer–
Emmett–Teller (BET) method. The morphology and structure observations were performed
on a ZEISS Gemini 500 field emission scanning electron microscope (FE-SEM, Carl Zeiss,
Germany). The solid-state 13C NMR spectrum was recorded on a AS400MHz spectrometer
(Varian, Germany). Fluorescence experiments were performed on an F4600 fluorescence
analysis instrument (Hitachi, Japan). Zeta potentials were recorded by a Zetasizer Nano
ZS90 system (Malvern, England). The thickness observation was taken on a Dimension
Icon atomic force microscope (AFM, Bruker, Germany).
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2.2. Preparation of EB-TAPB-TFP COF

EB (30.7 mg, 0.078 mmol), TAPB (27 mg, 0.078 mmol) and TFP (27 mg, 0.13 mmol)
in a mixture of dioxane (1.0 mL) and EtOH (0.40 mL) were added to a 10 mL vial and
sonicated for 10 min. Then, 0.10 mL of acetic acid solution (6 M) was added. Subsequently,
the resulting mixture was rapidly sealed and deoxygenated with argon for 15 min. After
heating in an oven at 110 ◦C for 3 days, the mixture was cooled to room temperature, and
the solid was collected by filtration, washed successively with THF and MeOH, and dried
under vacuum to produce dark-red solids of EB-TAPB-TFP COF (73.6 mg, 92% yield).

2.3. Preparation of EB-TAPB-TFP NSs

Self-exfoliation of EB-TAPB-TFP was carried out by suspending 2.0 mg EB-TAPB-TFP
COF powder in 4.0 mL ultrapure water without any physical or chemical disturbance at
room temperature for 48 h.

2.4. Preparation of EB-TAPB-TFP NSs–PDNA-miRNA Heteroduplex Hybrid

An EB-TAPB-TFP NSs–PDNA-miRNA heteroduplex hybrid was prepared by dropwise
addition of 50 µL PDNA-miRNA heteroduplex (500 µM) in Tris-HCl buffer (50 mM) to 1.0 mL
EB-TAPB-TFP NSs dispersion at room temperature. During the addition, constant stirring was
maintained on vortex. For complete hybridization, the EB-TAPB-TFP NSs–PDNA-miRNA
heteroduplex hybrid was kept for vortex mixing for 24 h at 22 ◦C. The hybrid was collected
by centrifugation, followed by drying under vacuum at room temperature.

2.5. Fluorescence Measurements

For PDNA-miRNA heteroduplex hybridization, firstly, an equal volume of PDNA
(40 µM) and miRNA (40 µM) in Tris-HCl buffer (50 mM) was mixed and heated at 37 ◦C for
2 h. Then, the PDNA and PDNA-miRNA heteroduplex were prepared in different concen-
trations (2.5, 5, 10, 15 and 20 µM) with Tris-HCl buffer (50 mM), respectively. Typically, a
dispersion of 1.0 mL was prepared by mixing 980 µL EB-TAPB-TFP NSs with 20 µL of PDNA,
PDNA-miRNA heteroduplex, MBP, DBP, AMP, ADP or ATP, respectively, and was finally
measured using fluorescence spectroscopy. The fluorescence measurements were performed
with an excitation slit width of 5.0 nm and an emission slit width of 5.0 nm. The emission
spectra were collected from 450 to 650 nm under an excitation wavelength of 350 nm.

2.6. QCM Measurements

The QCM gold-plated chip was firstly immersed in a piranha solution (98% H2SO4:
30% H2O2 (v/v) = 7:3) for 10 min, then washed with deionized water several times and
finally dried with N2. The pretreated gold-plated chip was immersed in PDNA (probe
DNA) Tris-HCl solution (1.0 mL, 50 nM) for 1 h at room temperature. Then, the chip
was washed with ultrapure water and dried with N2. Finally, the chip was immersed in
6-mercapto-1-hexanol solution (4.0 µM) for 30 min, washed with ultrapure water and dried
with N2 to yield the PDNA-coated QCM chip.

Before the QCM test, the PDNA-coated QCM chip was incubated with a let-7a solution
at a certain concentration for 1 h and dried by N2. To avoid NSs deposition, QCM sensors
were tested face down. Firstly, phosphate buffer was injected into the QCM cell as the
baseline signal. When the QCM frequency was basically stable (frequency drops < 1 Hz
per min), the EB-TAPB-TFP NSs Tris-HCl solution/suspension was injected into the QCM
liquid cell until it was filled, and the QCM cell was kept still until a stable signal was
obtained. After 6000 s, the frequency change was recorded and used for data analyzing.

3. Results and Discussion

The new three-component EB-TAPB-TFP COF could be prepared by the condensation
reaction of EB (30.7 mg, 0.078 mmol), TAPB (27 mg, 0.078 mmol) and TFP (27 mg, 0.13 mmol)
in a degassed mixture of 1,4-dioxane (1.0 mL), EtOH (0.40 mL) and 6 M aqueous acetic
acid (0.10 mL) at 110 ◦C for 3 days (Scheme 1), producing dark-red microcrystalline solids
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with an excellent yield (~92%). The as-prepared EB-TAPB-TFP COF was insoluble in
common organic solvents such as acetone, ethanol, tetrahydrofuran, dichloromethane, N,N’-
dimethylformamide (DMF), and so on. A powder X-ray diffraction (PXRD) measurement
was conducted in order to evaluate the crystallinity of EB-TAPB-TFP COF. As illustrated in
Figure 1a, the PXRD pattern of EB-TAPB-TFP COF showed a relatively strong diffraction
peak at 5.4◦ and two weak diffraction peaks at 9.3◦ and 25.7◦, which was similar to that
of the reported DB50%-TAPB-Tp COF [39], indicating the long-range ordered crystalline
structure of EB-TAPB-TFP COF. The above-mentioned three diffraction peaks in the PXRD
pattern could be assigned to the (100), (200) and (001) facets, respectively.
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Figure 1. (a) The simulated and experimental PXRD patterns of EB−TAPB−TFP COF. (b) The FT−IR
spectra of the starting materials of EB, TAPB and TFP, as well as EB−TAPB−TFP COF. (c) Solid−state
13C CP−MAS NMR spectrum of EB−TAPB−TFP COF. The asterisks (*) indicate the spinning side
bands. (d) SEM image of EB−TAPB−TFP COF.
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As shown in Figure 1b, by comparing the three starting materials of EB, TAPB and
TFP, the two new characteristic vibrational bands appearing at 1588 and 1215 cm−1 in the
Fourier transform infrared (FT-IR) spectrum of EB-TAPB-TFP COF could be assigned to the
C=C and C-NH bonds, suggesting the successful condensation reaction of EB and TAPB
with TFP [39]. In comparison to the TFP linker, the weakened but existing stretching bands
of aldehyde bands (~1699 cm−1) of EB-TAPB-TFP COF suggested the occurrence of the
Keto–Enol Tautomerism. Similarly, although the characteristic N-H stretching bands of
EB-TAPB-TFP COF decreased when compared with those of the EB and TAPB monomers,
obvious N-H stretching bands at 3200 cm−1 could still be observed, providing further
evidence for the Keto–Enol Tautomerism. As can be seen in Figure 1c, the 13C cross-
polarization magic angle spinning (CP-MAS) solid-state NMR spectrum of EB-TAPB-TFP
COF showed a signal at 188 ppm, which could be attributed to the carbon atom of the
C=O groups, confirming that the structure of the resulting COF existed in a keto form [39].
Thermogravimetric analysis (TGA) demonstrated that EB-TAPB-TFP COF displayed good
thermostability under nitrogen atmosphere (Figure S1) (see Supporting Information). The
scanning electron microscopy (SEM) image suggested that EB-TAPB-TFP COF exhibited an
aggregated cluster-like morphology (Figure 1d). The porosity of the EB-TAPB-TFP COF was
evaluated by measuring the nitrogen adsorption–desorption isotherms at 77 K on the fully
activated crystalline sample. The N2 adsorption isotherm of EB-TAPB-TFP COF presented
a typical type I characteristic (Figure S2), where the N2-adsorbed amount increased sharply
at the low P/P0 region, indicating the microporous nature of the obtained COF framework.
The hysteresis loop was observed between the N2 adsorption isotherm and desorption
isotherm, suggesting the presence of some mesopores. The Brunauer–Emmett–Teller (BET)
surface area of EB-TAPB-TFP COF was calculated as 166 m2 g−1. Such a relatively low
BET specific surface area of EB-TAPB-TFP COF might be attributable to the hard removal
of partial guest solvents and/or unreacted linkers filling the pores of the COF framework
owing to the hydrogen-bonding interactions [40,41]. Additionally, the average pore size
of EB-TAPB-TFP COF was ∼1.6 nm, calculated by the nonlocal density functional theory
(NLDFT), as depicted in Figure S3.

The self-exfoliated EB-TAPB-TFP NSs could be simply acquired upon treatment of
EB-TAPB-TFP COF powder with deionized water, displaying an obvious Tyndall effect, as
illustrated in Figure 2a. The atomic force microscopy (AFM) image of EB-TAPB-TFP NSs
exhibited a thickness of 4.9 ± 1 nm, indicating the few composing layers of the COF NSs
(Figure 2b).
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It has been demonstrated that COFs can exhibit promising applications in the field
of fluorescence sensing [19]; thus, EB-TAPB-TFP NSs were used as a sensing platform
for miRNA detection in this study. The miRNA/DNA sequences used in this work are
listed in Table S1. The PDNA-miRNA heteroduplex was prepared by combination of the
probe DNA (PDNA) with its complementary miRNA (let-7a). As displayed in Figure 3a,
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the EB-TAPB-TFP NSs’ aqueous dispersion exhibited a dim emission at the wavelength
of 624 nm. After the addition of PDNA into the aqueous dispersion of EB-TAPB-TFP
NSs for 10 min, the fluorescence was only slightly changed in terms of the peak position
and intensity. In a sharp contrast with this, the fluorescence intensity of the EB-TAPB-
TFP NSs’ dispersion was significantly enhanced after the addition of the PDNA-miRNA
heteroduplex. A comparison of the fluorescence intensities of the EB-TAPB-TFP NSs in
the presence of the PDNA and PDNA-miRNA heteroduplex uncovered an approximately
7.5-fold enhancement in the latter case, indicating the much stronger interaction between
the EB-TAPB-TFP NSs and PDNA-miRNA heteroduplex than between the EB-TAPB-TFP
NSs and single-stranded PDNA.
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Interestingly, the maximum emission wavelengths of the EB-TAPB-TFP NSs in the
presence of the PDNA and PDNA-miRNA heteroduplex were apparently different, which
aroused our interest to further study the hypsochromic shift of the EB-TAPB-TFP NSs
in the presence of the PDNA and PDNA-miRNA heteroduplex, respectively. Therefore,
the PDNA and PDNA-miRNA heteroduplex were prepared with various concentrations
(0, 50, 100, 200, 300, 400 nM) and then added separately into the EB-TAPB-TFP NSs’
aqueous dispersion. As described in Figure 3b, the emission of EB-TAPB-TFP NSs in
the presence of the PDNA-miRNA heteroduplex with different concentrations presented
a similar maximum emission wavelength at around 606 nm but showed a blue-shift of
18 nm compared to that of the parent EB-TAPB-TFP NSs. On the contrary, the maximum
emission wavelength of EB-TAPB-TFP NSs changed only slightly upon the addition of
PDNA (Figure 3c). The larger blue-shift of EB-TAPB-TFP NSs in the presence of the PDNA-
miRNA heteroduplex than of PDNA indicated a stronger interaction between the EB-TAPB-
TFP NSs and PDNA-miRNA heteroduplex. Furthermore, a significant difference in the
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fluorescence intensity at the maximum emission wavelength was also observed after the
addition of the PDNA-miRNA heteroduplex and PDNA, respectively, thus demonstrating
a clear identification of the PDNA-miRNA heteroduplex. The native EB-TAPB-TFP NSs
exhibited a distinct zeta potential value of +23 mV (Figure 3d). After adding the PDNA-
miRNA heteroduplex into the NSs’ suspension, the positive value significantly decreased
and negative zeta potential values between -24 and -20 mV were obtained (Figure 3d).
Since the PDNA-miRNA heteroduplex contains a long and periodic phosphate skeleton,
it may provide a great number of interaction sites to simultaneously interact with the
positively charged EB-TAPB-TFP NSs [38], thus giving rise to the blue-shift and intensity
enhancement phenomena in their emission spectra. Additionally, the energy dispersive
X-ray spectroscopy (EDS) element mapping images supported the existence of the PDNA-
miRNA heteroduplex in the resulting EB-TAPB-TFP NSs–PDNA-miRNA heteroduplex
hybrid due to the presence of phosphorus originating from the PDNA-miRNA heteroduplex
(Figure S4).

To further evaluate the sensing ability of the EB-TAPB-TFP NSs for miRNAs, another
two let-7 miRNAs, including a single-based mismatched strand (let-7c) and a double-based
mismatched strand (let-7b), and a total-based mismatched strand (miR-221) were tested.
The PDNA was firstly mixed with total/partial complementary let-7 miRNAs to form
different PDNA-miRNA heteroduplex hybrids and was then titrated independently against
the EB-TAPB-TFP NSs. As shown in Figure 4a, the PDNA-let-7a, PDNA-let-7c and PDNA-
let-7b heteroduplex hybrids exhibited gradually decreased fluorescence intensities under
the same concentration of 400 nM. In this case, the difference in the fluorescence intensities
of let-7 miRNAs is determined by complementarity between PDNA and miRNA. As a result,
the total-based mismatched interfering agent (miR-221) exhibited a significantly smaller
fluorescence enhancement, indicating the high sequence specificity and good discrimination
of the EB-TAPB-TFP NSs for let-7 miRNAs. In comparison to the reported EB-TFP-iCONs
in the presence of DNA [38], the EB-TAPB-TFP NSs–PDNA-miRNA heteroduplex hybrid
showed a nearly 4-fold enhancement in fluorescence intensity, indicating the more sensitive
detection of the EB-TAPB-TFP NSs towards double-stranded heteroduplexes. Moreover,
the addition of other phosphate-based small molecules (400 nM), including MBP, DBP,
AMP, ADP and ATP, to EB-TAPB-TFP NSs, respectively, has led to a negligible change in
fluorescence intensity, further suggesting a better selective interaction between EB-TAPB-
TFP NSs and the PDNA-miRNA heteroduplex (Figure 4b).
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Figure 4. (a) Plot showing fluorescence intensity changes of EB-TAPB-TFP NSs from 606 nm to 625 nm
with increasing concentrations of PDNA, mixture of PDNA and miR-221, PDNA-let-7b heteroduplex,
let-7c heteroduplex and let-7a heteroduplex, from down to up. (b) Plot showing selective fluorescence
enhancement (λex = 350 nm) of EB-TAPB-TFP NSs upon adding MBP, DBP, AMP, ADP, ATP, PDNA
and PDNA-miRNA heteroduplex.
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Finally, the EB-TAPB-TFP NSs were also used for the detection of the PDNA-miRNA
heteroduplex on a QCM sensor. As illustrated in Figure 5a, the thiol-modified probe
DNA (SH-PDNA) was assembled on the gold surface of the QCM chip (single-stranded-
assembly-modified QCM chip). Then, the PDNA on the QCM chip could hybridize with
the complementary miRNA (let-7a) to form double-stranded assemblies on the chip surface
(double-stranded-assembly-modified QCM chip). Subsequently, when the EB-TAPB-TFP
NSs were bound to the QCM chip surface, this gave rise to an increase in the surface quality,
therefore leading to changes in the frequency. As shown in Figure 5b,c, the frequency
decrement of the double-stranded-assembly-modified QCM chip upon the injection of the
EB-TAPB-TFP NSs’ dispersion was found to be 32.7 Hz, while that of the single-stranded-
assembly-modified QCM chip was only 4.6 Hz, further confirming the much stronger
interaction between EB-TAPB-TFP NSs and the PDNA-miRNA heteroduplex than that
between EB-TAPB-TFP NSs and the single-stranded PDNA. The above-mentioned results
suggested that EB-TAPB-TFP NSs showed promise on the QCM sensor. Although it has
been demonstrated that COF materials can be used for the detection of volatile organic
compounds and metal cations through the QCM technique [42–44], to the best of the
authors’ knowledge, this work presents the first case of the implementation of COF-based
miRNA detection within a QCM sensor.
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Figure 5. (a) Schematic outline of the QCM sensing system. (b) Real-time frequency responses of
EB−TAPB−TFP NSs on the QCM sensor incubated with different concentrations of miRNA (let−7a).
From up to down at 6000 s: 0 nM and 50 nM. (c) Frequency changes of EB−TAPB−TFP NSs on the
QCM sensor incubated with PDNA and PDNA−miRNA heteroduplex.

4. Conclusions

In order to develop novel 2D nanomaterials for the ever-growing needs of the label-free
and sensitive detection of DNA or RNA biomolecules, a new three-component EB-TAPB-
TFP COF was successfully synthesized, which could be self-exfoliated into 2D nanosheets
in an aqueous medium. On the one hand, using the fluorescence recognition method, the
resulting EB-TAPB-TFP NSs in the presence of a PDNA-miRNA heteroduplex exhibited
a remarkable fluorescence intensity enhancement when compared to the cases of single-
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stranded DNA and other phosphate-based small molecules, making it promising for the
detection of miRNA without tagging any fluorescent marker. On the other hand, the EB-
TAPB-TFP NSs can also be used as sensing material for the detection of a PDNA-miRNA
heteroduplex using the QCM technique. The frequency change when adding NSs into
the double-stranded-assembly-modified QCM chip was 32.7 Hz, while the frequency shift
on the single-stranded-assembly-modified QCM chip was only 4.6 Hz. Such a notable
difference is in good agreement with the fluorescence sensing result. These two approaches
suggested that COF NSs exhibited promising prospects for the label-free and sensitive
detection of miRNAs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12111628/s1, Table S1. Synthetic oligonucleotides used
in this study; Figure S1: TGA curve of EB-TAPB-TFP COF under nitrogen atmosphere; Figure S2:
N2 adsorption (filled symbols) and desorption (empty symbols) isotherms of EB-TAPB-TFP COF;
Figure S3: Pore size distribution analysis of EB-TAPB-TFP COF; Figure S4: (a) SEM image of the
EB-TAPB-TFP NSs–PDNA-miRNA heteroduplex hybrid and (b) corresponding elemental contents.
(c) Total surface element composition of EB-TAPB-TFP NSs–PDNA-miRNA heteroduplex hybrid by
SEM-EDX. Color mapping for (d) phosphorus and (e) bromine by EDX.
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