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Abstract: In this work, the effects of electrochemical hydrogen charging of 316H grade austenitic
stainless steel were investigated in order to characterize its hydrogen embrittlement (HE) resistance.
The as-received 316H material was in a fully recrystallized (solution-annealed) material condition.
The susceptibility to HE of the studied material was evaluated by determination of the embrittlement
index from the results of conventional uniaxial tensile tests of nonhydrogenated and hydrogen-
charged test specimens. The study was focused on the effects of two selected plastic pre-strain
levels of tensile specimens on their resulting HE resistance. The selected pre-strains corresponded to
the tensile stress conditions within the “yield stress–ultimate tensile strength” (YS–UTS) range and
directly at the UTS point. The obtained embrittlement indices for the presently used pre-straining
and hydrogen charging conditions indicated that the HE of the studied material states was small.
However, it was revealed that the observed degradation of deformation properties of plastically
pre-strained and hydrogen-charged materials was mainly caused by gradual plasticity exhaustion due
to tensile straining, which well correlated with the observed effects indicated by electron backscatter
diffraction analyses and indentation hardness measurements.

Keywords: austenitic steel; hydrogen embrittlement; microstructure; tensile test; fractography

1. Introduction

The group of “300 series stainless steels” involves a wide range of austenitic stainless
steels with the matrix phase possessing a face-centered cubic (FCC) crystal structure thanks
to their specific chemical composition involving high alloying with austenite-stabilizing
nickel. These high-alloyed chromium-nickel steels, originally derived from traditional
18Cr/8Ni stainless steel, are frequently used in a wide range of structural applications
covering various industrial and civil branches [1–7]. The 316H grade (18Cr-12Ni-2Mo,
high C) represents one of the most common austenitic stainless steels with additional
alloying by molybdenum to assure its higher corrosion resistance [8]. Compared to other
grades of “300 series stainless steels”, the increased carbon content in 316H grade (up
to 0.08 wt.% C) makes this material more resistant to creep loading and, thus, suitable
for structural applications in high-temperature service environments [9–13]. A typical
application of 316H steel grade involves high-temperature steam tubing within superheater
and reheater portions of so-called “ultra-supercritical” boilers in modern highly efficient
and ecologically friendly thermal power plants [14–16]. The use of 316H steel also includes
structural parts in nuclear power generation equipment [17–19]. In specific constructional
places, dissimilar welded joints, i.e., the welded joints between various steel grades, are
frequently used to create functional inter-connections of consecutive circuits.

Our previous works [20–27] dealt with dissimilar weldments between the austenitic
TP316H steel and various grades of high-chromium tempered martensitic steels. Apart
from our studies that focused on the creep behavior and mechanical properties of such weld-
ments [21,22,24–26], separate investigations about the susceptibility of these weldments to
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hydrogen embrittlement (HE) were also performed [20,23,27]. The issue of HE can be con-
sidered relevant in operational conditions involving the regular or accidental shut-down of
power generation plants and cooling down of the boiler equipment below 150 ◦C [28]. The
dissolved atomic hydrogen that possibly entered the steel microstructure from supercriti-
cally heated and pressurized steam may further lead to hydrogen-induced cracking (HIC) in
the presence of tensile stresses. Generally, a small quantity of hydrogen is sufficient to cause
failures because it can magnify its effect by migrating to high-triaxial-stress regions [29].
The results obtained from our previous investigations [23,27] on dissimilar T91/TP316H
and T92/TP316H weldments indicated that the applied electrochemical hydrogenation
did not strongly affect their strength properties but resulted in a clear reduction in their
deformation properties. The combined effects of thermal exposure and subsequent hydro-
gen charging on the mechanical properties of the studied weldments were more complex.
With increasing time of thermal exposure, the HE manifestations were partly suppressed
thanks to additional thermally induced precipitation of fine secondary phases that acted
as irreversible hydrogen traps. On the other hand, with increasing ageing time, the domi-
nance of thermal embrittlement was clearly indicated in weldments without application
of hydrogen charging [23,27]. Regarding the failure locations of dissimilar T92/TP316H
weldments after the combined effects of thermal exposure, hydrogen charging, and tensile
straining, it has been concluded that the most critical regions of the weldments represent
weld metal interfaces directly at or in close vicinity of the weld metal/base metal fusion
boundary [27].

Concerning the investigations on HE of 316 type steel base material, it should be
noticed that there are a significant amount of data available in the literature, e.g., [30–43],
mostly focused on 316L grade, i.e., the 316 steel low-carbon version (up to 0.03 wt.% C).
Apart from that, it has been often shown that observable variations in the phase compo-
sition and properties of materials and structures based on 316 type steel may strongly
depend even on slight compositional variations of individual melts, their purity, processing,
and final quality treatment conditions, playing a key role affecting the resulting material
characteristics. Thus, it is always worth studying specific material states of 316 type steels
individually.

In the present work, the effects of cathodic hydrogen charging of 316H grade austenitic
stainless steel were investigated in order to characterize its hydrogen embrittlement (HE)
resistance. The determination of HE index from room-temperature tensile tests of non-
hydrogenated and hydrogen-charged test specimens involved the effects of two applied
plastic pre-strain levels. The observed effects of tensile pre-strain and hydrogen charging
on the mechanical properties and fracture behavior of the studied material states were
characterized and discussed.

2. Materials and Methods

Commercial 316H austenitic stainless steel in the form of a seamless tube with a 38 mm
outside diameter and 6 mm wall thickness was used as experimental material. Its chemical
composition is shown in Table 1.

Table 1. Chemical composition in wt.% of the investigated 316H steel.

Material C Si Mn Cr Mo Ni Fe

316H 0.05 0.51 1.77 16.76 2.05 11.13 Rest

The susceptibility of the studied material to HE was determined from the results of
conventional uniaxial tensile tests of nonhydrogenated and electrochemically hydrogen-
charged tensile test specimens. Cathodic hydrogen charging was carried out at ambient
temperature for 24 h in electrolytic solution of 1 M HCl with 0.1 N N2H6SO4 at a current
density of 200 A/m2. These electrochemical hydrogenation conditions have been optimized
with respect to hydrogen charging time in our former study [20] that indirectly indicated



Crystals 2022, 12, 1419 3 of 14

hydrogen saturation of tensile test specimens via the unchanging course of the measured
deformation properties of tensile test specimens of alloy steels’ welded joints hydrogenated
beyond 24 h of hydrogen charging time. Moreover, according to other published studies,
e.g., [44–46], full hydrogen saturation of tensile test specimens after 24 h of hydrogen charg-
ing was directly determined by hydrogen concentration measurements. While Yin et al. [47]
indicated that the diffusible hydrogen concentration tends to reach the saturation state
when the hydrogen charging time reaches 48 h, the study showed the difference in dif-
fusible hydrogen contents for 24 h and 48 h hydrogen charging to be negligible. After the
hydrogen charging, the tensile test specimens were stored in a thermal insulating flask
filled with liquid nitrogen and consecutively subjected to room-temperature tensile testing.
The overall procedure for HE resistance determination was the following: Three tensile
test specimens for each material condition (i.e., nonhydrogenated and hydrogen-charged)
were subjected to room-temperature uniaxial tensile testing employing a universal test-
ing machine TIRATEST 2300 (TIRA GmbH, Schalkau, Germany) at a cross-head speed of
0.2 mm/min. After performing the tensile tests, average values of mechanical properties,
i.e., yield stress (YS), ultimate tensile strength (UTS), total elongation (EL), and reduction in
area (RA), were determined for nonhydrogenated and hydrogen-charged conditions. The
YS was estimated as 0.2% proof stress. The HE index was calculated as a relative change in
average values of area reduction between nonhydrogenated and hydrogen-charged tensile
test specimens. Cylindrical tensile test specimens with M6 threaded head portions were
used in the present investigation (see Figure 1).
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Figure 1. Cylindrical tensile test specimens (all dimensions are in mm).

In order to determine the effect of plastic pre-strain on the HE of the studied material,
two different plastic pre-strain levels were applied to further sets of tensile test specimens.
Figure 2 schematically shows the experimental design philosophy for the selection of plastic
pre-strain levels in the context of engineering a stress–strain diagram. The pre-strain levels
were individually selected to correspond with tensile stress conditions either within the
YS–UTS range or directly at the UTS point.

Microstructural and fractographic analyses of the studied test specimens were per-
formed using a scanning electron microscope (SEM) JEOL JSM-7000F (Jeol Ltd., Tokyo,
Japan) equipped with an electron backscatter diffraction (EBSD) detector Nordlys-I (HKL
technology A/S, Hobro, Denmark). The EBSD analyses were performed on a drawing
direction plane (540 µm by 420 µm in size) of prepared metallographic specimens in var-
ious material conditions (i.e., as-received, pre-strained, and hydrogen-charged) and the
obtained EBSD data were processed by the CHANNEL-5, HKL software package (Service
pack 7). Fractographic observations of broken tensile test specimens were carried out using
secondary electrons imaging (SEI) mode in the SEM.

The X-ray diffraction (XRD) phase analysis of the studied material under the selected
material conditions was carried out by a Philips X’Pert Pro diffractometer (Panalytical B.V.,
Almelo, The Netherlands) in Bragg–Brentano geometry, using Cu–Kα radiation and an
ultra-high-speed detector X’Celerator (type number: 9430 030 15201, Malvern Panalytical
Ltd., Malvern, UK).

The as-received and pre-strained material states in both their nonhydrogenated and
hydrogen-charged conditions were complementarily subjected to microhardness tests and
nanoindentation measurements using the microhardness tester WILSON-WOLPERT Tukon
1102 (Buehler ITW Co, Lake Bluff, IL, USA) and the nanoindenter Agilent G200 (Agilent
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Technologies, Inc., Chandler, AZ, USA), respectively. Microhardness measurements were
performed according to the ISO 6507–1:2018 standard [48] using a diamond Vickers in-
denter under the load of 50 gf (cca. 0.49 N) for a loading time of 15 s per measurement
point. Nanohardness measurements were performed according to the ISO 14577–1:2015
standard [49] using a diamond Berkovich tip. A load-controlled indentation method was
used with a maximum load of 50 µgf (cca. 4.9 × 10−7 N). The loading time to reach the
maximal load and the dwell time at the maximal load were 15 s and 10 s, respectively.
Altogether, the matrix of 5 × 6 measurement points with 100 µm spacing was analyzed.
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3. Results and Discussion
3.1. Microstructure and Phase Analysis of As-Received Material

Figure 3 depicts the EBSD microstructure visualization by the inverse pole figure
(IPF) of the as-received 316H material. It shows a polygonal grain structure with a nearly
equiaxed grain morphology and randomly distributed crystallographic planes. The ob-
served microstructure also shows that annealing twins of those occurrences in the mi-
crostructure are typically indicated by pairs of parallel lines representing twin boundaries.
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The XRD phase analysis of the studied 316H material in its as-received solution-
annealed material condition is shown in Figure 4. The obtained XRD pattern indicates that
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the studied 316H material consists of single-phase austenite, i.e., it is exclusively formed of
Fe-based austenitic solid solution with an FCC crystal structure.
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Figure 4. XRD pattern of as-received 316H material indicating its fully austenitic crystal structure,
i.e., exclusively consisting of a single FCC phase solid solution with a lattice diameter of 0.360 nm.

Complementary EBSD analyses depicting the phase map (PM) and local misorientation
map (LMM) are visualized in Figure 5. In accordance with the performed XRD phase
analysis (Figure 4), the EBSD phase map (Figure 5a) indicates the pure FCC austenitic phase
composition of the studied 316H material in its as-received solution-annealed material
state. The local misorientation map in Figure 5b indicates that the as-received solution-
annealed 316H material does not exhibit a considerable fraction of the areas with increased
local misorientations.
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3.2. Effect of Hydrogen Charging on Mechanical Properties

Figure 6 shows the mechanical properties of the as-received 316H material evaluated
from room-temperature tensile tests of nonhydrogenated and hydrogen-charged tensile
test specimens.
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Figure 6. Room-temperature tensile properties of as-received 316H material in nonhydrogenated
and hydrogen-charged material conditions: (a) strength properties: yield stress (YS), ultimate tensile
strength (UTS); (b) deformation properties: total elongation (EL), reduction in area (RA).

The results in Figure 6 indicate that the performed hydrogen charging of the tensile test
specimens had negligible effects on the resulting room-temperature tensile properties, com-
pared with those of the nonhydrogenated tensile test specimens. Although a slight increase
in strength properties and a certain observable decrease in deformation properties were
detected for the hydrogen-charged specimens, the variation in average tensile properties
was, in general, very small, i.e., within the values’ scatter bands, irrespective of hydrogen
charging application. Apart from the reference (initially unstrained) tensile test speci-
mens (Figure 2a), additional plastically pre-strained test specimens (Figure 2b,c) were also
examined in terms of the effect of hydrogen charging on their resulting tensile properties.

Figure 7 shows the representative engineering stress–strain diagram, obtained by the
tensile test of as-received (unstrained and nonhydrogenated) 316H steel, which was used
for quantitative selection of plastic pre-strain levels according to the experimental design
philosophy shown in Figure 2.
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According to the experimental design philosophy (Figure 2), two plastic pre-strain lev-
els, specifically 25% and 38%, were selected on the representative engineering stress–strain
curve (Figure 7) as defining pre-strain conditions for further experimental investigation.
Figures 8 and 9 show the effects of the pre-straining and hydrogen charging of the studied



Crystals 2022, 12, 1419 7 of 14

material on its strength and deformation properties, respectively. It can be seen that both
the plastic pre-strain and hydrogen charging lead to a considerable increase in strength
properties (Figure 8); however, the effect of plastic pre-strain is much more significant than
the superimposing effect of hydrogen charging.
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Figure 9. The effects of plastic pre-straining and subsequent electrochemical hydrogen charging of
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On the other hand, both the plastic pre-strain and hydrogen charging lead to a con-
siderable decrease in deformation properties (Figure 9). In this case, the effect of plastic
pre-strain is also much more pronounced compared to the effect of hydrogen charging.

The obtained results clearly indicate good HE resistance of the studied material in
conditions of the present investigation. Nevertheless, it holds that with the increasing level
of plastic pre-strain up to 38% (corresponding to the tensile stress related to the UTS point),
a clear decrease in average values of deformation properties (Figure 9) of hydrogen-charged
materials is observed. It is assumed that this behavior might be attributed to the plastic
pre-strain-induced microstructural changes associated with the newly formed hydrogen
diffusion paths, such as strain-induced dislocations acting as reversible hydrogen trapping
sites [50]. Further analyses and discussions regarding the considered microstructural
effects affecting the HE resistance of the studied material are provided in the subsequent
section depicting EBSD analyses of 38% plastically pre-strained material and micro/nano-
indentation measurements of the unstrained and 38% plastically pre-strained materials in
both the nonhydrogenated and hydrogen-charged conditions.

Fractographic characterization of broken tensile specimens did not reveal any crucial
differences in fracture micro-mechanisms of individual material states (see Figure 10). All
the observed fracture surfaces were characterized by the ductile dimple tearing fracture
micro-mechanism. Slight differences were observed only regarding the dimple size and
dimple morphology.
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charged; (c) 38% plastically pre-strained, hydrogen-charged.

By rule, the fracture surfaces of nonhydrogenated tensile test specimens exhibited
somewhat larger pulled-out dimples, whereas the hydrogenated ones were characterized
by smaller shallow dimples (Figure 10). The effect of pre-straining on the fracture surfaces
of hydrogenated specimens was also negligible.

3.3. Hydrogen Embrittlement Evaluation

Quantitative estimation of the HE susceptibility of the studied material with differ-
ent pre-strain levels was performed by calculation of the embrittlement index (EI) from
average values of deformation properties (i.e., either RA or EL), according to the following
equations:

EIRA =
RA0 − RAX

RA0
× 100% (1)

EIEL =
EL0 − ELX

EL0
× 100% (2)

The subscripts “0” and “X” refer to the initial (nonhydrogenated) and final (hydrogen-
charged) material states, respectively. In order to characterize the pure effect of hydrogen
charging, both the initial and final material states are considered with the same level
of the plastic pre-strain. Table 2 shows the individual EI values calculated according to
Equations (1) and (2).

Table 2. Hydrogen embrittlement indices of variously pre-strained 316H steel materials.

Row 0 X EIRA (0, X) [%] EIEL (0, X) [%]

1 0% pre-strain, nonhydrogenated 0% pre-strain, hydrogen charged 1.2 6.0
2 25% pre-strain, nonhydrogenated 25% pre-strain, hydrogen charged 1.5 9.0
3 38% pre-strain, nonhydrogenated 38% pre-strain, hydrogen charged 2.8 14.7

Row 1—hydrogen embrittlement of as-received (unstrained) material; row 2—hydrogen embrittlement of 25%
plastically pre-strained material; row 3—hydrogen embrittlement of 38% plastically pre-strained material.

On the base of EI values in Table 2, it can be concluded that the resulting HE of the
studied pre-strained 316H materials is small, although it slightly increases with the plastic
pre-strain. These results indicate good hydrogen embrittlement resistance of the studied
316H material in conditions of the present investigation. It can be likely related to the high
storage of plasticity in the studied material thanks to its FCC crystal structure [51,52] and
also its beneficial diffusional characteristics (i.e., considerably lower hydrogen diffusivity in
the FCC alloys than that in the base-centered cubic (BCC) alloys [53,54]), further enhanced
by the effect of mixing entropy of the FCC solid solution as the presently investigated
316H type steel containing high concentrations of alloying elements can be regarded as a
nonequiatomic medium-entropy alloy [55]. The XRD phase analyses depicting the FCC
single-phase crystal structure for both the as-received (unstrained, nonhydrogenated) and
38% plastically pre-strained and hydrogen charged 316H material are shown in Figure 11.
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The obtained results of the present investigation (Table 2) hold for the solution-annealed,
i.e., precipitation-free, material state of the studied 316H material. It has been shown in our
former studies [23,27] that grain-boundary precipitation of Cr23C6-based carbides during
high-temperature exposure of 316H material may vastly modify its hydrogen embrittlement
resistance. Thus, it is emphasized that not only the chemical composition of the material
but especially its specific material condition (i.e., microstructural state) is a decisive factor
influencing its susceptibility to HE. Regarding the gradual increase in EI values with
the increase in plastic pre-strain (Table 2), it can be assumed that this behavior is likely
attributed to the plastic pre-strain-induced microstructural changes associated with the
newly formed hydrogen diffusion paths, i.e., reversible hydrogen trapping sites, mainly
the slip dislocations and deformation twins, possibly enhancing the HE phenomenon. In
order to indicate such strain-induced microstructural changes, the EBSD microstructural
analyses and micro/nano-hardness measurements were carried out.
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Figure 11. XRD phase analyses of as-received and 38% plastically pre-strained, hydrogen charged
316H material indicating its fully austenitic crystal structure, i.e., exclusively consisting of single FCC
phase solid solution with a lattice diameter of 0.360 nm.

Figure 12 depicts EBSD microstructure visualizations by an inverse pole figure
(Figure 12a) and local misorientation map (Figure 12c) of 38% plastically pre-strained
316H material corresponding to the stress–strain condition of the UTS point. Figure 12a,b
indicate a longitudinally deformed grain structure with a major occurrence of {101} crys-
tallographic planes and distinct locations showing deformation twins that can be counted
to the newly formed hydrogen diffusion paths and the places of local hydrogen accumu-
lation [56]. Figure 12c,d highlight the areas with increased local misorientations (yellow
and red areas) that indicate locally increased mechanical strains related to plastic deforma-
tion associated with an increased density of dislocations that are well-known reversible
hydrogen trapping sites enhancing the measure of HE.

Moreover, by comparison of individual hydrogen embrittlement indices of variously
pre-strained 316H steel materials in Table 2, it is interesting to note that the EIEL indices
possess clearly higher values than the EIRA indices. This observation may be related to
the surface degradation of tensile test specimens during the performed electrochemical
hydrogenation, which affects the resulting EL values more significantly than the resulting
RA values as it is well-known that surface degradation vastly deteriorates the ductility of
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structural steels thanks to the earlier onset of necking on superficially degraded tensile test
specimens [57]. A typical surface morphology of the hydrogenated tensile test specimen
was additionally documented by SEM visualization showing some banding and pitting-like
surface degradation (see Figure 13).
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Figure 13. Typical surface degradation of hydrogenated tensile test specimen after cathodic hydrogen
charging of studied 316H material visualized by SEM at: (a) lower magnification and (b) higher
magnification.

Figure 14 demonstrates the effects of 38% plastic pre-strain and hydrogen charging
on the results of micro-hardness and nano-hardness measurements. From Figure 14, it
can be concluded that both the 38% plastic pre-straining and hydrogen charging of the
studied 316H material result in hardening effects in terms of the increase in micro-hardness
and nano-hardness. Obviously, the effect of plastic pre-strain is far more significant than
the effect of pure hydrogen charging. This observation qualitatively agrees with the
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results of uniaxial tensile tests presented in Figure 8, i.e., it also demonstrates that the
hardening (strengthening) effect due to the hydrogen charging does not strongly depend
on the application of the plastic pre-strain, as quite similar hydrogen hardening effects are
observed for both the as-received and 38% plastically pre-strained materials (Figure 14).
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Figure 14. The effects of plastic pre-straining and cathodic hydrogen charging of studied 316H
material on its: (a) micro-hardness and (b) nano-hardness.

In correlation with these findings, it can also be concluded that the higher measure
of degradation of deformation properties of 38% plastically pre-strained 316H materials
(Figure 9) is rather caused by the effect of plasticity exhaustion at the UTS point than by the
effect of HE. The obtained results have clearly shown that the studied solution-annealed
316H material in both the as-received and plastically pre-strained material states exhibits
good resistance to HE under applied tensile pre-straining and electrochemical hydrogen
charging conditions.

4. Conclusions

This work dealt with investigation of the effects of plastic pre-strain and subsequent
electrochemical hydrogen charging on the hydrogen embrittlement behavior of solution-
annealed 316H stainless steel. Here are the main conclusions:

• The performed XRD and EBSD phase analyses indicated a fully austenitic, i.e., FCC,
crystal structure of the studied material in its as-received solution-annealed mate-
rial condition. The EBSD microstructural analysis revealed that the single-phase
microstructure was mainly formed of randomly distributed polygonal grains showing
the occasional occurrence of annealing twins.

• For the initial (as-received) material condition, i.e., without the application of plastic
pre-strain, a slight increase in strength properties and a certain observable decrease in
deformation properties were observed for cathodically hydrogen-charged specimens,
compared to the nonhydrogenated ones.

• According to the calculated embrittlement indices, the overall embrittlement of the
studied material due to hydrogen was found to be small. This behavior has been
ascribed to the high storage of plasticity of the studied material due to its FCC crystal
structure and also to its beneficial diffusional characteristics.

• No strain-induced or hydrogen-induced phase transformations were observed in
plastically pre-strained and hydrogen-charged material states. With the increasing
level of plastic pre-strain up to 38%, a clear decrease in average deformation properties
of hydrogen-charged materials was observed. This behavior has been attributed to the
strain-induced microstructural changes, specifically the formation of slip dislocations
and deformation twins serving as the newly formed hydrogen diffusion paths.

• It has been revealed that the observed degradation of deformation properties of the
pre-strained and hydrogen-charged materials was predominantly caused by gradual
plasticity exhaustion due to tensile straining, which agreed well with the performed
EBSD analyses and micro/nano-hardness measurements.
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