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Abstract: It has long been known that residual stresses can profoundly affect the integrity of engineer-
ing components. Evidence has recently emerged to confirm that solid-state phase transformations
in steels can significantly influence the as-welded residual stresses. A two-dimensional thermo-
mechanical, generalized plane strain finite element model was created to simulate the effect of
phase transformation on residual stress during the multi-pass weld process in a thick section T-joint.
The effect of phase transformation and martensite start temperatures was investigated. The results
showed that phase transformation generated compressive residual stress underneath the last bead
to be deposited for this multi-pass weld model. However, some constraints around the bead were
essential to provide that stress. Tensile residual stress was generated in the bulk of the weld area
when phase transformation was considered. Therefore, phase transformation may be helpful for
single pass and other groove welds but may be unhelpful in the case of the T-joint examined here.
The effect of the martensite start temperature is small compared with the main difference between
having a phase transformation and not having one.

Keywords: phase transformation; residual stresses; welding; finite-element modelling

1. Introduction

Welding is one of the most reliable and effective methods of joining large structures.
It is known that the welding process relies on a large amount of heat input and produces
two major problems in welded components: residual stress and distortion. Residual
stresses significantly reduce the service life of any welded structure by increasing the
susceptibility to failure and increasing the tendency for crack propagation in the weld. As a
result, numerous research studies have been conducted on residual stresses in weldments.
The welding process contains many physical phenomena which can be challenging to
control and understand. As a result, welding processes have been simplified and simulated
by using numerical models. These models contain the basic equations of the physical
phenomena in any welding process. The accuracy of these models’ results depends on
the input data quality [1]. However, these numerical models do not replace the need for
experimental work. Still, they work together to give a better understanding and control of
the welding process as well as save time and money.

Residual stresses can be defined as the stresses which are present in a structure in the
absence of external loads. According to Masubuchi [2], there are three main sources of
residual stresses: solidification of molten metal, solid-phase transformation, and plastic
deformation. Residual stresses are generated when the solid-phase transformation occurs
in the steel structure. Austenite has an FCC structure, higher density, and lower yield stress
than the three BCC phases (ferrite, bainite, and martensite). The difference in density between
austenite and the other phases leads to an increase in the volume during cooling process [3,4].
Furthermore, the change in the yield stress during the transformation from austenite to the
other phases results in transformation plasticity [4]. Both transformation plasticity and the
volume changes during transformation have a significant effect on residual stresses. Recent
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studies have confirmed that residual stresses in steel weldments can be decreased significantly
by controlling solid state-phase transformation during the welding process [5,6]. This can be
achieved by delaying the transformation start temperature.

Jones and Alberry [7] set out a model for stress build-up in steel during welding,
and they found that the tensile residual stress accumulates because of thermal contraction.
However, once the phase transformation starts, the tensile stress decreases sharply due to
the increasing volume until it becomes compressive. Then, it goes back to tensile stress
again after the transformation is finished [7]. Taraphdar et al. [8] examined experimentally
and numerically the effect of solid-state phase transformation on the residual stresses
in a thick flat plate. Their numerical study included 2D and 3D FE models. Based on
their accuracy and computational time, they concluded that 2D FE models are better than
3D models for thick multi-pass welding. Other studies in the literature [9–12] prove the
efficiency of 2D FE models in predicting residual stresses due to phase transformation in
the welding process.

This research study is a comparative study to demonstrate the effect of solid-state
phase transformation during multi-pass welding. Therefore, 2D finite element simulations
of the multi-pass welding process in a thick section T-joint have been carried out, with
and without phase transformation. Also, the transformation start temperature has been
changed several times to demonstrate the effect of martensite start temperature on residual
stress accumulation.

2. Materials and Welding Procedure
2.1. Geometry and Dimensions

The base plate sample was 1000 mm long, 300 mm in width, and 35 mm thick. The
web (stiffener) was 1000 mm long, 226 mm wide, and 20 mm thick. The web was welded
onto the base plate with a weld length of 800 mm. Figure 1 shows a cross-section in the
T-joint, which was used as a basis for the analysis.
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Figure 1. Plate dimensions and weld sequence.

2.2. Welding Procedure

The weld contained a sequence of ten passes, as shown in Figure 1. The first pass
was done by a shielded metal arc with filler material (E20 18-M2) of 3.2-inch diameter.
The remainder of the passes were done by submerged arc welding with filler material
(ER-1205-1) brand L-Tec 120 of 3.2-inch diameter. The average heat input was 1.77 kJ/mm,
and the welding speed for the first pass was 100 mm/min, and for all other passes was
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150 mm/min. Also, preheat and interpass temperatures were 140 ◦C and 146 ◦C, respec-
tively. The weld efficiency was assumed to be 75%.

2.3. Material Properties

The parent steel was BIS 812 EMA (equivalent to ASTM A514 Class F). It is a low alloy,
quenched and tempered, high-strength steel. The steel was spray quenched from 950 ◦C
and tempered at 590 ◦C. Tables 1 and 2 show the composition of both parent and filler
materials. Figure 2 shows a continuous cooling transformation (CCT) diagram of the BIS
812 EMA, created from a composition-based model by Li [13]. Table 3 lists the thermal and
mechanical properties of the parent steel.

Table 1. BIS 812 EMA Steel composition (wt%) [14].

C Si Mn P S Cr Ni Mo V

0.13 0.24 0.93 0.01 0.002 0.48 1.28 0.39 0.02

Ti Cu Al Nb B Ca O Fe

0.01 0.21 0.07 0.01 0.0066 23 ppm 0.009 Bal

Table 2. Filler material composition (wt%) [14].

C Si Mn P S Cr Ni Mo

0.08 0.34 1.74 0.009 0.004 0.31 2.72 0.62

V Ti Cu Al Nb Ca Fe

<0.01 0.01 0.02 <0.01 0.0081 <3 ppm Bal
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Table 3. Thermal and mechanical properties of the parent steel.

Thermal
Conductivity

(W/m ◦C)

Temperature
(◦C)

Elastic
Modulus

(MPa)

Temperature
(◦C)

Yield Stress
(MPa)

Temperature
(◦C) Plastic Strain

35 20 214,000 20 458 20 0

37 200 130,000 800 711 20 0.1

26 800 10,700 1000 399 200 0

14 1480 2140 1480 620 200 0.1

14 1530 2140 1530 265 600 0

Expansion
Coefficient

(1/◦C)

Temperature
(◦C)

Specific Heat
(kJ/kg ◦C)

Temperature
(◦C) 37 800 0

1.16 × 10−5 20 460 20 57 800 0.1

1.36 × 10−5 400 595 375 4.58 1480 0

1.46 × 10−5 800 737 575 4.58 1480 0.1

1.52 × 10−5 1480 900 735 4.58 1530 0

1.52 × 10−5 1530 658 870 4.58 1530 0.1

811 1480

Density 7.84 × 10−6 (Kg/mm3). Poisson’s ratio 0.3.

3. Finite Element Modeling

This section describes the development of the finite element model and the procedure
followed to set the input data, such as boundary conditions, heat source (loads), phase
transformation, and bead deposition.

3.1. Finite Element Model

A two-dimensional thermo-mechanical, generalized plane strain finite element model
was created to simulate the effect of phase transformation on residual stress during multi-
pass welding in a thick section T-joint. Figure 3a,b show details of the weld beads and FE
mesh of the T-joint model, respectively. The model consisted of 2906 quadratic elements
and 14,854 nodes with 29,871 degrees of freedom (temperatures and displacements). All FE
analyses were carried out using ABAQUS software [15]. Since ABAQUS does not have the
capability to simulate the solid-state phase transformation, a user material (UMAT) subroutine
was employed. This subroutine, which was developed by the research team in the school of
materials at the University of Manchester [14], utilized the approach proposed by Leblond
and Devaux [16] to take into account the metallurgical, and metal dilution effects.

Leblond’s model is expressed as follows:

dPj(T)
dt

= f
( .

T
)
·

Pij
j, eq(T)− Pj(T)

τij(T)

where dPj denotes the proportion per unit volume of phase j, and Pij
j, eq is the equilibrium

proportion for phase j and τij is time constants for the transformation i to j. All model
parameters vary linearly between the start and finish temperatures of the phase transforma-
tions, which are listed in Table 4. The time constants τij can be estimated simply as the time
required to complete the transformation read from the continuous cooling transformation
(CCT) diagram. The constants are given in Table 5. The heating transformations from
ferrite, bainite, and martensite to austenite are all assumed to be identical.
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Table 4. Start and finish temperatures of the phase transformations.

Phase Start Temperature
◦C

Finish Temperature
◦C

Ferrite 800 600

Bainite 600 450

Martensite 400 200

Austenite 730 840

Table 5. Time constants used in the phase transformation.

Phase Transformation Start τij Finish τij

From
(i)

To
(j) (Sec) (Sec)

Austenite Ferrite 500 500

Austenite Bainite 9 90

Austenite Martensite 0.2 2

Ferrite Austenite 1 0.2

Bainite Austenite 1 0.2

Martensite Austenite 1 0.2

In the current study, volumetric strains were calculated from the coefficient of ex-
pansion and then an additional initial strain was imposed to represent a 3% reduction
in volume on transformation to austenite and a 3% expansion on transformation from
austenite. The formula for the additional initial strain is therefore expressed as follows:

εij = 0.01 · δij(p4|t=0 − p4)

where p4|t=0 is the initial austenite proportion, set to unity for each new bead and zero for
the parent plate. The initial composition of the parent material is 60% ferrite and 40% bainite.
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The effect of transformation plasticity was not included in the subroutine. Instead, the
effect was approximated by supplying a separate temperature-dependent yield stress, as
shown in Table 3.

The solid-state phase transformations occurred in the fusion zone (FZ) and heat-
affected zone (HAZ). From the CCT diagram in Figure 2, the HAZ can be defined as the
non-melted portion of the metal plate or solidified weld beads that were exposed to a
temperature higher than 800 ◦C during welding process.

3.2. Loads

The thermal loads of the welding process were simulated as a body heat flux (QW)
which can be calculated for each bead as follow:

QW =
QJ

t
(1)

where QJ and t are the total energy per unit volume and the effective time for the torch to
pass the bead, respectively. QJ can be calculated using the following equation:

QJ = η
H
A

(2)

where, η is the weld efficiency, which is assumed to be 0.75. A is the bead area and H is the
heat input, which can be calculated as follows:

H =
U ∗ I

v
(3)

where U, I, and v are voltage, current, and welding speed.
The effective time for the torch to pass the bead (t) can be calculated as follows:

t =
L
v

(4)

where L is the weld pool length, which is assumed to be 15 mm, and the welding speed (v)
for the first pass is 100 mm/min, whereas the rest have a faster speed of 150 mm/min.

Table 6 contains all required parameters for body heat flux calculations for each weld bead.

Table 6. Body heat flux parameters for each weld bead.

Pass No. Bead Area
(mm2) Time (Sec) Arc

Efficiency QJ (J/mm3)
QW

(W/mm3)

1 22 9 0.75 60.34 6.7
2 21.5 6 0.75 61.74 10.29
3 22 6 0.75 60.34 10.06
4 22.5 6 0.75 59 9.83
5 21.5 6 0.75 61.74 10.29
6 21.5 6 0.75 61.74 10.29
7 21.5 6 0.75 61.74 10.29
8 20 6 0.75 66.38 11.06
9 22 6 0.75 60.34 10.06
10 21 6 0.75 63.21 10.54

3.3. Heat Source Model

Modelling of the heat source may be considered the key factor in any welding simu-
lation. The ramp heat input function model, which is based on the disk model, has been
used for this project for three main reasons. Firstly, to avoid the numerical divergence
resulting from the rapid change in temperature around the fusion zone [17]. Secondly, for
the ability to apply this model to 2D analysis. Finally, to simulate the effect of the moving
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heat source [18]. The arc energy has to be distributed with regard to torch travelling speed
and welding pool length.

3.4. Boundary Conditions

In the current T-joint model, there are mechanical and thermal boundary conditions.
The mechanical boundary conditions prevent the structure from moving and rotating. The
thermal boundary conditions account for the heat losses from the steel to the ambient
environment via convection and radiation. Figure 4 illustrates the mechanical boundary
conditions where two points have been selected to fix the model. The top node fixes the
model in the X and Y directions while the bottom one restricts the body from rotation. This
boundary condition represents a structure that is freestanding and not clamped.
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The thermal boundary conditions enhance the model’s accuracy by considering the
heat losses from steel plates to the ambient environment. Overall, convection has the
dominant effect on heat transfer to the ambient environment. However, the radiation may
only have a more significant effect in the melting pool [19]. Convection and radiation were
applied to the whole web, the whole flange, and top beads from each weld side, which are
beads 5, 6, 9, and 10, as shown in Figure 1. Table 7 lists the convection and radiation heat
transfer parameters.

Table 7. The convection and radiation heat transfer parameters.

Parameter Value

Film Coefficiente 1 × 10−5 W/m2 K
Emissivity 0.4

Ambient temperature 20 ◦C
Boltzmann’s constant 5.669 × 10−14 W m2 K4

Absolute zero temperature −273.15 ◦C

4. Results and Discussion
4.1. Model Validation

Heat source modeling is a critical component of any welding simulation. Three pri-
mary standards can be used to validate the model’s heat source accuracy. These standards
include the peak temperature, shape, and size of the fusion zone [1]. A lot of efforts have
been made to obtain the proper fusion boundary. Several factors were changed several
times to get the right shape and size for the fusion zone, such as mesh size and bead
geometry and size. Figure 5 shows good agreement between the fusion boundary in the
weld macrograph and the FE model, which is represented by the gray color.
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The experiment-based study conducted by Wimpory and his colleagues [20] was also
used to validate the FE model developed in the present study. Wimpory used the deep-hole
drilling method to measure the residual stress on a line through the plate thickness from the
weld toe, as shown in Figure 6 (dashed red line). The comparison shows a good agreement
in the behavior, but the values are slightly shifted. This may result from the different
welding sequences between the experimental and FE modeling.
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4.2. Effect of Phase Transformation and Martensite Start Temperatures

Figure 7 shows residual stress development in the FE model with Ms = 400 ◦C. It
can be seen from the plot that phase transformation generated compressive residual stress
underneath the bead to be deposited. Also, it provided a higher amount of tensile residual
stress underneath the compression spot. The tensile residual stress was building continu-
ously as more weld beads were deposited. The final distribution of residual stress shows
compressive residual stress in and around the last bead to be deposited while the rest of
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the weld area was affected by tensile residual stress, which concentrated in the middle of
the weld and in the flange along the underside of the weld. These stresses might lead to
fatigue failure if there were interior voids or a lack of fusion in the internal beads.
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Figures 8–11 compare the normal, transverse, longitudinal, and maximum principal
stresses under four conditions: at Ms = 300, 350, 400 ◦C, and with no phase transformation.
The model without phase transformation appears to give better results than the rest. It
shows compressive stress normal to the plate in the weld area. Tensile stress in this direction
could cause the growth of cracks existing from lack of fusion.
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Figure 11. Max. Principal residual stress in the FE model under different conditions (MPa),
(a) Ms = 300 ◦C, (b) Ms = 350 ◦C, (c) Ms = 400 ◦C, and (d) no phase transformation.

Two points have been selected from the fusion zone of the first and last beads to
study the effect of both phase transformation and martensite start temperature (Ms) on
the accumulation of residual stress during the cooling of the weld bead. Figures 12 and 13
show residual stress accumulation in these two points under four different conditions, one
without phase transformation and the rest taking into account phase transformation at
different martensite start temperatures, which are 400, 350, and 300 ◦C.
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Figure 13. Stress accumulation at the last (10th) bead.

In the first bead, Figure 12, phase transformation showed an insignificant effect on
the final residual stress, whereas the martensite start temperature had an almost negligible
effect. This is because both web and flange were free (not connected yet), and therefore,
there was no restriction against the volume expansion during phase change. The residual
stress values were 55 MPa in the model without phase transformation, 8 MPa in the model
with Ms temperature 400 ◦C, −4 MPa in the model with Ms temperature 350 ◦C, and
−22 MPa in the model with Ms temperature 300 ◦C. In contrast, the phase transformation
in the last bead made a massive difference, as shown in Figure 13. When the phase
transformation was not included, it was observed that the tensile residual stress built
up continuously until it peaked at 470 MPa at the end of the cooling process (interpass
temperature). On the other hand, when the transformation was included, the tensile
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residual stress accumulated until it reached the martensite start temperature. Then, it
decreased sharply before it started to build up again after the transformation was exhausted.
The most significant compressive residual stress was produced in the model with a lower
martensite start temperature. It can be seen from the graph that as the Ms temperature
decreased, the compression stress increased. The values of the compressive residual stress
in the model with Ms temperatures 400, 350, and 300 ◦C were found to be 260, 305, and
327 MPa, respectively. However, after a specific Ms temperature, the amount of compressive
stress may not have increased with the reduction of Ms temperature. This can be observed
when the martensite start temperature was changed from 350 ◦C to 300 ◦C. Both Ms
temperature and the provided compressive stresses were nearly equal.

5. Conclusions

Various non-linear finite element simulations were carried out to understand the effect
of phase transformation and martensite start temperature on the residual stresses in a multi-
pass welded T-joint. Heat input and bead geometry were adjusted to provide realistic fusion
boundaries for each bead as it was deposited, and the effect of re-melting was examined.
In addition, two FE models were carried out, with and without phase transformation. Also,
the martensite start temperature was changed several times to demonstrate its effect on
residual stress accumulation. Finally, the results were compared to published experimental
works to validate the FE model.

From the output results, it was found that, for this multi-pass weld model, phase trans-
formation generated compressive residual stress underneath the last bead to be deposited.
However, some restrictions around the bead were essential to provide that stress. Tensile
residual stress was generated in the bulk of the weld area when phase transformation was
considered. From that, it can be concluded that phase transformation may be useful for
single pass and other groove welds but may be unhelpful in the case of the T-joint examined
here. The martensite start temperature had an effect, but this was small compared with the
main difference between having a phase transformation and not having one.
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