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Abstract: GaN-based high electron mobility transistors (HEMTs) are shown to have excellent proper-
ties, showing themselves to perform well among the throng of solid-state power amplifiers. They are
particularly promising candidates for next-generation mobile communication applications due to
their high power density, frequency, and efficiency. However, the radio-frequency (RF) dispersion
aroused by a high surface-state density inherent in nitrides causes the degradation of GaN devices’
performance and reliability. Although various dispersion suppression strategies have been proposed
successively—including surface treatment, passivation, field plate, cap layer, and Si surface doping—
outcomes were not satisfactory for devices with higher frequencies until the emergence of a novel
N-polar deep recess (NPDR) structure broke this deadlock. This paper summarizes the generation of
dispersion, several widespread dispersion containment approaches, and their bottlenecks under high
frequencies. Subsequently, we highlight the NPDR structure as a potential substitute, evaluate its
technical benefits, and review the continuous exertions in recent years.
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1. Introduction

Millimeter-wave technology is undoubtedly an ongoing research focus for fifth-
generation mobile communication technology (5G) and beyond. GaN-based high electron
mobility transistors (HEMTs) are taking the lead in the radio-frequency (RF) industry, espe-
cially for those applications that require abundant power density, thanks to the unparallel
combined material properties of a wide bandgap (Eg ~ 3.4 eV), large critical breakdown
electric field, high electron saturation velocity, high electron mobility and sheet density
achieved by 2-Dimensional electron gas (2DEG), and excellent thermal properties when
prepared on silicon carbide (SiC) substrates [1–4]. However, the existence of direct current
(DC)-RF dispersion (also known as the “current collapse”) leads to a significant decrease
in output power density and causes reliability-related issues in GaN-based HEMTs, espe-
cially at higher frequencies, which limits the development and application of such devices.
Research has shown that the widespread presence of trapping states (covering the semicon-
ductor surface, barrier layer, interface, channel, and buffer layer) in III/V group compound
semiconductors should be mainly responsible for the dispersion of GaN HEMTs [5]. In
high-frequency devices, the closer proximity of 2DEG to the surface highlights the role of
surface traps (surface states) on dispersion [6,7]. These surface states trapping electrons
to form a “virtual gate” (similar to a gate function) further deplete the 2DEG channel,
which strongly impacts the device output characteristics and reliability. Engineers have
tried to solve this problem by using multiple processes, including surface treatment [8],
passivation [9], field plate [10], cap layer [11], and Si surface doping [12] in recent years.
With the increasing demand for higher operating frequencies, the reduced gate length and
the aspect ratio in need of being maintained drive the 2DEG much closer to the surface
compared with the lower frequency HEMT epitaxial structure, thus limiting the effective-
ness of those techniques in improving the dispersion. In this vein, researchers working on
high-frequency GaN devices have sought novel technologies to better solve this aporia.
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In this paper, we explain the origin of surface states and the mechanism causing
dispersion in GaN devices. The current dominant methods for suppression dispersion and
their bottlenecks in the high-frequency domain are summarized. Finally, we focus on the
N-polar deep recess (NPDR) structure, addressing its uniqueness in controlling dispersion
and reviewing the research advances in NPDR metal-oxide-semiconductor (MIS)-HEMTs.

2. Surface States and Virtual Gate

In GaN-based HEMTs, surface states are critical sources of 2DEG in the channel [13],
allowing the device to achieve a very high electron concentration without the need for in-
tentional doping (unlike GaAs-based 2DEG), which dramatically reduces ionized impurity
scattering and enhances carrier mobility. On the other hand, GaN-based HEMTs are also
plagued by the dispersion effect generated by surface states. This section mainly discusses
the creation of surface states and the principle of dispersion caused by them.

2.1. Sources of Surface States

Surface states, a type of electron-bound state, can be categorized into two sorts based
on their formation: intrinsic and extrinsic.

Intrinsic surface states arise due to the termination of the ideal crystal structure at the
surface. It is common knowledge that GaN, like any crystal, cannot be extended infinitely
in space. Therefore, the periodic potential field will be interrupted at the surface and cause
additional energy levels in the forbidden band known as surface energy levels, whose
corresponding electronic states are named surface states. Chemical bonding theory explains
that the chemical bonds of GaN crystal break at the surface, and the unbonded electron
pairs form dangling bonds, the corresponding electronic states being surface states [14].
Besides, those created by threading dislocations accessible at the surface, native oxide,
N-vacancies, ions adsorbed from the surrounding environment (such as oxygen, carbon,
and hydrogen, each with its unique energy level), and surface damage in the processing
are referred to as extrinsic surface states [14–16]. These two different forms of generation
pathways are shown in Figure 1.
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2.2. Virtual Gate Model

Depending on their behaviors, surface states can be classified as either acceptors or
donors. Table 1 shows the charge situations of these two categories of surface states in the
empty and filled (after trapping the electrons) conditions. Under the strong influence of the
polarized electric field, the donor surface state filled with electrons below the Fermi level
will be partly ionized, allowing the electrons to escape into the channel to produce a high
concentration of 2DEG and leave large positive charges on the surface [17]. As such, the
surface of the GaN device should not show a negative surface potential. Vetury et al. [18]
observed that a significant number of negative charges reside on the device’s surface,
conflicting with the previous theory when they employed the floating gate approach to
investigate the surface state impact of AlGaN/GaN HEMTs in 2001. In response, they
explained that these positive charge centers (empty surface states) located between the gate
and drain act like traps to capture gate leakage electrons or those channel hot electrons
escaping via the barrier to the surface [15,19,20]. During the process from off-state to
on-state, electron emission from surface states with a slower period differs from RF signals,
so the trapped electrons are not released when the device is turned on, which is equivalent
to another gate existing between the gate and the drain electrodes, i.e., virtual gate [21,22].
As shown in Figure 2, the trapped electrons move and jump on the surface to form a
negative charge region, causing the gate depletion region to expand laterally, depleting the
2DEG in the channel and resulting in the current collapse. This RF dispersion is generally
determined by pulsed IDS–VDS measurement, depending on different stressed conditions,
and can be defined as:

Dispersion (%) =
IDS,DC − IDS,Pulsed

IDS,DC
× 100% (1)

Table 1. Electrical properties of donor and acceptor surface states.

Type Empty Filled

Donor surface states Positive Neutral
Acceptor surface states Neutral Negative
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3. Methods for Suppression Surface Dispersion and Their Bottlenecks

Based on the principle of extra depletion of the 2DEG channel by the virtual gate
model, it can be concluded that one of the most critical tasks in dispersion control is to
minimize trapping electron action attributable to surface states. Common solutions in
AlGaN/GaN HEMTs are summarized in Figure 3. Five categories of methods have been
developed and demonstrated to suppress the RF dispersion with mixed success: (1) surface
treatment that intends to diminish surface state density to reduce the odds of surface states
trapping electrons; (2) passivation, which intends to bury surface traps by depositing
dielectrics on the device surface to prevent gate leakage electrons from being trapped in
them; (3) the uses of field plate structure intend to alleviate the gate edge electric field
crowding and enhance the emission rate of trapped electrons; (4) adding a GaN cap intends
to control the gate-lag caused by the leakage current; (5) si surface doping intends to
compensate for the trapping energy level to screen the 2DEG from the traps. This section
summarizes the research advances of the above technologies and the bottlenecks they
encounter at high frequencies.
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3.1. Common Methods for Suppression Surface Dispersion
3.1.1. Surface Treatment

Natural oxides and organic matter adsorbed on the (Al)GaN surface create many in-
terface states between the dielectric used for passivation and the barrier, which reduces the
effectiveness of passivation. Consequently, surface treatment prior to dielectric deposition
is of extraordinary importance to obtain a high-quality interface.

Organic matter and oxides are mainly composed of carbon and oxygen. UV/ozone
surface treatment can proficiently remove carbon [23], while oxygen can be treated by some
wet chemical cleaning methods. King et al. [24] found that HF and HCl were able to minimize
oxygen coverage on AlN and GaN surfaces, and residual halogen ions (cl− and F−) tie up the
dangling bonds preventing the surface from being oxidized again. The same result was found
in the experiments of Diale et al. [25], who respectively compared the methods of cleaning
GaN surfaces with HCl, KOH, and (NH4)2S. They concluded that KOH was effective for
carbon removal but contributed to a rough surface. The sample cleaned in (NH4)2S, a chemical
avoiding surface re-oxidation, acquired the optimum cleaning result with the lowest values
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of both C and O, root mean square (RMS) roughness, and Ga/N ratio. Other wet chemical
cleaning efforts mainly focus on HNO3, H2SO4, NH4OH, and NaOH.

Surface treatment using plasma like NH3, N2, and N2O is also valuable for suppressing
dispersion to enhance performance [26–29]. By filling nitrogen vacancies and removing im-
purity oxygen atoms, nitrogen-related plasma treatment considerably enhances the quality
of the SiNx/GaN interface [28]. Romero et al. [27] treated the AlGaN/GaN HEMT (which
had been wet cleaned by NH4OH) with in situ N2 plasma (N2PP) at 200 ◦C for 1 min prior
to SiNx passivation of the device. The treated GaN HEMT obtained an IDS, which was 10%
higher than the untreated one, and achieved a more advanced knee voltage. A 65% drop in
the density of interface states was discovered after applying N2PP, which was responsible
for reducing gate leakage current by two to three times (from 7.7 to 2.3 × 10−2 A/cm2 at
VGD = −20 V), utilizing capacitance-voltage (C–V) and conductance-frequency (G-F) measure-
ments. Furthermore, NH3 plasma-treated performs better than N2 in GaN HEMTs [26], with
RF dispersion respectively decreasing from 63% (without pretreatment) to 1% and 9% (shown
in Figure 4). This is probably due to the fact that NH3 plasma eliminates oxide and carbon
residues while reducing the density of surface state defects.
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were measured at VDS = 0 to 15 V and VGS = −3 to 1 V. The pulse width and period were 500 ns and
1 ms. Adapted with permission from Ref. [26]. Copyright 2010, The Japan Society of Applied Physics.

In addition, plasma can also be combined with heat treatments such as high-temperature
annealing in vacuum [30] or N2 [31] and NH3 [32] atmospheres to enhance the desorption
of contaminants further and assist in the elimination of remaining surface defects, thereby
improving the surface quality of the device. It has to be emphasized, however, that the
surface treatment also increases the risk of unreliability and is, therefore, mostly involved
in laboratory research efforts.

3.1.2. Passivation

Since 2000, when Green et al. [15] deposited a layer of Si3N4 for passivation on the
surface of AlGaN/GaN HEMT to obtain the highest power density (4 W/mm at 4 GHz)
during that period, passivation has become one of the most commonly used and effective
techniques to solve RF dispersion after more than 20 years of development.

Previous studies have reported that SiNx, AlN, SiO2, SiNO, Al2O3, and HfO2 (high-κ
dielectric) can all be applied to GaN-based HEMTs [28,31,33–35]. However, some researchers
believe that nitrides (compared to oxides) probably are more suitable for GaN devices because
oxygen impurities can easily diffuse into the GaN crystal and generate a high density of deep
(or slow) interface states, producing additional current collapse [36,37]. This conclusion is
consistent with the report of Geng et al. [31], which evaluated AlGaN/GaN MIS-HEMTs
utilizing PECVD deposition of 20 nm SiNx, SiO2, and SiNO as passivation layers, respectively.
It is found that the interface-trapped charge density (or the deep energy level defects density
with long emission time of electrons) for ∆E > 0.657 eV in SiO2 is 4.13 × 1012 cm−2 (three times
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larger than that of SiNx, ~1.38 × 1012 cm−2 in SiNx). Compared to only 11.06% dispersion in
SiNx, the current collapse in SiO2 reaches 84.14% at Vgs = −18 V, proving the success of SiNx
passivation and the fact that SiO2 would not be appropriate for GaN devices. Based on taking
SiNx as a dielectric, Huang et al. [38] proposed an improved structure using bilayer LPCVD
SiNx; a Si-rich SiNx layer (Si/N = 59/41) with a thickness of ~10 nm was first deposited,
followed by a ~67 nm Si-poor SiNx layer (Si/N = 50/50, high-resistive). Figure 5 exhibits a
TEM cross-sectional image of this bilayer SiNx passivation, and the black dotted line refers to
the boundary between the first and second layers. The Si-rich SiNx layer upper to surface is
argued to remove the deep-level traps at the AlGaN/SiNx interface, which makes microwave
GaN HEMTs show a much smaller degradation of about 9.7% (~30% dispersion in 70 nm
Si-poor SiNx sample) while maintaining a low gate leakage current owing to the second
high-resistive layer.
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3.1.3. Field Plate

The field plate is applied in GaN-based HEMTs to reduce the electric field crowding
at the gate corner of the drain side, preventing electron injection from the gate into surface
states, and forming a virtual gate. Moreover, the horizontal electric field near the end of the
field plate will strengthen the process of electrons escaping from the traps and speed up the
electrons hopping along the AlGaN surface, further lowering the trapped electron density
and, therefore, substantially suppressing current collapse [22]. The effectiveness of the field
plate in suppressing current collapse is more robust with increasing field plate length. The
trapped charges on the device surface decreased from 1.58 × 1012 cm−2 (no field plate) to
0.8 × 1012 cm−2 after using a 1.5 µm field plate structure [39], the pulsed IDS–VDS characteris-
tics and trapped charge density are displayed in Figure 6. The field plate this method has now
been widely adopted and greatly influenced the high-voltage devices. Despite this, it is worth
noting that it is thrown into an awkward situation in high-frequency applications. Because
this design not only reduces the speed of the channel electrons owing to the weakened electric
field but also introduces additional external capacitance that limits the efficiency and gain
of the device. Accordingly, in order to ensure anticipant RF performance, the field plate has
found very limited usage in high-frequency industries.
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3.1.4. GaN Cap

GaN cap, a thin layer of GaN (about a few nanometers) on top of the barrier that forms
a sandwich structure (e.g., GaN/AlGaN/GaN), is another well-established technique in
industry for managing the current collapse. This cap can be doped GaN (typically n-type
doping by SiH4 or p-type doping by Cp2Mg) or i-GaN. No matter what type of GaN cap
is used, it degrades gate leakage levels [40], both vertically and horizontally. Vertically,
raising the effective Schottky barrier by the GaN cap provides a stronger limitation on
the emission and tunneling of hot electrons [11,41]. Horizontally, as presented by Sarkar
et al. [11], the GaN cap passivates the access region to suppress lateral electrons hopping
via surface traps, significantly reducing the total leakage current (shown in Figure 7a). In
other words, the GaN cap can effectively screen 2DEG from dispersion-related traps. As
shown in Figure 7b,c, 2 nm of GaN cap layer effectively controls the current collapse in
GaN-based HEMTs, while enhancing the device’s frequency performance (62% improving
in fT) at the expense of a small amount of gain.
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IG1 is the horizontal leakage current by electron hopping between surface states. IG2 is the total
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(c) with GaN cap. Adapted with permission from Ref. [11]. Copyright 2022 by Elsevier.

3.1.5. Si Surface Doping

Surface doping of GaN HEMTs with Si also contributes to the suppression of dis-
persion [42]. Si (as an electron donor) surface doping can prevent the slow process of
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re-emitting trapped channel electrons from surface states by filling and screening the
deep-level traps [12]. However, the method also causes an escalation in leakage levels
(electrons can tunnel through the thinned potential barriers more easily), so attention to a
concentration should be paid when doping the surface of the device to avoid the impact of
poor leakage current and breakdown resistance on device reliability.

3.2. Bottlenecks Encountered at High Frequencies

At lower frequencies (below Ka-band), the previously mentioned techniques can be
combined to control RF dispersion in GaN HEMTs. As the gate length is further decreased
to increase the operating frequency, the distance from the polarized surface to the 2DEG
channel also has to be reduced to maintain the desired aspect ratio and contain the short
channel effect, whereas the corresponding cost is the 2DEG channel suffers from the surface
RF dispersion more seriously, rendering the effect of all surface engineering techniques
less effective. When the operating frequency is pushed over 30 GHz (which means just
entering the millimeter-wave range), the capacitance penalty imposed by the field plate
causes this structure to be disabled because of the severely degraded high-frequency
performance. Therefore, researchers urgently need to find new techniques to alleviate
the problem of surface state trapping electrons to ensure the device’s reliability at high-
frequency operation.

4. NPDR MIS-HEMTs for High-Frequency Device

Due to the comparatively good material quality and electrical features, Ga-polar GaN
has dominated power devices for a long time. In recent years, the material growth technique
has constantly been progressing on N-polar GaN; thus, related device research gradually
gained significant interest [43,44]. On account of the opposing polarity, N-polar GaN
HEMTs offer a series of natural advantages for higher frequency epitaxy and device design
over the Ga-polar [45], such as (a) devices with a narrower top layer bandgap achieve lower
contact resistance; (b) a natural back-barrier improves 2DEG confinement and minimize
short channel effect while giving rise to higher transconductance. Additionally, the presence
of the back-barrier allows the device to keep leakage current (from channel to substrate)
at a low range even when there is no doping (e.g., Fe, C) in the buffer, avoiding the
dispersion introduced by slow deep energy level discharge [46]; (c) flexible device aspect
ratios accommodate shorter gate lengths resulting from increased frequency. These features
are tailored to the needs of high-frequency devices so that the N-polar GaN transistor
stood distinctly above all others in 2012, with a fT = 270 GHz and fmax = 370 GHz [47].
However, the most outstanding value of N-polar GaN materials is the ability to make the
deep recess structure dramatically mitigate RF dispersion to guarantee reliability at higher
frequencies [48]. Here, the basic structure of NPDR is displayed, the reason why deep
recess can only be applied on the N-polar GaN (rather than Ga-polar) is discussed, and the
research advances on NPDR are summarized.

4.1. What and Why Is NPDR?

The most basic structure of NPDR is to directly thicken the GaN channel above the
back-barrier, as shown in Figure 8a, and the 2DEG at the bottom of the channel is isolated from
the surface to control dispersion. The gate is buried deep in the GaN channel to considerably
boost vertical scaling and strengthen the gate’s modulation of 2DEG. To avoid gate leakage
currents and regulate the dispersion created by the sidewall, a thin layer of dielectric (normally
MOCVD SiNx) is commonly placed for initial passivation before depositing gate metal. In
the improved design of the NPDR structure (shown in Figure 8b), the insertion of an AlGaN
cap layer (as etch stop layer) is considered necessary because the difference in components
allows for more precise selective etching, while the cap provides better Schottky contact for
the device. Apart from these two causes, the polarization electric field generated by N-polar
AlGaN also mitigates the injection of gate leakage electrons during reverse bias [49]. Since
the thick GaN cap keeps the surface away from the channel (differs from passivation, thick
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dielectric does not change the surface position due to the absence of polarization), even if a
virtual gate is formed on the surface of the access region, there is almost no depletion of charge
in the channel. The scattering associated with the surface is also effectively controlled, thus
substantially increasing the 2DEG mobility. As mentioned earlier, the traditional passivation
of HEMTs using ex situ SiNx dielectrics still has massive trapping states, whether in bulk or at
the interface. However, no significant interfacial states are presented in the NPDR structure
because the GaN cap has no difference in lattice constants from the channel. There should
also be no more bulk traps within the UID GaN cap than in the channel, which ensures an
ultra-low trap density near the 2DEG. To sum up, the deep recess structure is impressive for
eliminating the RF dispersion in GaN HEMTs.
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In fact, deep recess structures were first proposed for Ga-polar devices [50–52], but
the results did not meet the expectations. As the polarization of the GaN cap caused the
conduction band to be pulled up, the 2DEG would be depleted below the access region
(shown in Figure 8c). Shen et al. speculated that suitable Si doping could compensate for
the negative polarization charge and prevent the accumulation of holes. They proposed
direct Si delta-doping at the GaN/AlGaN interface [52], but unfortunately, the introduction
of Si would cause higher gate leakage and, thus, a reduction in breakdown voltage. Another
method that insets a Si-doped graded AlGaN between the UID GaN cap and the AlGaN
barrier is introduced for similar motivations [50]. Although the lower Al component of
AlGaN can partially alleviate the 2DEG depletion by polarization, it is difficult to overcome
the process because of the high requirements for precise etching. The additional graded
AlGaN is also detrimental to the device aspect ratio. Hence, it can be confirmed that using
a deep recess structure on the Ga-polar must be compromised for device performance.

In contrast to the Ga polarity, the electric field created in the access region of the
N-polar GaN HEMTs partially counteracts the electric field provided by the gate. It pushes
the conduction band to the Fermi energy level (Figure 9), thus augmenting the 2DEG
concentration [53]. This provides an intrinsic advantage wherein the Ga-polar devices
cannot be duplicated, and demonstrates that only the N-polar GaN HEMTs are appropriate
for the deep recess.
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4.2. Research Advances

In 2011, Kolluri et al. [54] first designed and fabricated an N-polar GaN HEMT with
a thick unintentionally doped (UID) GaN cap, i.e., NPDR MIS-HEMT, and found that a
120 nm UID GaN cap was sufficient to remove any RF dispersion in the device. Since
the last decade, extensive efforts have been devoted to NPDR structures to eliminate RF
dispersion in solid-state power devices.

Wienecke et al. [55] from UCSB broadened the operating frequency to W-band (80-100 GHz)
by fabricating NPDR MIS-HEMT on a sapphire substrate in 2016, with a 75 nm gate length
and T-shaped gate. After implementing a T-gate design, weakened parasitic capacitance
enhances device RF performance (both fT and fmax) to some extent [56].

The controlling dispersion ability is assessed using DC and 200 ns pulsed I–V tests.
Figure 10a supports that the device’s on-resistance (Ron) and Imax are 0.58 Ω and 1.5 A/mm,
respectively, under the DC condition. Only a minimal current collapse occurs even in
the pulsed measurement, demonstrating the deep recess structure’s efficient dispersion
administration in high-frequency devices. Thanks to this, the device achieves a 2.9 W/mm
Pout with an associated PAE of 15.5% at a load of 94 GHz. The following year, this team
significantly improved the NPDR structure design, i.e., gate-sidewall overlapping [49]; the
3D model is presented in Figure 11. A 30 nm overlap on the sidewall was introduced when
depositing the gate metal (the gate was aligned to the bottom of the notch structure in the
previous design). This design is believed to assist the drain-side gate in relieving the edge
electric field while allowing the device to handle more significant voltage fluctuations (over
12 V) and raise this device’s power density to double the previous density. As can be seen
from the pulse diagram (Figure 10b), the wrapping of the metal gate around the sidewall
does bring about amazing dispersion management (details of which will be discussed later),
resulting in the absence of any current collapse and knee-out phenomenon. Furthermore,
in the small-signal RF measurement (shown in Figure 10c), the fT and fmax of this HEMT
are extrapolated to be 113 and 323 GHz, respectively, when the VDS and VGS bias are set to
13 V and −1.75 V. N-polar GaN HEMTs passivated by MOCVD and PECVD SiNx during
the same period, on the contrary, tend to exhibit an undesirable dispersion behavior [57,58].
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ered, and a 50 nm field plate is used so that the experimental dispersion is mainly from 
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Figure 10. (a) DC and pulsed IDS–VDS measurements of the NPDR MIS-HEMT, fabricated by Wienecke
et al. in 2016. Adapted with permission from Ref. [55]. Copyright 2016 by IEEE. (b) DC and pulsed
IDS–VDS measurements and (c) small-signal RF performance of the NPDR MIS-HEMT with gate-sidewall
overlapping, fabricated by Steven et al. in 2017. Adapted with permission from Ref. [49]. Copyright
2017 by IEEE.

The relationship between gate metal coverage of recessed regions and dispersion was
further discussed by Wienecke [59]. In the case of a fully exposed sidewall, the dispersion
aroused by the gap (refers to the space between the bottom of the gate metal and the groove,
schematic diagram as shown in Figure 12) was first determined. Figure 13 exhibits the
dispersion vs. the drain-side and source-side gap and the effect of different gate coverage
on the output power and gate leakage current, respectively. When the gate metal covers the
entire gate depression area (no gap and the sidewall is completely covered), the dispersion
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induced by those surface states on the sidewall is wholly removed. If the gap is minute (for
example, 5 nm), the produced dispersion is negligible and can be acceptable. Once the gap
approaches 50 nm or more, the RF dispersion will increase dramatically; hence, wide gaps
over 50 nm are forbidden in NPDR structures. The gap discussed above relates to the drain
side, whereas the source-side sidewall is completely covered, and a 50 nm field plate is used
so that the experimental dispersion is mainly from the drain side. The same test procedure
is applied to the source side, and a similar dispersion behavior is obtained. Results of gate
coverage contribution to device performance suggest that the full metal coverage sample
achieved the highest RF Pout of any transistor under the drain bias. However, it will cause a
slight degradation in fT/fmax due to the larger Cgs and Cgd [60]. The Ig drops rapidly with
the increase of sidewall coverage, but the device with a 15 nm gap is even lower than that
of the one with half of the sidewall covered; thus, the mechanism of gate metal deposition
coverage on the gate leakage current should be further investigated. Weighing the device’s
frequency characteristics, breakdown and output power performance, Full Metal Coverage
is considered the best trade-off solution. Most reports on NPDR structures currently use a
self-alignment process to cover the entire gate depression region.
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The UID GaN cap thickness is also one of the crucial parameters in the NPDR structure.
It is clear that the thicker the cap is, the further the channel is from the device surface,
which minimizes the surface charge impact on the 2DEG and achieves superior dispersion
control. 47.5 nm GaN cap thickness was found to be the most suited in earlier research
until lately, this classic thickness has been replaced by 20 nm, primarily to reduce the
fringing capacitance while still maintaining the high access region channel conductivity [61].
This action helps improve the device’s gain and fT/fmax combination but perhaps leads
to incomplete dispersion control. While additional PECVD passivation can be used to
compensate for the reduced ability to regulate dispersion and obtain the desired results.

UID GaN cap with PECVD SiNx passivation to commonly suppress dispersion has
been demonstrated and fabricated many times in N-polar GaN devices [55,61–63]. Uti-
lization of the double-layer structure makes it possible to achieve excellent performance
without the original thick cap, preventing parasitic channels caused by the strong po-
larization effect (PECVD SiNx does not produce polarization). At the same time, gate
misalignment inside the trench is inevitable during the gate deposition, and PECVD SiNx
is also effective in eliminating the remaining dispersion left by gate misalignment [55].
Regardless of the rationale, the additional SiNx passivation does have beneficial effects on
the breakdown and power performance of the device. Romanczyk found that depositing
40 nm PECVD SiNx on the surface of a typical 47.5 nm UID GaN cap yielded higher output
power at 10 GHz and allowed the HEMT to operate at higher VDS,Q (the SiNx passiva-
tion increased VT,access so that the channel can withstand higher voltages without being
depleted) [62]. Under pulsed IDS–VDS measurement (650 ns pulse with and 0.065% duty
cycle), the ID of the device drops only 8.5%, even with the stress as high as 23 V. Figure 14
compares the performance of this NPDR GaN HEMT with the superior Ga-polar monolithic
microwave integrated circuit (MMIC) at W-band. When the load-pull measure is boosted
to 94 GHz, a peak output power of 8.84 W/mm with 27% associated PAE (VD = 23 V) made
it the best-performing device among the N-polar GaN device family. A slight reduction
in voltage (to 20 V) would show a peak PAE of 30.7%, also unprecedented in N-polar
GaN devices to date. This result far exceeds the leading level in the W-band reported for
Ga-polar devices (an MMIC reported by Niida et al. [64] achieving 3.6 W/mm Pout with
a maximum PAE of 12.3%, and an AlN/GaN HEMT reported by Harrouche et al. [65]
achieving 4 W/mm Pout with a PAE of 14.3% in 2019), proving the absolute dominance of
NPDR structures in the millimeter-wave RF field.
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Romanczyk. Adapted with permission from Ref. [62]. Copyright 2020 by IEEE. (b) Advanced Ga-
polar MMIC, the solid and dashed lines are the results in the actual measurement and simulation
scenarios, respectively. Adapted with permission from Ref. [64]. Copyright 2016 by IEEE.

A thin double-cap layer structure, 2.6 nm of AlGaN deposited on top of 10 nm UID
GaN as the cap layer, facilitates gain enhancement and suppresses parasitic channels [66].
At a 1 µs gate pulse width and an 800 ns drain pulse width, the test findings demonstrate
that only around 10% dispersion (VGS,Q = −6 V, VDS,Q = 0 V) is observed. The gain
enhancement due to the thin double-cap design facilitates the modulation effect of the gate
on the 2DEG. It reduces the signal distortion of the device, enabling it to be more suitable
for receivers that operate at low drain bias voltages.

More recently, Transphorm Inc. [67] has grown NPDR epitaxial stack on a 4-inch off-axis
sapphire and a 4-inch off-axis C-face SiC substrates, respectively, and obtained excellent
material quality characteristics for both, which demonstrates the feasibility of commercializing
GaN NPDR MIS-HEMTS in the future. The STEM and typical AFM topography of the
epitaxial stack are indicated in Figure 15. It can be seen in the STEM that the GaN buffer
gradually filters out the linear dislocations starting from the nucleation layer to ensure the
material quality in the upper HEMT region. In addition, there is a good hierarchical structure
between the GaN and Al(Ga)N, with a low center-to-edge non-uniformity of about 0.3%. The
low roughness average (Ra) of only 1.1 nm (on 100 mm sapphire) and 1.5 nm (on 100 mm SiC)
reveals that the N-polar epitaxial layer has a smooth surface, implying success in the large-size
N-polar GaN wafers’ growth. Researchers at Transphorm Inc. also found a low average Rsh
of 234.3 Ω/sq for the 2DEG channel (with a 2% non-uniformity) owing to the 2DEG with
an electron density of about 1.44 × 1013 cm−2 and high electron mobility (is approximately
1850 cm2/V·s). It is worth mentioning that these values are the average mobility measured in
both the parallel and perpendicular directions to the miscut steps. Thus, higher mobility and
lower Rsh may be obtained if the current moves precisely in the parallel direction (along the
terrace direction) of the actual deep recess devices.
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The parameters and the performance of NPDR MIS-HEMTs operating in a range of
frequencies are summarized in Table 2 for reference. The superior results imply that the
NPDR structure is an efficient solution for suppressing surface dispersion of high-frequency
devices, which may be commercially available and employed in the future RF industry,
especially in the growing demand of the 5G market. However, it is necessary first to
consider the poor heat dissipation caused by the current recovery. GaN-on-diamond may
be a prospective option to address the thermal aggregation of NPDR GaN HEMTs in the
future [68–70].

Table 2. Characterization of NPDR MIS-HEMTs applied to various wave bands, including epitaxial
structures, output performances, and dispersion suppression.

Ref. Band
Freq.

(GHz)

Peak Po Peak PAE
Disp.
(%)

Cap Thk.
(nm)

SiNx Thk.
(nm) Substrate

VD(V) Po
(W/mm)

PAE
(%) VD(V) Po

(W/mm)
PAE
(%)

[55]

W 94

10 2.9 15.5 8 1.7 20 110 18 Sapphire
[60] 14 4.2 8 1.6 16.5 22 NO Sapphire
[61] 16 5.5 20.6 12 3.7 25.9 <5 20 20 Sapphire
[71] 11 3.7 9 3.0 27.8 <5 47.5 NO SiC
[72] 18 6.2 33.8 16 5.6 34.8 47.5 24 SiC
[49] 16 6.7 14.4 15 4.8 16.9 NO 47.5 NO SiC
[73] 20 7.1 25.1 14 4.6 27.5 47.5 NO SiC
[53] 20 7.9 26.9 16 5.3 28.8 <10 47.5 NO SiC
[62] 23 8.8 27 20 7.2 30.2 8.5 47.5 40 SiC

[74] 87 8 2.5 34.2 NO 47.5 NO SiC

[66]
Ka 30

10 12.6 20 SiC
[53] 20 8.1 52.5 14 5.6 55.9 <10 47.5 NO SiC
[63] 26 10.3 47.4 47.5 40 SiC

[53] X 10 20 7.8 54.9 14 5.1 58.1 <10 47.5 NO SiC

[54] C 4 24 5.5 74 NO 120 NO Sapphire

5. Conclusions

GaN-based HEMTs have shown great performance in the microwave RF field. Never-
theless, the inherent high-density surface states of GaN and the inevitable defects during
fabricating are potential sources of surface traps. In the switching transition of the device,
the behaviors of trapping and delayed releasing electrons by the surface states are the
leading causes of RF surface dispersion and pose a significant challenge to HEMTs to
maintain high output power and stability. Accordingly, how to suppress RF dispersion in
GaN devices is an interesting research problem.

Surface treatment, passivation, field plate, GaN cap layer, and Si surface doping are
demonstrated to effectively suppress RF dispersion and are widely used in the industry.
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While these methods provide varying degrees of dispersion suppression, as higher frequen-
cies are explored, the exacerbated surface trapping effect or excessive parasitic capacitance
makes these techniques progressively less effective.

N-polar GaN has many special advantages in high-frequency applications due to the
opposite polarity, especially allowing the growth of a thick GaN channel (or thick UID GaN
cap on the access region), providing an alternative way to minimize the dispersion caused
by surface trapping at high frequencies. The utilization of a thick GaN layer keeps the
surface far from the 2DEG channel to control the surface states and minimize the impact of
surface charging on device operation. The isolation between the channel and the surface
enables the NPDR structure to be considered the most promising approach for solving RF
dispersion in GaN-based high-frequency power devices. In the past decade, the structural
design of NPDR has been continuously improved, such as self-alignment for full coverage
of the depression region with gate metal, simultaneous use of deep recess structure and
SiNx passivation, and a double-layer structure for the receiver side. From the results, NPDR
is expected to significantly contribute to the elimination of RF dispersion in high-frequency
GaN HEMTs, restore their stability and inherent high power density, and is likely to be
used in commercial 5G millimeter-wave RF devices in the future. However, the high
price of SiC substrates, the high-quality requirements for N-polar GaN epitaxy, and heat
dissipation are the primary impediments to large-scale industrial fabrication. Therefore, if
more substantial progress can be achieved in addressing these obstacles, the application
prospects of high-frequency GaN HEMTs will extend further.
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