
Citation: Smith, T.; Moxon, S.; Cooke,

D.J.; Gillie, L.J.; Harker, R.M.; Storr,

M.T.; da Silva, E.L.; Molinari, M.

Structure and Properties of Cubic

PuH2 and PuH3: A Density

Functional Theory Study. Crystals

2022, 12, 1499. https://doi.org/

10.3390/cryst12101499

Academic Editor: Francesco Stellato

Received: 5 October 2022

Accepted: 19 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Structure and Properties of Cubic PuH2 and PuH3: A Density
Functional Theory Study
Thomas Smith 1 , Samuel Moxon 1, David J. Cooke 1, Lisa J. Gillie 1, Robert M. Harker 2, Mark T. Storr 2,
Estelina Lora da Silva 3 and Marco Molinari 1,*

1 Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
2 AWE Aldermaston, Reading RG7 4PR, UK
3 IFIMUP, Department of Physics and Astronomy, Faculty of Science, University of Porto,

Rua do Campo Alegre 687, 6169-007 Porto, Portugal
* Correspondence: m.molinari@hud.ac.uk

Abstract: The presence of cubic PuH2 and PuH3, the products of hydrogen corrosion of Pu, during
long-term storage is of concern because of the materials’ pyrophoricity and ability to catalyse the
oxidation reaction of Pu to form PuO2. Here, we modelled cubic PuH2 and PuH3 using Density
Functional Theory (DFT) and assessed the performance of the PBEsol+U+SOC (0 ≤ U ≤ 7 eV)
including van der Waals dispersion using the Grimme D3 method and the hybrid HSE06sol+SOC.
We investigated the structural, magnetic and electronic properties of the cubic hydride phases. We
considered spin–orbit coupling (SOC) and non-collinear magnetism to study ferromagnetic (FM),
longitudinal and transverse antiferromagnetic (AFM) orders aligned in the <100>, <110> and <111>
directions. The hybrid DFT confirmed that FM orders in the <110> and <111> directions were the
most stable for cubic PuH2 and PuH3, respectively. For the standard DFT, the most stable magnetic
order is dependent on the value of U used, with transitions in the magnetic order at higher U values
(U > 5 eV) seen for both PuH2 and PuH3.

Keywords: plutonium hydrides; structural properties; magnetic properties; electronic properties;
hybrid density functional theory

1. Introduction

The UK has a long history of nuclear power generation dating from the opening
of Calder Hall reactor at Sellafield in 1956 [1], with a range of reactor types generating
plutonium as a by-product of the power generation [2,3]. Throughout this history, the
dominant plutonium material type for both research and use has been the dioxide, PuO2:
its chemical stability makes it useful as a fuel and for storage.

Plutonium hydrides are less studied in comparison [4] but are nevertheless an impor-
tant class of compounds. Firstly, metallic plutonium corrodes in the presence of hydrogen
or water (gas or liquid) to form hydrides and hydride containing mixtures, and similar
products are formed if plutonium metallic materials are held in close proximity to hydroge-
nous materials (polymers, oils, etc.), which can radiolytically decay and generate hydrogen.
The hydrides formed in such scenarios are often friable, high surface area materials that
react vigorously with air, presenting a pyrophoric hazard [5]. Additionally, the volume
increase associated with formation of hydrides could theoretically lead to mechanical
strain on storage containers [6–8]. Thus, waste packages that might contain plutonium
metallic materials could present specific hazards if they are generating hydrides during
long periods of storage: the subsequent opening in a controlled or uncontrolled fashion
in an air environment could ignite plutonium hydride materials. Secondly, plutonium
hydrides are a component of mixed hydride fuels such as PUZH (PuH2-U-ZrH1.6) that are
reported to have a higher burnup opportunity (103 vs. 50 GWD/MTiHM for mixed oxide
fuels (MOX)) [9]. In addition, a PUZH core is estimated to cost ~13% less than a MOX core,
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and to be superior to mixed oxide fuels MOX in terms of transmutation effectiveness and
proliferation resistance [10].

There are two accepted phase diagrams for the Pu+H system. Firstly, that of Wicke [11]
and of Flotow [12] and secondly that of Haschke et al. [5] The earlier work implies that the
PuH2+x cubic form is present from PuH2 to PuH3 although is non-committal at high tem-
peratures. Alternatively, the Haschke phase diagram indicates that increasing complexity
creeps in above PuH2.7 with first a mixed phase region (cubic + hexagonal), then hexagonal
and then orthorhombic (an unidentified further phase is also suggested in this phase range).
These two-phase diagrams are not necessarily in disagreement and Haschke himself notes
that the discrepancy is probably due to preparation methods (the cubic form would appear
to be observed above PuH2.7 if the hydride is prepared at higher temperatures). So, to sum-
marise the literature consensus that the cubic form of PuHx is observed between PuH1.95
and PuH2.7 and the cubic form may or may not be found at higher hydrogen stoichiometries
depend on the preparation conditions. In PuH2, hydrogen occupies the tetrahedral sites
(HT), and the additional hydrogen in a PuH3 cubic structure is accommodated within the
octahedral sites (HO) (Figure 1). A large activation energy prevents the cubic to hexagonal
phase transition at lower temperatures [5,13].
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Figure 1. Crystal structures of cubic (a) PuH2 and (b) PuH3. Pu in blue and H occupying tetrahedral
sites (HT) in black and octahedral sites (HO) in pink.

Experimental studies on Pu materials are challenging due to the toxic and radioac-
tive nature of the materials [14,15]. Computational studies, utilising first principles tech-
niques, have been employed with different levels of complexity, for instance using DFT
including on-site Coulombic correction Hubbard parameter U [16–26], spin–orbit coupling
(SOC) [18,20,21,24–27], and hybrid [28] functionals. Theoretical studies have shown the
ability to produce accurate descriptions of the properties of cubic PuH2 and PuH3. For ex-
ample, the lattice contraction that occurs in PuHx as x increases from x = 2 to 3 [17,21,26,28]
agreeing with experimental X-ray diffraction (XRD) [29] data, and the metal-insulator
transition (MIT) [21,27] agreeing with a DC experiment [30].

In this study, we model cubic PuH2 and PuH3 using Density Functional Theory (DFT)
using two levels of theory PBEsol+U+SOC (0 ≤ U ≤ 7 eV) and hybrid HSE06sol+SOC,
including spin orbit coupling (SOC) and non-collinear magnetism, to investigate their
structure, and magnetic and electronic properties. In particular, the order of stability of
ferromagnetic (FM), longitudinal antiferromagnetic (AFM) and transverse AFM orders in
the <100>, <110>, and <111> directions.

2. Computational Methodology

PuHx was investigated using a non-collinear relativistic computational method em-
ploying DFT within the Vienna Ab initio Simulation Package (VASP) [31]. Our simulations
use a plane-wave basis set incorporating relativistic core potentials and ion-electron inter-
actions described using the project augmented wave (PAW) method [32]. The inclusion of
spin–orbit coupling (SOC) [33] is deemed important in the previous literature [26], thus is
included in this study. We applied the generalised gradient approximation (GGA) with
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the Perdew–Burke–Ernzerhof for solids (PBEsol) [34] functional and the hybrid functional
of Heyd–Scuseria–Ernzerhof for solids (HSE06sol) [35]. To describe the strong on-site
Columbic repulsion of Pu 5f electrons using the PBEsol functional, the Hubbard U correc-
tion was applied. In the Liechtenstein method [36], the Coulombic (U) and the exchange
(J) parameters are treated as independent variables. We evaluated values of U between
0 and 7 eV with J = 0 eV, and hence this method becomes equivalent to the Dudarev
method [37]. The effective U parameter, Ueff = U – J, is referred to as U from now on.
Following convergence testing, see Table S1, the cut-off energy for the planewave basis set
is 1000 eV (PBEsol+U+SOC) and 500 eV (HSE06sol+SOC). The Brillouin zone was sampled
using a k-point grid of 11 × 11 × 11 for PBEsol+U+SOC for both the calculations for the
geometry optimisation and the electronic density of states, and 5 × 5 × 5 for HSE06sol+SOC
calculations. The electronic and ionic iteration convergence criteria for the bulk structures
of cubic PuH2 and PuH3 were 1 × 10−5 eV per atom and 1 × 10−3 eV Å−1, respectively.
A total of nine magnetic orders were considered, consisting of ferromagnetic, longitudi-
nal antiferromagnetic and transverse antiferromagnetic orders in the <100>, <110> and
<111> alignments. The non-collinear magnetic wave vectors are as shown in Figure 2. The
terminology 1k, 2k and 3k refers to the alignment of the magnetic moments in the <100>,
<110> and <111> directions, respectively, and is common terminology when it comes to
UO2, NpO2 and PuO2 [38–40].
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Figure 2. Magnetic structure of cubic PuHx with FM (a) <100>, (b) <110>, (c) <111>, longitudinal
AFM (d) 1k, (e) 2k, (f) 3k, and transverse AFM (g) 1k, (h) 2k and (i) 3k. Pu in blue and H occupying
tetrahedral sites (HT) in black for PuH2. The presence of H occupying octahedral sites (HO) in PuH3

would not change the directions of the magnetisation on Pu atoms.

3. Results and Discussion

The most stable magnetic order amongst ferromagnetic <100>, <110> and <111>,
longitudinal antiferromagnetic 1k, 2k and 3k, and transverse antiferromagnetic 1k, 2k
and 3k orders, which we will refer to as FM <100>, FM <110>, FM <111>, L1kAFM,
L2kAFM, L3kAFM, T1kAFM, T2kAFM and T3kAFM, respectively, was determined using
HSE06sol+SOC and PBEsol+U+SOC (0 ≤ U ≤ 7 eV) functionals considering non-collinear
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magnetic contributions. The advantage of computational techniques is that they allow
one to simulate different structural models and impose structural constraints to evaluate
whether they are or could be stable. For example, a small distortion of the oxygen sublattice
has been reported in fluorite UO2, which caused a lowering of symmetry from Fm3m to
Pa3 [40,41]. We have also applied such distortion on the hydrogen sublattice in both cubic
PuH2 and PuH3. However, all our attempts to geometry optimise these structures removed
the distortion in the hydrogen sublattice for all magnetic orders and for all values of the
Hubbard U parameter used (0 ≤ U ≤ 7 eV). We have also studied the inclusion of van der
Waals (vdW) dispersions using the D3 method of Grimme et al. [42] (PBEsol+U+SOC+D3)
considering non-collinear magnetic contributions. Our results using vdW corrections are
consistent to those without vdW in terms of energy differences (Table S2), magnetism
(Table S3), symmetry (Table S4), and lattice parameters for PuH2 (Table S5) and PuH3
(Table S6) and their average values (Figure S1), thus PBEsol+U+SOC+D3 results are pre-
sented in the SI.

3.1. Thermodynamic Stability

The relative energetics of cubic PuH2 and PuH3 calculated using HSE06sol+SOC are
reported in Figure 3.
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Figure 3. Relative energies of FM <100>, <110> and <111>, longitudinal AFM 1k, 2k and 3k, and
transverse AFM 1k, 2k and 3k magnetic orders per PuHx for PuH2 in black and for PuH3 in red,
calculated using HSE06sol+SOC. Black and red stars represent the most stable magnetic order for
PuH2 and PuH3, respectively.

For both structures, our data indicates that the FM order is the most stable. For PuH2,
the most stable alignment is in the <110> direction followed by <111> and then <100>
for each of the three magnetisms, i.e. FM, longitudinal AFM, and transverse AFM. The
most stable magnetic order overall for PuH2 is FM <110>; however only a very small
difference (6.0 × 10−3 eV/PuH2) is predicted to the next most stable order T2kAFM. For
PuH3, alignment in the <111> direction is most stable for FM orders, followed by <100> and
<110> directions. For longitudinal and transverse AFM orders, the alignment in the <110>
direction is most stable followed by the ones in the <100> and <111> directions. The most
stable magnetic order overall is FM <111>; however only a 1.0 × 10−2 eV/PuH3 difference
is predicted to the next most stable order FM <100>. Such small differences in relative
energy are mostly of the order of kbT at room temperatures, i.e., 2.6 × 10−2 eV, suggesting
that magnetic orders could co-exist. This is supported by both experimental [30,43] and
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computational [21,26,28] investigations where either FM and AFM orders are predicted as
most stable for PuH2, and only very small energy differences exist between both orders for
PuH2 and PuH3.

Experimentally, using a vibrating sample magnetometer (VSM), Willis et al. [30] (PuHx
with x = 1.93, 45 K) and Kim et al. [44] (PuHx with x = 1.9, 40 K) found the FM order to
be the most stable. Whilst, the AFM order was also experimentally determined as most
stable for PuH2 by Aldred et al. [43] (PuHx with x = 1.99, 30 K) using the Faraday method
in agreement with the nuclear magnetic resonance (NMR) results of Cinader et al. [45] Such
a difference in magnetic order obtained by the experiments was attributed to differences in
samples and compositions by Willis et al. [30] However, the determination of the correct
composition and magnetic properties of PuHx is difficult to obtain experimentally as
thermodynamic equilibrium has to be reached, in addition to a possible oxidation of the
sample, i.e., where the fluorite PuO2 structure may also be present as a surface layer onto
the Pu metal [43].

Computationally, the hybrid PBE0 (without SOC) of Li et al. [28] found that the FM
<100> order is more stable than the 1k AFM order for both cubic PuH2 and PuH3 with only
small energy differences, i.e., EFM-EAFM of −5.4 × 10−2 eV for PuH2 and −4.1 × 10−2 eV
for PuH3. For PuH2, using HSE06sol+SOC we found the order of stability in the <100>
alignment is FM <100> > L1kAFM > T1kAFM, which agrees with findings from an alterna-
tive hybrid method of Li et al. [28]. The energy differences we predict between orders are
very small with only −2.2 × 10−3 eV between FM <100> and L1kAFM, and −3.1 × 10−3 eV
between FM <100> and T1kAFM. For PuH3, using HSE06sol+SOC we found that the order
of stability in the <100> direction is FM <100> > T1kAFM > L1kAFM, with small energy
differences of −2.4 × 10−2 eV between FM <100> and T1kAFM, and −4.9 × 10−2 eV
between FM <100> and L1kAFM. Furthermore, the GGA+U+SOC study of Guo et al. [21]
found FM to be more stable than AFM for both PuH2 and PuH3, agreeing with the present
work and Li et al. [28] Although the alignment of the magnetic order is not specified, small
differences in energy are reported, i.e. EFM-EAFM was only −2.7 × 10−3 eV for PuH2 and
−2.7 × 10−2 eV for PuH3, respectively [21]. The AFM order was found to be more stable
than FM using LDA(GGA)+U (unstated alignment) for cubic PuH2 and PuH3 [26] and
using PBE+U (spin magnetic moments aligned in a simple “up down up down” alternative
manner along the <111> direction, U = 3.25 eV) for PuH2 [46]. A transition is observed in
the magnetic order of PuH2 from AFM to FM when U = 4 eV for LDA+U and from FM to
AFM when U = 1 eV for GGA+U. The introduction of SOC was deemed important, with
FM state predicted as more stable for PuH3; however, the AFM order was still most stable
for PuH2 [26].

We calculate only very small differences in relative energies amongst all the magnetic
orders for each value of the Hubbard U using PBEsol+U+SOC for both cubic PuH2 and
PuH3 (Figure 4). We find a transition between the most stable magnetic orders in both
PuH2 and PuH3, which is dependent on the value of U used.

For PuH2, and considering PBEsol+U+SOC when 0 ≤ U ≤ 4 eV, T2kAFM is the most
stable magnetic order but when 5 ≤ U ≤ 7 eV FM <110> order is the most stable, implying
that a transition occurs at U = 5 eV from AFM to FM, which is comparable to that obtained
by Zheng et al. [26] at U = 4 eV using LDA+U. When comparing with our results from
HSE06sol+SOC, FM <110> and T2kAFM are the most stable and next most stable orders,
displaying how sensitive the magnetism is upon the choice of the Hubbard correction.

As for PuH3, only a very small difference in energy (6.2 × 10−2 eV) was predicted
between the most stable magnetic order FM <111> and the least stable L3kAFM using
HSE06sol+SOC. By employing PBEsol+U+SOC, the relative energies display a more com-
plicated behaviour for PuH3. There is a transition in stability between the FM and AFM
order at U = 6 eV. However, when U = 0 eV, U = 1 eV, 2 ≤ U ≤ 5 eV the most stable orders
are FM <100>, FM <110>, and FM <111>, respectively, whereas when 6 ≤ U ≤ 7 eV the
most stable order is T2kAFM.
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Figure 4. Relative energies per formula unit for cubic PuH2 (a) FM <100>, <110>, <111>, (b) longitu-
dinal AFM 1k, 2k and 3k, and (c) transverse AFM 1k, 2k and 3k, and for PuH3 (d) FM <100>, <110>
and <111>, (e) longitudinal AFM 1k, 2k and 3k, and (f) transverse AFM 1k, 2k and 3k calculated with
PBEsol+U+SOC (0 ≤ U ≤ 7 eV).

Instabilities in the energy trends of PuH2 where found, for example in L3kAFM at
U = 6 and T3kAFM at U = 7 which do not follow the trend. This may be due to the
DFT+U methodology, which has issues in stabilising metastable states as the degeneracy
of the f orbitals is broken. The energy minimisation that optimised the geometry may
thus lead the system to be “trapped” in a metastable state. There are methodologies,
such as occupation matrix control (OMC) [47] and U-ramping [48] that can help with
the DFT+U localisation issues to reach the ground state. Applying DFT+U+OMC would
require the consideration of all possible initial occupation matrices, making the method
time consuming and complicated for a system such as cubic PuHx with a high number
of electronic configurations. On the other hand, by choosing the U-ramping method, one
has to consider that it can only be applied when the selected U value does not change the
orbital ordering. We tested U-ramping on selected structures and yet could not eliminate
the instabilities in the energy trend.

3.2. Symmetry and Structure

Space groups of the optimised cubic PuH2 and PuH3 phases using FM and AFM mag-
netic orders are shown in Table 1 for both HSE06sol+SOC and PBEsol+U+SOC calculations.
Only the L3kAFM order maintained the cubic experimentally derived Fm3m symmetry for
both PuH2 and PuH3. Supported by both our hybrid and standard DFT calculations, the
space group symmetry of PuH2 and PuH3 are the same but display a lowering of symmetry
with a distortion on one of the three lattice parameters (see Tables S8 and S9 for full details).
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Table 1. Space groups calculated with HSE06sol+SOC and PBEsol+U+SOC with a tolerance of 10−5 Å
for FM <100>, <110> and <111>, longitudinal and transverse AFM 1k, 2k and 3k order for cubic
PuH2. For cubic PuH3, the space groups are the same apart from the ones in brackets, which refers to
the space group for PuH3 when it differs from that of PuH2. Space group numbers: I4/mmm (139),
P1 (2), C2/m (12), Immm (71), R3m (166), Fm3m (225), Fmmm (69), Cmca (64), Pbca (61) and Pa3 (205).

Magnetic
Order

PBEsol+U+SOC—U (eV) HSE06sol
+SOC0 1 2 3 4 5 6 7

FM <100> I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm

FM <110> P1 C2/m C2/m C2/m C2/m C2/m C2/m C2/m Immm
(C2/m)

FM <111> R3m R3m R3m R3m R3m R3m R3m R3m R3m
L1kAFM I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm
L2kAFM I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm
L3kAFM Fm3m Fm3m Fm3m Fm3m Fm3m Fm3m Fm3m Fm3m Fm3m
T1kAFM Fmmm Fmmm Fmmm Fmmm Fmmm Fmmm Fmmm Fmmm Fmmm
T2kAFM Cmca Cmca Cmca (Pbca) Cmca Cmca Cmca Cmca Cmca Pbca (Fmmm)
T3kAFM Pa3 Pa3 Pa3 Pa3 Pa3 Pa3 Pa3 Pa3 Pa3

Good agreement is found between HSE06sol+SOC and PBEsol+U+SOC with the
same symmetry predicted for all phases apart from a small difference in FM <110> and
T2kAFM orders. Between PuH2 and PuH3 the same symmetry is determined, except for
HSE06sol+SOC FM <110> and T2kAFM and PBEsol+U+SOC T2kAFM where U = 2 eV.
Using HSE06sol+SOC, the cell lengths for the most stable magnetic order of PuH2 (FM
<110>) are a = b = 5.33 Å and c = 5.28 Å, and for the most stable magnetic order of
PuH3 (FM <111>) is 5.24 Å. Only a difference of 0.59% was calculated between the hybrid
value obtained for the lattice parameters of cubic PuH2 and the experimental value of
Mulford et al. [49,50] (5.359 Å). For cubic PuH3, a 1.97% difference in the lattice parameters
was determined compared to the experimental value of Muromura et al. [29] (5.34 Å).

In Figure 5 the average cell length and angles for each magnetism are plotted as a
function of the U value (0–7 eV) for the PBEsol+U+SOC calculations, along with the values
from HSE06sol+SOC and experiments. The individual values for cell lengths, cell angle
and cell volumes are shown in Tables S8 and S9 for PuH2 and PuH3, respectively. At
least U = 2–3 eV is required to reproduce the values from the HSE06sol+SOC, but U > 4 eV
are the minimum satisfactory values to gain experimental comparison; although this
comparison is more accurate for PuH2 (Figure 5a) than for PuH3 since a contraction of the
simulated cell at all U values (Figure 5b) is evidenced. A lattice contraction is observed
between x = 2 and x = 3, as the ionic character increases with an increase in x, resulting in a
lattice contraction due to an increase cell cohesion [16,17,19–21].

Cell lengths for cubic PuH2 with the FM order as 5.454 Å and the AFM order as
5.388 Å, and for PuH3 with FM as 5.35 Å and AFM as 5.35 Å (all magnetic orders where in
the [001] direction) were reported by Li et al. [28] using PBE0. For a magnetism aligned in
the [001], a distortion in the lattice would be expected in a cubic structure, see the work
on UO2, NpO2 and PuO2 [38–40]. Our lattice parameter predicted using HSE06sol+SOC
are comparable to those obtained by Li et al. [28]. When comparing our values in the same
alignment for each magnetism (i.e., FM <100>, L1kAFM and T1kAFM) we find only small
percentage differences of between 0.8 and 3.2% for PuH2 and 0.44–7.82% for PuH3.

As for PBEsol+U+SOC (U = 5 eV), the cell length obtained for the L3kAFM magnetic
order of cubic PuH2 is 5.36 Å, which agrees perfectly well with the experimental findings of
5.36 Å from Mulford et al. [49,50] for PuH2. L3kAFM was chosen for comparison as it was
the only magnetic order to retain Fm3m symmetry and U = 5 eV was chosen as cell lengths
are accurately described. As the Hubbard U parameter increased from 0 to 7 eV using
L3kAFM, a 3.96% increase in cell length is seen; this is due to the 5f electrons becoming
more localised leading to a reduction in cohesion energies and an increase in cell length.
For cubic PuH3 with the L3kAFM magnetic order using PBEsol+U+SOC when U = 5, a
cell length of 5.32 Å is in good agreement (0.34% difference) with the experimental finding
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of 5.34 Å from Muromura et al. [29] All magnetic orders are in good agreement with the
experimental value when U = 5 eV For L3kAFM, a 3.28% increase in cell length is seen
when U is increased from 0 to 7 eV.
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in green for PuH2 (Mulford et al. [49,50]) and PuH3 (Muromura et al. [29]).

3.3. Magnetic Moments

The spin (µs), orbital (µl) and total (µtotal) magnetic moments for cubic PuH2 and PuH3
calculated with HSE06sol+SOC and PBEsol+U+SOC are shown in Figure 6. Values of mag-
netic moments are consistent in magnitude regardless of the magnetic structure imposed
on the system when using HSE06sol+SOC. The optimised magnetic wavevectors of PuH2
predicted using HSE06sol+SOC are presented in Table S7. By considering PBEsol+U+SOC,
the average values for all magnetic orders of PuH2 the total magnetic moments decrease
from 2.06 to 1.26 µB/atom (38% decrease) when U increased from 0 to 7 eV. For the spin
magnetic moment an increase from 4.54 to 4.86 µB/atom (7% increase) occurs, whilst for
the orbital moment a change from −2.48 to −3.60 µB/atom (45% decrease) takes place
when U increases from 0 to 7 eV. We find good agreement between hybrid and standard
DFT methods.
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Figure 6. Spin (green), orbital (red) and total (blue) magnetic moments calculated using HSE06sol+SOC
for (a) cubic PuH2 and for (e) PuH3 and using PBEsol+U+SOC for cubic PuH2 and for PuH3 (b,f) FM
<100>, <110> and <111>, (c,g) longitudinal AFM 1k, 2k and 3k, and (d,h) transverse AFM 1k, 2k and 3k.

Spin, orbital, and total magnetic moments were calculated by Zheng et al. [26] using
LDA+U+SOC (U = 4 eV); which were found to be 4.58, −3.69 and 0.89 µB/atom, respectively
for PuH2 with an AFM order. These are comparable to the values we obtained for the
spin, orbital, and total magnetic moments using PBEsol+U+SOC (U = 4 eV) for PuH2
with the T2kAFM order (the most stable for that particular value of U) of 4.73, −3.43 and
1.30 µB/atom, respectively. All DFT studies overestimate the total magnetic moments in
comparison to experimental values for saturated moment of 0.44 µB/ion of Aldred et al. [43]
for cubic PuH1.99, and 0.43 µB/ion of Willis et al. [30].

3.4. Electronic Structure

As we compare the performance of the PBEsol+U+SOC depending on the value of U,
the electronic density of states (eDOS) for cubic PuH2 and PuH3 are shown in Figure 7. As
the previous session has shown that values of U = 4–6 eV give the best answer in terms of
lattice parameters, we have only reported the eDOS for U = 5 eV here. eDOS for U = 4 and
6 eV for both PuH2 and PuH3 can be found in Figures S2 and S3, respectively. Our findings
suggest that independent of the value of the U parameter, and of all magnetic orders
imposed to the hydrides, cubic PuH2 and PuH3 are both metallic, as there is a non-zero
occupancy at the Fermi level, EF. The valence band and conduction band are dominated by
Pu 5f states, as is observed in the literature [16,17,20,21]. The non-zero occupancy at the
Fermi level in PuH3 is much less pronounced compared to PuH2. The covalent character
result from Pu 6d and H 1s hybridisation is observed in the projected DOS for cubic PuHx
(x = 2 and 3) (Figure 7). The on-site Hubbard parameter U increases the localisation of Pu
5f electrons, which separates and sharpens the 5f states [16,17,19–21].
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In addition to the metallic behaviour for cubic PuH2, Li et al. [27] reported semiconductor 
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FM (a,d) <100>, (b,e) <110> and (c,f) <111>; longitudinal AFM (g,j) 1k, (h,k) 2k, and (i,l) 3k; and
transverse AFM (m,p) 1k, (n,q) 2k, and (o,r) 3k. The Fermi level is at 0 eV denoted by a vertical
dashed line.

Many computational studies agree with our PBEsol+U+SOC results for cubic PuH2, i.e.,
LDA/LDA+U [16,17,19,26] and GGA/GGA+U [20,21], and for PuH3, i.e., LDA/LDA+U [17,26],
GGA/GGA+U [20,21] and PBE+U [22] where it is reported that only a small number of
electrons crosses the Fermi level. However, there is also some controversy. The GGA+sp+U
(U = 4 eV) of Guo et al. [21] using the full potential linearised augmented plane wave
method (FP-LAPW) reports semiconductor behaviour with a bandgap of 0.35 eV for cubic
PuH3. If the introduction of SOC changes the nature of the electronic behaviour, we do
not see such change in agreement with the LDA+U+SOC (U = 4 eV) of Zheng et al. [26].
In addition to the metallic behaviour for cubic PuH2, Li et al. [27] reported semiconductor
behaviour also cubic PuH3 at 300K using DFT+U (U = 4.2 eV) and the Dynamical Mean-
Field Theory (DMFT). However, somehow their predictions suggest that the occupancy
of Pu 5f states would result in Pu3+ valence for both PuH2 and PuH3 phases. To note, the
Pu 5f electrons are at the boundary between the early actinides with itinerant 5f electrons
and the late actinides with localised 5f electrons. Any change in temperature, pressure and
chemical potential (i.e., composition) may result in the transition between itinerancy and
localisation, causing mixed-valent states or valence fluctuations. This poses issue when
simulating PuHx phases using DFT.

Experimentally, a metal to insulator (MIT) transition was observed by Willis et al. [30]
and Ward et al. [51] for cubic PuHx between x = 1.93 and 2.65. Cubic PuHx phases were
grown on metallic support (Ga doped δ-Pu metal) as described by Haschke et al. [52],
but information on sample thickness and support thickness was not reported. Using a
four-terminal DC method, a possible transition is recorded at x = 2.14 while a definite
transition occurred at x = 2.65 as the rate change in resistivity against temperature becomes
negative [30,51].
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4. Conclusions

Cubic PuH2 and PuH3 were investigated computationally using DFT with two levels
of theory: the hybrid HSE06sol+SOC and PBEsol+U+SOC (0 ≤ U ≤ 7 eV) considering spin–
orbit coupling (SOC) and non-collinear magnetism. The structural, magnetic and electronic
properties were investigated for nine magnetic orders: ferromagnetic <100>, <110> and
<111>; longitudinal antiferromagnetic 1k, 2k and 3k; and transverse antiferromagnetic 1k,
2k and 3k magnetic orders.

Our data suggests that only a very small difference exists between FM and AFM
magnetic orders, and that they may coexist. Using HSE06sol+SOC, we found FM <110>
and FM <111> orders to be the most stable for PuH2 and PuH3, respectively. Using
PBEsol+U+SOC, the order of stability is dependent on the value of the Hubbard parameter
U, with a transition from AFM to FM seen in PuH2 at U = 5 eV, whilst an FM to AFM
transition is observed at U = 6 eV in PuH3. Of the nine magnetic orders investigated,
we determined that only the L3kAFM order retains the experimentally measured Fm3m
structure. We determined that both cubic PuH2 and PuH3 have metallic behaviour using
PBEsol+U+SOC (U = 5 eV).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12101499/s1. The SI contains three sections, organised as
follows: Section S1: Convergence testing of cubic PuH2 and PuH3 using PBEsol+U+SOC. Section S2:
Energetics and structural properties of cubic PuH2 and PuH3 calculated with PBEsol+U+SOC+D3; Sec-
tion S3: Magnetic, structural and electronic properties of cubic PuH2 and PuH3.
References [29,42,49] are cited in the Supplementary Materials.
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