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Abstract: Crystals of a new ternary compound in the Ca-In-As family, Ca3InAs3, have been suc-
cessfully synthesized via flux growth techniques. This is only the third known compound between
the respective elements. As elucidated by single-crystal X-ray diffraction measurements, Ca3InAs3

crystallizes in the orthorhombic space group Pnma (No. 62, Pearson symbol oP28) with unit cell
parameters a = 12.296(2) Å, b = 4.2553(7) Å, and c = 13.735(2) Å. The smallest building motifs
of the structure are InAs4 tetrahedra, which are connected to one another by shared As corners,
forming infinite [InAs2As2/2] chains. The latter propagate along the crystallographic b-axis. The
As-In-As bond angles within the InAs4 tetrahedra deviate from the ideal 109.5◦ value and range
from 98.12(2)◦ to 116.53(2)◦, attesting to a small distortion from the regular tetrahedral geometry.
Electronic structure calculations indicate the opening of a bandgap, consistent with the expected
(Ca2+)3(In3+)(As3–)3 formula breakdown based on conventional oxidation numbers. The calculations
also show that the Ca–As interactions are an intermediate between covalent and ionic, while provid-
ing evidence of strong covalent features of the In–As interactions. Weak s-p hybridization of In states
was observed, supporting the experimentally found deviation of the InAs4 moiety from the ideal
tetrahedral symmetry.

Keywords: arsenides; crystal structure; crystal growth; X-ray diffraction; Zintl phases

1. Introduction

Pnictogen-based (pnictogen, i.e., the group 15 elements P, As, Sb and Bi; abbreviated
as Pn hereafter) compounds with a formula of A3MPn3 are reported to crystallize in several
distinct structures, where A is an alkaline-earth or divalent rare-earth metal, M is a triel,
i.e., a group 13 element [1]. The different structure types are originating from the way the
MP4 tetrahedra are interconnected and arranged.

For example, Ca3AlAs3 [2], Sr3InP3 [3], Ca3InP3 [4], Ca3GaAs3 [4], Ca3AlSb3 [5],
Eu3InAs3 [6], and Yb3AlSb3 [7] all crystallize in the orthorhombic Pnma space group
(No. 62. Pearson symbol oP28). The MPn4 tetrahedra in the structures of the above-
mentioned compounds are connected to one another with shared Pn corners, forming an
infinite straight chain along the crystallographic b-axis. Surveying the published structures
suggests that the In-containing A3MPn3 compounds tend to crystallize in the Pnma structure
described above, although this is a requisite for the realization of infinite chains as a
structural motif.

One should also note that there are A3MPn3 structures with corner-sharing tetrahedra
crystallizing in different space groups. The Sr3GaSb3 compound [3] is a relevant example
here since the GaSb4 tetrahedra in the structure are also connected via corner-sharing,
but the resultant chains are not straight, but rather zigzagging. This difference results in
an amplified structural complexity in Sr3GaSb3, evident from the increased number of
repeating units per unit cell and the lowered symmetry; the latter compound crystallizes
with the monoclinic space group P21/n (No. 14; Pearson symbol mP56) [3].
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In addition to corner-sharing, the tetrahedra in an A3MPn3 compound can also be
connected via edge-sharing. Such connections are observed in Ba3GaSb3 (space group:
Pnma) [4], Ba3AlSb3 [2] (space group: Cmce), and Eu3AlAs3 (space group: P21/c) [8], in
which the tetrahedra are connected via Pn–Pn edge-sharing, forming [M2Pn6]12− dimers
(diborane-like units of dual tetrahedra). The different space groups of the above compounds
reflect the different arrangements and orientations of the [M2Pn6]12− dimers within the
unit cell.

In the present study, we synthesized a previously unknown compound in the A3MPn3
family, Ca3InAs3. We determined the crystal structure of Ca3InAs3 via single-crystal X-ray
diffraction methods. Electronic structure calculations show that the bonding between
Ca–As has an admixture of covalent and ionic character, while evidence of strong covalent
features of the In–As interactions is observed.

2. Materials and Methods
2.1. Synthesis

Single crystals of Ca3InAs3 were synthesized by using indium as molten flux. Ca, In,
and As were purchased from Alfa Aesar with stated purity of 99.9 wt % or higher, and
were used as received. Manipulations were carried out in an argon-filled glovebox. A
starting composition of Ca:In:As of 1:30:1 was used. Excessive In was used as the medium
for the crystal growth. The corresponding amounts of elements were loaded into 2 mL
alumina crucibles, which were then put inside fused silica ampoules. A piece of quartz
wool was placed on top of the crucible without touching the elements inside. The ampoule
was sealed under a vacuum level of ca. 30 millitorrs.

All samples in this study were heated in standard muffle furnaces with a temperature
profile as follows: 100 ◦C→ 200 ◦C/h to 1000 ◦C→ hold at 1000 ◦C for 15.5 h→ 5 ◦C/h
to 650 ◦C. At this point of the crystal growth, the sealed tube was taken out from the
furnace, flipped, and the molten metallic flux was separated from the grown crystals
by centrifugation. The sealed ampoule was break-opened in the glovebox afterwards.
Inspection of the specimen under an optical microscope revealed the presence of many
small crystallites, the majority of which were CaIn2As2 [9] with only a minor fraction of
crystals of Ca3InAs3.

The crystals were brittle and had a metallic luster; they were found to degrade in
ambient air within about ten minutes. During the brief exposure, the crystals’ surface
becomes tarnished; after several hours in air the material becomes amorphous.

2.2. Single-Crystal X-ray Diffraction (SC-XRD)

Single-crystal X-ray diffraction (SC-XRD) was performed on single crystals using
a Bruker APEX II CCD diffractometer, equipped with Mo Kα radiation. Single-crystal
morphologies for Ca3InAs3 were typically thin rod-like, but were cut (under a microscope
in dry Paratone-N oil) to block shape, with each side smaller than 100 µm in length. The
measurements were conducted at a temperature of 200 K under a N2 atmosphere to achieve
optimal data quality and avoid decomposition of the sample during the measurement.
Data integration and semiempirical absorption correction were performed with the Bruker-
supplied software [10]. The crystal structure was solved with ShelXT [11] using the intrinsic
phasing method. Structure refinements were carried out using the ShelXL software, which
employs full-matrix least-squares minimization on F2 [12]. Olex2 software was used as
a graphical interface [13]. Atomic coordinates of all compounds reported in this paper
were standardized with the STRUCTURE TIDY program [14]. All sites were refined with
anisotropic displacement parameters. The site occupation factors (SOF) were checked by
freeing an individual SOF, while other variables were kept fixed. No statistically significant
deviations were observed for the SOF on any of the atomic sites. Final difference Fourier
map was flat and featureless. Selected crystallographic data are summarized in Table 1.
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Table 1. Selected crystal data and structure refinement parameters for Ca3InAs3.

Formula Ca3InAs3

Formula weight (g·mol−1) 459.82
Radiation, λ Mo Kα, 0.71073 Å
Temperature (◦C) –70(2)
Crystal system orthorhombic
Space group Pnma (No. 62)
Z 4
a (Å) 12.296(2)
b (Å) 4.2553(7)
c (Å) 13.735(2)
V (Å3) 718.7(2)
ρcalc (g·cm−3) 4.25
µMo Kα (cm−1) 190.1
Reflections: parameters 1151: 44
R1 [I > 2σ(I)] a 0.0222
R1 (all data) a 0.0330
wR2 [I > 2σ(I)] a 0.0463
wR2 (all data) a 0.0496
Largest peak; deepest hole (e/Å−3) 0.83; –1.05

[a] R1 = ∑||Fo| – |Fc||/∑|Fo|; wR2 = [∑[w(Fo
2 – Fc

2)2]/∑[w(Fo
2)2]]1/2, where w = 1/[σ2Fo

2 + (0.0213·P)2 + (0.301·P)],
and P = (Fo

2 + 2Fc
2)/3.

2.3. Powder X-ray Diffraction

X-ray powder diffraction patterns were collected at room temperature on a Rigaku
MiniFlex powder diffractometer, using filtered Cu Kα radiation. Because Ca3InAs3 was
the minor phase, and because the experiment was carried out at ambient conditions, there
was a very high background. The just a few experimentally observed peaks matched
mostly with the calculated positions for CaIn2As2 [9] (major phase) and elemental In (left
over flux).

2.4. Electronic Structure Calculations

To investigate the chemical bonding of all compositions, electronic structure calcula-
tions were performed within the local density approximation (density functional theory)
using the TB-LMTO-ASA program [15]. Experimental unit cell parameters and atomic
coordinates from Tables 1 and 2 were used as input parameters in the calculations. In
order to satisfy the atomic sphere approximation (ASA), we employed the von-Barth-Hedin
functional [16] and introduced empty spheres. The Brillouin zone was sampled by a
1000 k-point grid. Electronic density of states (DOS), atom-projected electronic density
of states (PDOS), and crystal orbital Hamilton population (COHP) were calculated with
modules in the LMTO program [17].

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Ueq) for Ca3InAs3.

Atom Wyckoff Symbol Site Symmetry x y z Ueq (Å2) a

As1 4c .m 0.04891(4) 1/4 0.36528(4) 0.0103(1)
As2 4c .m 0.25779(4) 1/4 0.62613(4) 0.0086(1)
As3 4c .m 0.60837(4) 1/4 0.61098(4) 0.0085(1)
In 4c .m 0.05554(3) 1/4 0.69988(3) 0.0103(2)
Ca1 4c .m 0.06164(7) 1/4 0.10532(8) 0.0104(2)
Ca2 4c .m 0.26873(7) 1/4 0.28697(8) 0.0092(2)
Ca3 4c .m 0.34436(8) 1/4 0.00296(8) 0.0104(2)

[a] Ueq is defined as one third of the trace of the orthogonalized Uij tensor.



Crystals 2022, 12, 1467 4 of 9

3. Results and Discussion
3.1. Crystal Structure

To date, only two compounds have been structurally characterized for the Ca-In-As
ternary phase diagram, namely CaIn2As2 [9] and Ca3In2As4 [18]. The Ca3InAs3 reported
in the present study is a previously unknown phase and is described in the following
paragraphs for the first time.

Ca3InAs3 crystallizes in the orthorhombic Pnma space group (No. 62. Pearson symbol
oP28) with the Ca3InP3 structure type (also referred to as Ca3AlAs3 structure type) [19]. The
unit cell parameters are a = 12.296(2) Å, b = 4.2553(7) Å and c = 13.735(2) Å. Other relevant
crystallographic parameters are tabulated in Table 1. The factional coordinates of the seven
crystallographically unique atomic positions are tabulated in Table 2. All positions are of
the same symmetry, m, with the same Wyckoff position 4c.

A view of the crystal structure of Ca3InAs3 is shown in Figure 1. As shown there, we
prefer to visualize the structure as Ca2+ cations and In–As polyanionic sub-lattice. The
InAs4 tetrahedra are connected to one another with shared As corners, forming an infinite
straight chain along the crystallographic b-axis.
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Figure 1. (a) A schematic polyhedral representation of the orthorhombic crystal structure of Ca3InAs3.
(b) Distinct coordination environments for Ca1, Ca2, Ca3, As1, As2, and As3. (c) The InAs4 tetrahedra
and the way they are linked (corner-sharing of the As1 atoms). The As-In-As angles deviate from
the ideal 109.5◦ of a regular tetrahedron. As1-In-As2, As1-In-As3, and As3-In-As2 angles measure
108.81(2)◦, 116.53(2)◦, and 98.12(2)◦, respectively. Interatomic distances can be found in Table 3.

Selected interatomic distances obtained from the single-crystal refinements can be
found listed in Table 3. The In–As distances range from 2.642 to 2.685 Å. These values
match very well the metrics reported for another ternary arsenides such as Eu3InAs3 [6],
Ba3InAs3 [20], CaIn2As2 [9], Ca3In2As4 [18] and Sr3In2As4 [21], among others. It should
also be noted the experimentally observed bond length values are comparable to the sum of
the respective single-bonded covalent radii (rIn and rAs are 1.42 Å and 1.21 Å, respectively,
yielding a summation value of 2.63 Å [22], which is an indication of the strong covalent
bonding nature of the In–As interactions. One may also notice that there are some Ca–As
distances that are shorter than 3.0 Å; this also points at substantial covalency of these
interactions since the single-bonded covalent radius of Ca is 1.74 Å [22]. Further evidence
of this supposition can be found in the DOS and COHP discussions in Section 3.2.
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Table 3. Selected interatomic distances (Å) in Ca3InAs3. Contacts longer than 3.9 Å are not shown.

Atoms Distance (Å) Atoms Distance (Å)

In–As1 (×2) 2.6415(5) As2–In 2.6853(7)
In–As2 2.6853(7) As2–Ca1 (×2) 3.0885(8)
In–As3 2.6779(7) As2–Ca2 (×2) 3.0845(9)
In–Ca1 (×2) 3.710(1) As2–Ca3 (×2) 2.9945(8)
In–Ca2 (×2) 3.2600(8) As3–In 2.6779(7)
In–Ca3 (×2) 3.655(1) As3–Ca1 (×2) 2.984(8)
In–Ca3 3.809(1) As3–Ca1 3.026(1)
As1–In (×2) 2.6415(5) As3–Ca2 (×2) 2.9623(8)
As1–Ca1 3.574(1) As3–Ca3 3.297(1)
As1–Ca2 2.9091(1) Ca1–Ca2 3.565(1)
As1–Ca3 3.099(1) Ca1–Ca3 3.750(1)
As1–Ca3 (×2) 3.1345(9)

In addition, it is observed that the As-In-As bond angles within the InAs4 tetrahedra
deviate from the 109.5◦ value expected for a regular tetrahedron. Similar tetrahedral
distortions are also reported for other “3-1-3” compounds [6,9,20,21].

Lastly, considering the lack of any homoatomic bonding, we can rationalize the struc-
ture and the bonding in this new ternary arsenide as a typical valence-precise compound,
i.e., a Zintl phase. There are two complimentary ways to understand the electronic charge
balance of Ca3InAs3. The first way is to simply exaggerate the ionicity of the bonding and
view the formula as [Ca2+]3[In3+][As3−]3. Considering the close electronegativities of In
(χP 1.7) and As (χP 2.0) [22], assigning an oxidation number of +3 for In and –3 for As may
be hard to justify. Therefore, the other way may be preferred. From the point of view of the
Zintl formalism [23], the formal charge of an In atom, covalently bonded to four As atoms
will be 1–. In the [InAs2As2/2] tetrahedral chain, formally [InAs3]6−, two of the As atoms
at the shared-corner positions have two bonds (2b) and their formal charge is also 1–. The
other two As atoms (terminal ones) only have one covalent bond (1b), and need two more
valence electrons to satisfy their octets; the formal charge of 1b-As is thus 2–. Therefore, the
formula Ca3InAs3 could be expressed as (Ca2+)3[(In1−)(1b-As2−)2(2b-As1−)].

Either the fully ionic or the bonding picture within the Zintl formalism capture the
essence of the valance electron count in Ca3InAs3, which is expected to be an intrinsic
semiconductor. The notion of semiconducting behavior is confirmed by the electronic
structure calculations, presented next.

3.2. Electronic Structure

The bonding characteristics of Ca3InAs3 were investigated via electronic structure
calculations using the LMTO program [15]. We evaluated the electronic properties of the
new material with calculations employing the experimental data listed in Tables 1 and 2.

The stacked atom-projected electronic density of states (DOS) curves for Ca3InAs3 are
shown in Figure 2a, in which a calculated bandgap of approx. 0.46 eV can be observed.
This value is reconcilable with those of other ternaty indium arsenides, such as Eu3InAs3
and CaIn2As2 which have calculated bandgaps on the order of 0.2 and 0.5 eV [6,9]. The
existence of a bandgap is in agreement with the formal electron count as discussed in the
previous section. Knowing that DFT methods typically underestimate the bandgap, the
actual bandgap of Ca3InAs3 is speculated to be larger.

The majority of the states in the conduction band are dominated by Ca d orbitals,
with minor As and In contributions. The states close to the valence band maximum are
contributed mainly by the As p orbitals with minor Sr and In contributions. Specifically, in
the region of −1 < E − EF < 0 eV, the contribution of the As p orbitals is most considerable.
The minor overlap of Ca and As states suggest that there are some covalent features
between Ca and As. Therefore, due to the incomplete electron transfer of the cation, strictly
speaking, Ca3InAs3 does not exhibit the textbook characteristics of a Zintl phase.
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Figure 2. (a) The stacked atom-projected electronic density of states (DOS) for Ca3InAs3. The Fermi
level is taken as a reference at 0 eV and represented with a dashed line. A bandgap of 0.46 eV can
be observed. (b) Calculated partial DOS of different orbitals of for Ca. (c) Calculated partial DOS of
different orbitals of for In. (d) Calculated partial DOS of different orbitals of for As.

A few insights can be observed for the bonding of the InAs4 tetrahedra. In-p and
As-p states showed extensive overlapping in the range of between −4.1 < E − EF < −2 eV
(Figure 2c,d). This means the existence of a strong covalent feature of the In–As interactions.
In addition, the In atoms show a clear separation between the s and p orbitals, indicating a
weak s-p hybridization. This insight agrees well with the InAs4 tetrahedra distortion given
by the crystal refinements.

Figure 3 shows the electronic band structure of Ca3InAs3 in momentum space. As
evident from the plot, there are no bands crossing from the valence band to the conduction
band. The lowest energy separation between the top of the valence band and the bottom
of the conduction band occurs at the Γ-point. This observation is suggestive of a direct
bandgap semiconductor.
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Figure 3. The electronic band structure of Ca3InAs3. The Fermi level is taken as a reference at
0 eV and represented with a dashed line. The opening of a bandgap of ca. 0.46 eV at the Γ point is
suggestive of an intrinsic, direct gap semiconductor.

The crystal orbital Hamilton population curves (COHP) for the averaged selected
interactions of Ca3InAs3 are plotted in Figure 4. Both the In–As and Ca–As interactions are
optimized at the Fermi level. For the Ca–As interactions, some bonding features can still
be observed above the Fermi level when 0.5 < E − EF < 2 eV. This indicates the possibility
of electron doping on the Ca site. In contrast, In–As interactions only show antibonding
features above the Fermi level.
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Figure 4. The crystal orbital Hamilton population curves (COHP) for two averaged interactions in
Ca3InAs3. The In–As interactions are optimized at the Fermi level. Ca–As interactions are almost
fully optimized at the Fermi level.
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4. Conclusions

With this study, we reported on the discovery of the new compound, Ca3InAs3, ex-
tending the knowledge in the Ca-In-As compositional space, and expanding the variety of
compounds that crystallize with this quasi 1D-structure. The bonding characteristics of
Ca3InAs3 were studied both experimentally and computationally. We found that Ca3InAs3
is an intrinsic semiconductor, where the InAs4 tetrahedral building units are lightly dis-
torted. A possibility of doping on the Ca site is also suggested.

This materials system can providee promising thermoelectric material candidates
and/or topological insulators, but for quality property measurements, the synthetic chal-
lenges making a phase-pure bulk sample must be resolved.
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