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Abstract: The Eshelby tensor for two-dimensional (2D) piezoelectric quasicrystal composites (QCs)
is considered. The explicit expressions of Eshelby tensors for 2D piezoelectric QCs are given using
the Green’s function method and the interior polarization tensor method, respectively. On this basis,
numerical examples of the Eshelby tensor for 2D piezoelectric QCs with ellipsoidal inclusions are
discussed in detail.
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1. Introduction

Quasicrystals are a new solid discovered by Shechtman et al. [1] in 1984 with unique
physical and mechanical properties. As a new solid structure, quasicrystals have many
ideal properties, such as low coefficient, low friction, low adhesion, low porosity and
high wear resistance [2,3]. Hence, they have broad application prospects. Ding et al. [4]
established the theory of quasicrystal linear elasticity. Fan [5] studied some problems
of quasicrystal fracture mechanics. Li et al. [6] studied the elasticity and dislocations in
quasicrystals with 18-fold symmetry. Wang et al. [7] investigated the elastic field near the
tip of an anticrack in a homogeneous decagonal quasicrystal.

With the advent of quasicrystal composites materials (QCs), piezoelectric QCs are also
favored by the majority of scholars. The piezoelectric effect is one of the important physical
properties of quasicrystals. The structure of piezoelectric QCs is much more complex
than that of QCs. Rao et al. [8] conducted theoretical research on the electro-elasticity of
quasicrystals. Altay and Dökmeci [9] gave the basic equations for the elasticity problem,
which laid a theoretical foundation for the study of piezoelectric QCs. Zhang et al. [10]
gave the general solution of the plane elasticity of 1D QCs with the piezoelectric effect.
Li et al. [11] expressed the 3D general solutions to 1D hexagonal piezoelectric quasicrystals.
Fan et al. [12] investigated the three-dimensional cracks in one-dimensional hexagonal
piezoelectric quasicrystals. Dang et al. [13] investigated the problem of anti-plane interface
cracks in one-dimensional hexagonal quasicrystal coatings. Fu et al. [14] obtain the Green’s
functions of two-dimensional piezoelectric quasicrystal half-space and bimaterials.

In recent years, the inclusion problems of QCs have attracted widespread attention
from many experts and scholars. Hence, many notable achievements have been made.
Wang [15] obtained an analytic solution for Eshelby’s problem of a two-dimensional inclu-
sion of arbitrary shape in a decagonal quasicrystalline plane or half-plane. Gao et al. [16]
studied the three-dimensional problem of a spheroidal quasicrystalline inclusion, which
is embedded in an infinite matrix consisting of a two-dimensional quasicrystal subject to
uniform loadings at infinity. Guo et al. [17] analysed an elliptical inclusion embedded in
an infinite 1D hexagonal piezoelectric quasicrystal matrix. Guo and Pan [18] studied the
three-phase cylinder model of 1D piezoelectric quasicrystal composites and predicted the ef-
fective moduli of the piezoelectric quasicrystalline composites. Wang and Guo [19] obtained
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the exact closed-form solution of phonon, phase and electric field stress in 1D piezoelectric
quasicrystal composites with the confocal elliptic cylinder model. Zhai et al. [20] investi-
gated the plane problem of two-dimensional decagonal quasicrystals with a rigid circular
arc inclusion under infinite tension and concentrated force.

In this paper, the Eshelby tensors are considered in detail by the Green’s function
method and the polarization tensor method. The analytical expressions are given for the
Eshelby tensors for elliptic cylinder and cylindrical inclusions embedded in a 2D decagonal
piezoelectric quasicrystal matrix. Meanwhile, a numerical example of the Eshelby tensor
for 2D piezoelectric QCs with ellipsoidal inclusion is also given. The effects of the inclusion
aspect ratio and material constants on the Eshelby tensor are discussed in detail, which are
critical to the research on the properties of the quasicrystal with inclusions. The results of
the calculated Eshelby tensor are sufficient to demonstrate the effects of the two methods.

2. Mathematical Formulation

In a fixed rectangular coordinate system (x1, x2, x3), the basic equations for the 2D
decagonal piezoelectric QCs are as follows [9,21]. The constitutive equations without
considering the body force are given by

σ11 = C11ε11 + C12ε22 + C13ε33 + R1(w11 + w22) + R2(w12 − w21)− e31E3,
σ22 = C12ε11 + C11ε22 + C13ε33 − R1(w11 + w22)− R2(w12 − w21)− e31E3,
σ33 = C13ε11 + C13ε22 + C33ε33 − e33E3,
σ23 = σ32 = 2C44ε23 − e15E2,
σ13 = σ31 = 2C44ε31 − e15E1,
σ12 = σ21 = 2C66ε12 + R1(w21 − w12) + R2(w11 + w22),
H11 = R1(ε11 − ε22) + 2R2ε12 + K1w11 + K2w22,
H22 = R1(ε11 − ε22) + 2R2ε12 + K2w11 + K1w22,
H23 = K4w23,
H13 = K4w13,
H12 = −2R1ε12 + R2(ε11 − ε22) + K1w12 − K2w21,
H21 = 2R1ε12 − R2(ε11 − ε22)− K2w12 + K1w21,
D1 = 2e15ε31 + ξ11E1,
D2 = 2e15ε23 + ξ22E2,
D3 = e31ε11 + e31ε22 + e33ε33 + ξ33E3,

(1)

in which C66 = (C11 − C12)/2; εkl and wγl respectively denote the phonon field and phason
field strain; σij and Hαj stand for the corresponding stress; Di and Ek are the electric
displacement and electric field, respectively; Cij, Kα and Ri are the elastic constants of the
phonon field, the phason field and the phonon-phason coupling field, respectively; eij and
ξij are the piezoelectric coefficient of phonon field and dielectric constant, respectively.

In addition, the geometric equations are

εkl =
1
2 (uk,l + ul,k),

wαl = wα,l ,
Ei = −φ,i,

(2)

where uk and wα represent the displacement of the phonon field and the phason field,
respectively; φ is the electric potential.

The equilibrium equations are

σij,j = 0,
Hαj,j = 0,
Di,i = 0,

(3)

where commas denote partial derivatives, and the summation convention applies to re-
peated subscripts.
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Equations (1)–(3) can be compactly expressed with the notation of Lothe and Barnett
as [22]

ZKl =


εkl =

1
2 (uk,l + ul,k), K = 1, 2, 3,

wγl = wγ,l , K = 4, 5,
Ei = −φ,i, K = 6,

UK =


uk, K = 1, 2, 3,
wα, K(= α + 3) = 4, 5,
φ, K= 6.

(4)

ΞI j =


σij I = 1, 2, 3,
Hαj I = 4, 5,
Di I= 6.

LI jKl =



Cijkl I, K = 1, 2, 3,
Rijγl I = 1, 2, 3, K = 4, 5,
Rklαj I = 4, 5, K = 1, 2, 3,
Kαjγl I = 4, 5, K = 4, 5,
elij I = 1, 2, 3, K = 6,
ejkl I = 4, 5, K = 1, 2, 3,
ξil I = 6, K = 6.

(5)

where ZKl , UK, ΞI j and L0
I jKl are the matrices of the strain, the displacement, the stress, and

the quasicrystal piezoelectric elastic modulus, respectively.
Then, Equation (1) can be rewritten as

ΞI j = LI jKlZKl . (6)

3. Problem Statement

In this section, an inclusion of elliptical shape Ω embedded in an infinite 2D decagonal
piezoelectric quasicrystal matrix R3 is considered (as pictured in Figure 1). The inclusion
is defined by (x1/a1)

2 + (x2/a2)
2 + (x3/a3)

2 = 1, where ai(i = 1, 2, 3) are the lengths of
semiaxes of the ellipsoid. The surface of the inclusion is denoted by |Ω|.
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Figure 1. An ellipsoidal inclusion Ω in infinite 2D decagonal piezoelectric quasicrystal matrix R3.

The inclusion is under a uniform stress-free strain and electric displacement-free
electric field, represented by Z∗Kl .

The phonon field displacement, phason field displacement and electric potential, UK,
due to the transformation of the inclusion can be expressed using the Green’s function
as [23,24].

UK(x) =
x

∂Ω

GKI(x− x′)Ξ∗I jnjdS(x′)−
x

Ω

∫
GKI(x− x′)Ξ∗I j,jdV(x′), (7)
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where nj is the outward normal to |Ω| and Ξ∗I j is the stress and electric displacement, which
is induced by the eigenstrain Z∗Kl , i.e., Ξ∗I j = LI jKlZ∗Kl . The Green’s functions GKI(x− x′)
can be expressed as [25].

GKI(x− x′) =
1

8π2|x− x′|

∫
|z|=1

K−1
KRδ(z · t)dS(z), (8)

where δ(x) is the Dirac delta function and t is the unit vector in the direction x− x′. |z| = 1
is the surface of the unit sphere centred at z = 0 and K−1

KR is the inverse of

KIR = zjzl LI jRl (9)

With the divergence theorem, we can obtain that

UK,l(x) = −LI jAbZ∗Ab

∫ ∫
Ω

∫
GKI,jl(x− x′)dV(x′). (10)

Similar to the work of Ref. [25], GKI,jl(x− x′) can be expressed as

GKI,jl(x− x′) =
1

8π2
∂2

∂xj∂xl

∫
|z|=1

zjzlK−1
KI (z)δ[z · (x− x′)]dS(z). (11)

By using the properties of the Dirac delta function, we have

UK,l(x) =
a1a2a3

4π
LI jAbZ∗Ab

∫
|z|=1

zjzlK−1
KI (z)ζ

−3dS(z). (12)

The strain field ZKl and eigenstrain fields Z∗Ab can be expressed as the following linear
relationship

ZKl = SKlAbZ∗Ab, (13)

where SKlAb is the Eshelby tensor for the 2D decagonal piezoelectric quasicrystal.
In addition, by using the following variable transformations

a1z1 = ζ1, a2z2 = ζ2, a3z3 = ζ3, ζ1
ζ = ζ1, ζ2

ζ = ζ2, ζ3
ζ = ζ3,

ζ = (ζ2
1 + ζ2

2 + ζ2
3)

1
2 , dS(ζ) =a1a2a3ζ−3dS(z), dS(ζ) = dθdζ3,

ζ1= (1 − ζ
2
3)

1
2 cos θ, ζ2= (1 − ζ

2
3

) 1
2 sin θ, ζ3 = ζ3,

(14)

Equation (12) can be simplified as

UK,l(x) =
1

4π
LI jAbZ∗Ab

∫ 1

−1

∫ 2π

0
zjzlK−1

KI (z)dθdζ3. (15)

Using Equations (2), (4), (13) and (15), SKlAb can be expressed as

SKlAb =

{
1

8π LI jAb(GkI jl + Gl I jk), K = k = 1, 2, 3,
1

4π LI jAbGkI jl , K(= k + 3) = 4, 5, 6,
(16)

where GkI jl(z) =
∫ 1
−1

∫ 2π
0 zjzlK−1

KI (z)dθdζ3.
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It is very helpful to express Equation (16) explicitly in terms of the matrix material constant.

Sklab = 1
8π (Cijab(Gkijl + Glijk) + Rabij(GkI jl + Gl I jk) + ejab(Gk6jl + Gl6jk)),

SklAb = 1
8π (Rijab(Gkijl + Glijk) + Kijab(GkI jl + Gl I jk)),

SklAb = 1
8π (ebij(Gkijl + Glijk) + ξ jb(Gk6jl + Gl6jk)),

SKlab = 1
4π (CijabGkijl + RabijGkI jl + ejabGk6jl),

SKlAb = 1
4π (CijabGkijl + KijabGkI jl),

SKlAb = 1
4π (ebijGkijl + ξ jbGk6jl),

SKlab = 1
4π (CijabG6ijl + RabijG6kI jl + ejabG66jl),

SKlAb = 1
4π (RijabG6ijl + KijabG6I jl),

SKlAb = 1
4π (ebijG6ijl + ξ jbG66jl),

(17)

in which a, b, i, j, k, l = 1, 2, 3 and A, K, I = 4, 5, 6.
According to Equation (17), the expression for the Eshelby tensor of a 2D decagonal

piezoelectric QCs can be obtained. In order to improve computational efficiency, we
can further obtain the Eshelby tensor by the polarization tensor method. The interior
polarization tensors can be defined by [26].

tiKjA = −
∫

Ω
GiK,jA(x− x′)dV(x′). (18)

Similarly, using Equation (15), the above equation can be simplified as

tiKjA = 1
4π

∫ π
0

∫ 2π
0 xixj(LmKnAxmxn)

−1 sin θdφdθ,

x1 = sin θ cos φ
a1

, x2 = sin θ sin φ
a2

, x3 = cos θ
a3

.
(19)

The interior polarization tensor for 2D decagonal piezoelectric QCs can be written as

TiKjA = 1
4 (tiKjA + tKijA + tiKAj + tKiAj), i, j, A, K = 1, 2, 3

TiKjA = 1
2 (tiKjA + tiKAj), i, j, A = 1, 2, 3, K = 4, 5, 6

TiKjA = 1
2 (tiKjA + tKijA), i, j, K = 1, 2, 3, A = 4, 5, 6

TiKjA = 1
2 (tiKjA + tjKiA), i, j= 1, 2, 3, A, K = 4, 5, 6.

(20)

Therefore, the Eshelby tensor for 2D decagonal piezoelectric QCs can be rewritten as

Sklab = Tklmn : Lmnab, (21)

where the double dot product is used.
Based on Equations (17) and (21), the closed forms of the Eshelby tensor are given

in Appendix A for cylindrical and elliptical cylindrical inclusions embedded in the 2D
decagonal piezoelectric quasicrystal matrix. Comparing the expressions of the Eshelby
tensor obtained by the two methods, the correctness of the results of this paper is verified.
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When the contribution of the phason field is not taken into account, the results of the
degradation are as follows:

S1111 = S2222 = 5C11+C12
8C11

, S1122 = S2211 = −C11+3C12
8C11

,

S1133 = S2233 = C13
2C11

, S1163 = S2263 = e13
2C11

,

S1212 = S1221 = S2112 = S2121 = 3C11−C12
8C11

,

S1313 = 1
4 , S2323 = 1

4 , S6161 = S6262 = 1
2 .

(22)

After comparing with the results in Ref. [27], it is found that the two results are
completely consistent. The correctness of the method is further verified.

4. Numerical Examples and Discussion

In this section, numerical examples of the Eshelby tensor for 2D decagonal piezoelectric
QCs with ellipsoidal inclusions are given. The material constants are shown in Table 1 [28,29].

Table 1. The material constants of 2D decagonal piezoelectric QCs.

Phonon (GPa) C11 = 234.33, C12 = 57.41, C13 = 66.63, C33 = 232.22, C44 = 70.19,

Phason (GPa) K1 = 122, K2 = 24, K4 = 12,

Phonon-phason coupling (GPa) R1 = 8.846, R2 = 8.846,

piezoelectric coefficient (C/m2) e31 = −4.4, e15 = 11.6, e33 = 18.6,

dielectric constant (10−9C2/(Nm2)) ξ11 = 11.2, ξ22 = 11.2, ξ33 = 12.6.

Furthermore, to avoid the pathology of the matrix caused by the difference of material
parameter magnitude, the material constants can be treated as dimensionless quantities by
the following formula

C̃ijkl =
Cijkl

C11
, R̃ijkl =

Rijγl

R1
, ẽijk =

eijk

e33
, K̃αjγl =

KαjγlC11

R1
2 , ξ̃ jk =

ξ jkC11

e332 . (23)

where waves represent dimensionless quantities.
Observe from Figures 2–5 that there are 23 independent non-zero components of the

Eshelby tensor in 2D decagonal piezoelectric QCs. The Eshelby tensors represented in the
Equations (A1)–(A11) are depicted in Figures 2 and 3. It can be seen that the Eshelby tensors
almost reach their asymptotic values at a3/a1 = 10. The curves in Figures 4 and 5 and S3333 in
Figure 3 gradually vanish with the increasing aspect ratio of the inclusion. From Figures 2–5,
we can see that the Eshelby tensors obtained by the Green’s function method are in a good
agreement with those obtained by the interior polarization method. Furthermore, our results
are consistent with those of Ref. [27] when the contribution of the phason field is neglected.
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5. Conclusions

In this paper, the Eshelby tensor for the ellipsoidal inclusion problem in the infinite
2D decagonal piezoelectric QCs matrix is investigated in detail. The explicit expressions
of Eshelby tensors for 2D decagonal piezoelectric QCs are given with the help of the
Green’s function method and the polarization tensor method, respectively. On this basis,
numerical examples of the Eshelby tensor are also presented. From the perspective of
numerical results, the equivalence of the two methods is verified once again. It is also
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revealed that the inclusions aspect ratio and material constants have a significant effect on
the Eshelby tensor.
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Appendix A

Based on the Equations (17) and (21), the simplified and closed-form expressions of
the Eshelby tensor are given by

(i) Cylindrical inclusions (a1 = a2, a3 → ∞)

S1111 = S2222 =
4R1

2 + 4R2
2 − 5C11K1 − C12K1

8(R1
2 + R22 − C11K1)

, (A1)

S1122 = S2211 =
4R1

2 + 4R2
2 + 3C12K1 − C11K1

8(C11K1 − R1
2 + R22)

, (A2)

S1133 = S2233 =
−C13K1

2(R1
2 + R22 − C11K1)

, (A3)

S1212 =
4R1

2 + 4R2
2 − 3C11K1 + C12K1

8(R1
2 + R22 − C11K1)

, (A4)

S4111 = −S4122 = S5211 = −S5222 = −S4221 = S5121 =
R1(C11 + C12)

8(C11K1 − R1
2 + R22)

, (A5)

S4211 = −S4222 = −S5111 = S5122 = S4121 = S5221 =
R2(C11 + C12)

8(C11K1 − R1
2 + R22)

, (A6)

S1141 = −S1152 = −S2241 = S2252 = −S2142 = S2151 =

−R1(K1−K2)(−4R1
2−4R2

2+3C11K1−C12K1)
8(R1

2+R2
2−C11K1)(−2R1

2−2R2
2+C11K1−C12K1)

,
(A7)

S1142 = −S1151 = S2242 = −S2251 = S2141 = S2152 =

−R2(K1−K2)(−4R1
2−4R2

2+3C11K1−C12K1)
8(R1

2+R2
2−C11K1)(2R1

2+2R2
2−C11K1+C12K1)

,
(A8)

S1313 = S2323 = 2S4141 = 2S4242 = 2S5151 = 2S5252 = 2S6161 = 2S6262 =
1
4

, (A9)

S1163 = S2263 =
e31K1

2C11K1 − 2(R1
2 + R22)

, (A10)

S4152 = S5241 = −S4251 = −S5142 =

(2R1
2+2R2

2)
2
+2C11K1K2(C11−C12)

4(R1
2+R2

2−C11K1)(2R1
2+2R2

2−C11K1+C12K1)
+

(C12−3C11)(K1+K2)(R1
2+R2

2)
4(R1

2+R2
2−C11K1)(2R1

2+2R2
2−C11K1+C12K1)

.

(A11)
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(ii) Elliptic cylinder (a2/a1 = a, a3 → ∞)

S1111 = − a((3 + 2a)C11K1 + C12K1 − 2(1 + a)(R1
2 + R2

2)

2(1 + a)2(R1
2 + R22 − C11K1)

,

S1122 = − a(−C11K1 + (1 + 2a)C12K1 + 2(1 + a)(R1
2 + R2

2))

2(1 + a)2(R1
2 + R22 − C11K1)

,

S1133 = − aC13K1

(1 + a)(R1
2 + R22 − C11K1)

, S2233 = − C13K1

(1 + a)(R1
2 + R22 − C11K1)

,

S1141 =
(K2 + aK2 − (1 + a)K1)R1((2 + a)C11K1 − aC12K1 − 2(1 + a)(R1

2 + R2
2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S1142 =
a2(aK1 + K2 − (1 + a)K1)R2((2 + a)C11K1 − aC12K1 − 2(1 + a)(R1

2 + R2
2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S1151 = − (K1 + aK2 − (1 + a)K1)R2((2 + a)C11K1 − aC12K1 − 2(1 + a)(R1
2 + R2

2)

(1 + a)3(R1
2 + R22 − C0

11K1)(C11K1 − C12K1 − 2(R1
2 + R22))

,

S1152 =
a2(aK1 + K2 − (1 + a)K1)R1((2 + a)C11K1 − aC12K1 − 2(1 + a)(R1

2 + R2
2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S1163 = − ae31K1

(1 + a)(−C11K1 + R2
1 + R2

2)
, S2263 = − e31K1

(1 + a)(−C11K1 + R2
1 + R2

2)
,

S2211 = −−aC11K1 + (2 + a)C12K1 + 2(1 + a)(R1
2 + R2

2)

2(1 + a)2(R1
2 + R22 − C11K1)

, S2323 =
2

4(1 + a)
,

S2222 = − a(2 + 3a)C11K1 + aC12K1 − 2(1 + a)(R1
2 + R2

2)

2(1 + a)2(R1
2 + R22 − C11K1)

, S1313 =
a

4(1 + a)
,

S2241 =
(K1 − K2)R1((1 + 2a)C11K1 − C12K1 − 2(1 + a)(R1

2 + R2
2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S2242 = − a(aK1 + K2 − (1 + a)K1)R2((1 + 2a)C11K1 − C12K1 − 2(1 + a)(R1
2 + R2

2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S2251 =
(K1 − K2)R2((1 + 2a)C11K1 − C12K1 − 2(1 + a)(R1

2 + R2
2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S2252 = − a(aK1 + K2 − (1 + a)K1)R1((1 + 2a)C11K1 − C12K1 − 2(1 + a)(R1
2 + R2

2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S2121 = − (1 + a + a2)C11K1 − aC12K1 − (1 + a)2(R1
2 + R2

2)

2(1 + a)2(R1
2 + R22 − C11K1)

,

S2142 = − a(K1 − K2)R1((1 + a + a2)C11K1 − aC12K1 − (1 + a)2(R1
2 + R2

2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S2141 = − (K1 − K2)R2((1 + a + a2)C11K1 − aC12K1 − (1 + a)2(R1
2 + R2

2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S2151 = − (K1 − K2)R1((1 + a + a2)C11K1 − aC12K1 − (1 + a)2(R1
2 + R2

2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S2152 = − a(K1 − K2)R2((1 + a + a2)C11K1 − aC12K1 − (1 + a)2(R1
2 + R2

2)

(1 + a)3(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,
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S4133 = − (−1 + a)aC13R1

(1 + a)2(R1
2 + R22 − C11K1)

, S4121 = − a2(C11 + C12)R2

(1 + a)3(R1
2 + R22 − C11K1)

,

S4111 = − a(C11 + C12)R1

(1 + a)3(R1
2 + R22 − C11K1)

, S4122 =
a3(C11 + C12)R1

(1 + a)3(R1
2 + R22 − C11K1)

,

S4133 = − (−1 + a)aC13R1

(1 + a)2(R1
2 + R22 − C11K1)

, S4121 = − a2(C11 + C12)R2

(1 + a)3(R1
2 + R22 − C11K1)

,

S4211 = − (C11 + C12)R2

(1 + a)3(R1
2 + R22 − C11K1)

, S4221 =
a(C11 + C12)R1

(1 + a)3(R1
2 + R22 − C11K1)

,

S4151 =
(−1 + a)2a(C11 + C12)(K1 − K2)R1R2

(1 + a)4(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S4222 =
a2(C11 + C12)R2

(1 + a)3(R1
2 + R22 − C11K1)

, S4233 = − (−1 + a)C13R2

2(1 + a)2(R1
2 + R22 − C11K1)

,

S4241 =
(−1 + a)2a(C11 + C12)(K1 + aK2 − (1 + a)K1)R1R2

2(1 + a)4(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S4252 =
(−1 + a)2a(C11 + C12)(aK1 + K2 − (1 + a)K1)R1R2

2(1 + a)4(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S5111 = − a(C11 + C12)R2

(1 + a)3(R1
2 + R22 − C11K1)

, S5122 = − a3(C11 + C12)R2

(1 + a)3(R1
2 + R22 − C11K1)

,

S5121 = − a2(C11 + C12)R1

(1 + a)3(R1
2 + R22 − C11K1)

,

S5141 = − (−1+a)2(C11+C12)(K1+aK2−(1+a)K1)R1R2

2(1+a)4(R1
2+R2

2−C11K1)(C11K1−C12K1−2(R1
2+R2

2))
,

S5211 = − a(C11+C12)R1

(1+a)3(R1
2+R2

2−C11K1)
, S5233 = − (−1+a)C13R1

(1+a)2(−C11K1+R1+R2)
,

S5221 = − a(C11+C12)R1

(1+a)3(R1
2+R2

2−C11K1)
, S5222 = a2(C11+C12)R1

(1+a)3(R1
2+R2

2−C11K1)
,

S5152 = − (−1 + a)2(C11 + C12)(aK1 + K2 − (1 + a)K1)R1R2

2(1 + a)4(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S5242 =
(−1 + a)2a(C11 + C12)(aK1 + K2 − (1 + a)K1)R1R2

2(1 + a)4(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S5251 = − (−1+a)2a(C11+C12)(K1+aK2−(1+a)K1)R1R2

2(1+a)4(R1
2+R2

2−C11K1)(C11K1−C12K1−2(R1
2+R2

2))
,

S5151 = S4141 = −(a(2(1+a)3C11
2K1

2+ f0+C12b0−C11c0+K1d0

2(1+a)4(R1
2+R2

2−C11K1)(C11K1−C12K1−2(R1
2+R2

2)
,

S4242 = S5252 =
−((2(1 + a)3C11

2K1
2 + f0 + C12e0 − C11 f0 + K1g0

2(1 + a)4(R1
2 + R22 − C11K1)(C11K1 − C12K1 − 2(R1

2 + R22))
,

S5241 = −S4251 = −(2(1+a)3C11
2K1

2K2
2+g1+C12(b1+c1)+C11(d1+ f1)

2(1+a)4(R1
2+R2

2−C11K1)(C11K1−C12K1−2(R1
2+R2

2))
,

S4152 = −S5142 =
a(2(1+a)3C11

2K1
2K2

2+g1+C12(g1+h1)+C11(i1+j1)
2(1+a)4(R1

2+R2
2−C11K1)(C11K1−C12K1−2(R1

2+R2
2))

,

S6161 = a
1+a , S6262 = 1

1+a ,

S1436 = (−1+a)ae31R1

(1+a)2(−C11K1+R1
2+R2

2)
, S2536 = (−1+a)e31R1

(1+a)2(−C11K1+R1
2+R2

2)
,
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S2436 =
(−1 + a)e31R2

(1 + a)2(−C11K1 + R1
2 + R22)

, S1536 = − a(−1 + a)e31R2

(1 + a)2(−C11K1 + R1
2 + R22)

,

b0 = −(−1 + a)2K2(R1
2 − R2

2) + K1(3 + 4a + 7a2 + 2a3)R1
2 + (1 + 8a + 5a2 + 2a3)R2

2,

e0 = (−1 + a)2aK2(R1
2 − R2

2) + K1(2 + 5a + 8a2 + a3)R1
2 + (2 + 7a + 4a2 + 3a3)R2

2,

c0 = 2(1 + a)3C12K1
2 + (−1 + a)2K2(R1

2 − R2
2),

f0 = 4(1 + a)3(R1
2 + R2

2)
2,

d0 = (5 + 20a + 17a2 + 6a3)R1
2 + (7 + 16a + 19a2 + 6a3)R2

2,

f0 = 2(1 + a)3C12K1
2 − (−1 + a)2aK2(R1

2 − R2
2),

g0 = K2(a(5 + 2a + a2)R1
2 + (2 + a + 4a2 + 5a3)R2

2,

g1 = 4(1 + a)3(R1
2 + R2

2)
2,

b1 = K1((2 + a + 4a2 + a3)R1
2 + a(5 + 2a + a2)R2

2),

c1 = K2(a(5 + 2a + a2)R1
2 + (2 + a + 4a2 + 5a3)R2

2),

d1 = 2(1 + a)3C12K1K2 + K1((2 + 11a + 8a2 + 3a3)R1
2 + (4 + 7a + 10a2 + 3a3)R2

2,

f1 = K2((4 + 7a + 10a2 + 3a3)R1
2 + (2 + 11a + 8a2 + 3a3)R2

2),
g1 = K1((1 + 2a + 5a2)R1

2 + (1 + 4a + a2 + 2a3)R2
2,

h1 = K2((1 + 4a + a2 + 2a3)R1
2 + (1 + 2a + 5a2)R2

2),

i1 = 2(1 + a)3C12K1K2 + K1((3 + 10a + 7a2 + 4a3)R1
2 + (3 + 8a + 11a2 + 2a3)R2

2,

j1 = K2((3 + 10a + 7a2 + 4a3)R1
2 + (3 + 8a + 11a2 + 2a3)R2

2).
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